首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (ΔA) and amplitude time delay (Δt) (vis-á-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan–Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22° 27′N, 87° 45′E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient (α eff ) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Δt). For the C-class flares we find that there is a direct correspondence between Δt of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Δt for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ? max independent of these time slots, the goodness of fit, as measured by reduced-χ 2, actually worsens as the day progresses. The variation of the Z dependence of reduced-χ 2 seems to follow the variation of standard deviation of Z along the T x -R x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Δt and ? max was observed.  相似文献   

2.
Very Low Frequency (VLF) radio waves propagate through the Earth-ionosphere waveguide. Irregularities caused by excess or deficient extreme ultra-violet and X-rays, which otherwise sustain the ionosphere, change the waveguide properties and hence the signals are modified. We report the results of monitoring of the NWC transmitter (19.8?kHz) by a receiver placed at Khukurdaha (22°27′N, 87°45′E) during the partial solar eclipse (75?%) of 15th January, 2010. The propagation path from the transmitter to the receiver crosses the annular eclipse belt. We got a clear depression in the data during the period of the eclipse. Most interestingly, there was also a X-ray flaring activity in the sun on that day which reached its peak (C-type) right after the time when the eclipse reached its maximum. We saw the effects of the occultation of this flare in our VLF signal since a part of the X-ray active region was clearly blocked by the moon. We quantitatively compared by using analogies with previous observations and found best fitting parameters for the time when the flare was occulted. We then reconstructed the VLF signal in the absence of the occulted flare. To our knowledge, this is the first such incident where the solar flare was observed through lunar occultation and that too during a partial eclipse.  相似文献   

3.
We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X- and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1 AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20 % of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, ≈?0.6. The SEP events within ICMEs show stronger correlation between the peak proton intensity and the soft X-ray flux of the associated solar flare, with correlation coefficient r=0.67±0.13, compared to the SEP events propagating in the standard solar wind, r=0.36±0.13. The difference is more pronounced for near-relativistic electrons. The main reason for the different correlation behavior seems to be the larger spread of the flare longitude in the SEP sample detected in the solar wind as compared to SEP events within ICMEs. We discuss to what extent observational bias, different physical processes (particle injection, transport, etc.), and the IMF configuration can influence the relationship between SEPs and coronal activity.  相似文献   

4.
The results of very low frequency (VLF) wave amplitude measurements carried out at the low latitude station Varanasi (geom. lat. 14°55′N, long. 154°E), India during solar flares are presented for the first time. The VLF waves (19.8 kHz) transmitted from the NWC-transmitter, Australia propagated in the Earth-ionosphere waveguide to long distances and were recorded at Varanasi. Data are analyzed and the reflection height H′ and the sharpness factor β are evaluated. It is found that the reflection height decreases whereas sharpness factor increases with the increase of solar flare power. The H′ is found to be higher and β smaller at low latitudes than the corresponding values at mid and high latitudes. The sunspot numbers were low during the considered period 2011–2012, being the rising phase of solar cycle 24 and as a result cosmic rays may impact the D-region ionosphere. The increased ionization from the flare lowers the effective reflecting height, H′, of the D-region roughly in proportion to the logarithm of the X-ray flare intensity from a typical mid-day unperturbed value of about 71–72 km down to about 65 km for an X class flare. The sharpness (β) of the lower edge of the D-region is also significantly increased by the flare but reaches a clear saturation value of about 0.48 km?1 for flares of magnitude greater than about X1 class.  相似文献   

5.
Walsh  R.W.  Galtier  S. 《Solar physics》2000,197(1):57-73
X-ray and EUV observations of the solar corona reveal a very complex and dynamic environment where there are many examples of structures that are believed to outline the Sun's magnetic field. In this present study, the authors investigate the temporal response of the temperature, density and pressure of a solar coronal plasma contained within a magnetic loop to an intermittent heating source generated by Ohmic dissipation. The energy input is produced by a one-dimensional MHD flare model. This model is able to reproduce some of the statistical properties derived from X-ray flare observations. In particular the heat deposition consists of both a sub-flaring background and much larger, singular dissipative events. Two different heating profiles are investigated: (a) the spatial average of the square of the current along the loop and (b) the maximum of the square of the current along the loop. For case (a), the plasma parameters appear to respond more to the global variations in the heat deposition about its average value rather than to each specific event. For case (b), the plasma quantities are more intermittent in their evolution. In both cases the density response is the least bursty signal. It is found that the time-dependent energy input can maintain the plasma at typical coronal temperatures. Implications of these results upon the latest coronal observations are discussed.  相似文献   

6.
The results of the geophysical and VLF (10–16 kHz) radio propagation measurements on the net of observatories during the solar proton event on 16 February 1984 are analysed. It is shown that the abnormal ionization region caused by solar protons consisted of two parts. One of them was the direct access zone in the middle and morning side of the polar cap, the other was the precipitation region of the quasi-trapped particles in the mid-day and evening sectors of the auroral zone. The probable profiles of the lower ionosphere electron density are determined from the VLF and satellite data of the energetic spectra at the maximum penetration. It is shown that the effective electron concentration at the height 45 km was close to 103 cm−3.  相似文献   

7.
黄文耿  古士芬  沈华 《天文学报》2007,48(3):311-317
2004年12月27日世界时21时30分,一个非常强的γ射线暴扫过地球,它使得暴露在这次事件中的地球高层大气产生额外电离.在爆发期间,地球上多个甚低频(VLF)电波台站都同时观测到了电离层突然骚扰(SID)事件.对GOES卫星的X射线数据、ACE卫星的太阳风和行星际数据以及理论分析表明,地球上观测到的SID事件是由GRB041227引起的.另外,利用国际GPS服务网(IGS)提供的观测数据,采用相干求和的数据处理方法研究了电离层总电子含量(TEC)对这次γ射线暴的响应.结果表明,SGR1806-20产生的GRB041227对地球电离层产生了明显的影响.在爆发期间,平均电离层TEC有一定的增加,其最大增加值约0.04TECU(1TECU=10~(16)el/m~2),产生效果与一个C级或者低于C级的太阳耀斑相当.计算结果还表明了遥远的天体也能对地球的近地空间环境产生或多或少的影响.  相似文献   

8.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

9.
VLF phase and amplitude measurements were made on five different frequencies at São Paulo, Brazil during a solar flare which occurred on 22nd January 1972. The phase and amplitude measurements during the decay phase of the flare were combined with the full wave solutions of Wait and Spies (1964) to calculate the recombination coefficient in the lower ionosphere. The values thus obtained are lower than those reported by Reid (1970), but are compatible with those reported by Montbriand et al. (1972) during Solar X-ray events. The effective loss rates have been utilized to calculate the ion-production at the maximum of the flare, which in turn has been utilized to calculate the incident X-ray flux as a function of wavelength at the maximum of the flare. Extensions to the calculations are discussed.  相似文献   

10.
In this paper a unique 2.3–4.2 GHz radio spectrum of the flare impulsive phase, showing fast positively drifting bursts superimposed on a slowly negatively drifting burst, is presented. Analyzing this radio spectrum it was found that the flare started somewhere near the transition region, where upward propagating MHD waves were generated during the whole impulsive phase. Moreover, it was found that behind a front of these ascending MHD waves the downward propagating electron beams, which bombarded dense layers of the solar atmosphere, were accelerated. It seems that, simultaneously with the increase of beam bombardment intensity, the intensity of MHD waves was increasing and thus the MHD shock wave generation and the electron beam acceleration and bombardment formed a self-consistently amplifying flare process. At higher coronal heights this process was followed by a type II radio burst, i.e. by the MHD flare shock. To verify this concept, the numerical modeling of the shock-wave generation and propagation in space from a flare site near the transition region up to 3 solar radii was made. Comparing the thermal and magnetic field disturbances, it was found that those of magnetic origin are more relevant in this case. Combining the results of interpretation and numerical simulation, a model of the February 27, 1992 flare is suggested and new aspects of this model are discussed.  相似文献   

11.
The aim of this paper is studying the relation between the coronal mass ejections (CMEs), and their associated solar flares. I used the CMEs data (obtained from CME catalogue) which observed by SOHO/LASCO, during the Solar Cycle 23rd (1996–2006), during this period I selected 12,433 CME records. Also I used the X-ray flares data which provided geostationary operational environmental satellite (GOES), during the same interval in the 1–8 Å GOES channel, the recorded flare events are 22,688. I filtered these CMEs and solar flare events to select 529 CME-Flare events. I found that there is a moderate relation between the solar flare fluxes and their associated CME energies, where R = 58 %. In addition I found that 61 % of the CME-Flare associated events ejected from the solar surface after the occurrence of the associated flare. Furthermore I found that the CME-Flare relation improved during the period of high solar activity. Finally, I examined the CME association rate as a function of flare longitude and I found that the CME association rate of the total 529 selected CME-Flare events are mostly disk-Flare events.  相似文献   

12.
With modern imaging and spectral instruments observing in the visible, EUV, X-ray, and radio wavelengths, the detection of oscillations in the solar outer atmosphere has become a routine event. These oscillations are considered to be the signatures of a wave phenomenon and are generally interpreted in terms of magnetohydrodynamic (MHD) waves. With multiwavelength observations from ground- and space-based instruments, it has been possible to detect waves in a number of different wavelengths simultaneously and, consequently, to study their propagation properties. Observed MHD waves propagating from the lower solar atmosphere into the higher regions of the magnetized corona have the potential to provide excellent insight into the physical processes at work at the coupling point between these different regions of the Sun. High-resolution wave observations combined with forward MHD modeling can give an unprecedented insight into the connectivity of the magnetized solar atmosphere, which further provides us with a realistic chance to reconstruct the structure of the magnetic field in the solar atmosphere. This type of solar exploration has been termed atmospheric magnetoseismology. In this review we will summarize some new trends in the observational study of waves and oscillations, discussing their origin and their propagation through the atmosphere. In particular, we will focus on waves and oscillations in open magnetic structures (e.g., solar plumes) and closed magnetic structures (e.g., loops and prominences), where there have been a number of observational highlights in the past few years. Furthermore, we will address observations of waves in filament fibrils allied with a better characterization of their propagating and damping properties, the detection of prominence oscillations in UV lines, and the renewed interest in large-amplitude, quickly attenuated, prominence oscillations, caused by flare or explosive phenomena.  相似文献   

13.
The relation between the ejected plasma cloud and the shock wave propagating ahead of it is examined for 27 pairs of such events. The flare sprays and the eruptive prominences observed in H line as well as the fast-moving sources of type-IV radio bursts have been considered as such ejected plasma clouds. Propagation of the shock wave in the solar corona has been examined from the observations of type-II radio bursts. Using the Parker model of the propagation of a shock wave, the shock wave velocity has been compared with the plasma cloud velocity. Energy interconnection between these two events has been studied. In the majority of the investigated cases there exists an energetic interconnection between the plasma cloud and the shock wave.  相似文献   

14.
Energetic particles, ejected from the Sun during solar flare events, may encounter interplanetary plasma/field conditions, which deviate considerably from the quiet time values used normally to describe the particle propagation. This is due to the presence of a hydromagnetic shock, which is emitted from the Sun at the time of the explosion. In a theoretical blast wave model, which incorporates the interaction with plane polarized Alfvén waves, we have analysed the changes in different terms of the Fokker-Planck equation, which describes energetic particle propagation. In this treatment, the shock influence on energy changes and on the transport coefficients are discussed.  相似文献   

15.
Lin  R. P.  Anderson  K. A. 《Solar physics》1967,1(3-4):446-464
Following many solar flares, electrons with kinetic energy > 40 keV appear in interplanetary space. There are two classes of such electrons: prompt electrons which arrive within an hour of the flare and delayed electrons which arrive about a day following the flare. The promptly arriving electrons are found to be of two types: Simple (S) events are associated with solar flares which occur in the absence of large area Type I radio noise storm and the complex (C) events resulting from flares beneath these large radio noise regions. The propagation of energetic solar flare electrons to the earth is best described in terms of cones of propagation. In the S-events the cones have about 30° opening angle whereas in the C-type events the cones open to about 90° full angle. Outside the boundaries of these cones the electron flux is much reduced. Within the cones there is a net streaming of the electrons away from the sun. Solar flare electron fluxes do not show filamentary structure even at times when protons from the same flare do. This suggests that the electrons are injected into the interplanetary field from regions distinct from the proton injection region. The delayed solar electron events are accompanied by large fluxes of protons > 500 keV. These events are sometimes closely related to a sudden commencement.  相似文献   

16.
Eruptive events such as flares and coronal mass ejections (CMEs) are known to generate global waves propagating over distances comparable to the solar radius in different layers of the solar atmosphere. Here we investigate the propagation of coronal EIT waves, modelled as fast magnetoacoustic modes propagating at a spherical interface in the presence of a purely radial magnetic field. Based on a simplified equilibrium we derive the dispersion relation of the waves. The generation and propagation of EIT waves at the spherical interface is studied numerically for different values of spherical degree and preliminary conclusions are reached regarding the properties of EIT waves. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

18.
The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 s cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1–50.0 nm) by the flare soft X‐ray and EUV flux. The first order EUV channel (26–34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEMEUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Earth atmosphere response. A simple and effective correction technique based on analysis of SEM count‐rate profiles, GOES X‐ray, and GOES proton data has been developed and used for correcting EUV measurements for the five extreme solar flare events of July 14, 2000, October 28, November 2, November 4, 2003, and January 20, 2005. Although none of the 2000 and 2003 flare peaks were contaminated by the presence of SEPs, the January 20, 2005 SEPs were unusually prompt and contaminated the peak. The estimated accuracy of the correction is about ±7.5% for large X‐class events. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Willson  Robert F. 《Solar physics》2002,211(1-2):289-313
Very-Large-Array (VLA) observations of the Sun at 20, 91 and 400 cm have been combined with data from the SOHO, TRACE and Wind solar missions to study the properties of long-lasting Type I noise storms and impulsive metric and decimetric bursts during solar flares and associated coronal mass ejections. These radio observations provide information about the acceleration and propagation of energetic electrons in the low and middle corona as well as their interactions with large-scale magnetic structures where energy release and transport takes place. For one flare and its associated CME, the VLA detected impulsive 20 and 91 cm bursts that were followed about ten minutes later by 400 cm burst emission that appeared to move outward into the corona. This event was also detected by the Waves experiment on Wind which showed intense, fast-drifting interplanetary Type III bursts following the metric and decimetric bursts detected by the VLA. For another event, impulsive 91 cm emission was detected about a few minutes prior to impulsive bursts at 20.7 cm, suggesting an inwardly propagating beam of electrons that excited burst emission at lower levels and shorter wavelengths. We also find evidence for significant changes in the intensity of Type I noise storms in the same or nearby active region during impulsive decimetric bursts and CMEs. These changes might be attributed to flare-initiated heating of the Type I radio source plasma by outwardly-propagating flare ejecta or to the disruption of ambient magnetic fields by the passage of a CME.  相似文献   

20.
We report the results of 1966, 1968, and 1969 polarization measurements of solar type III radio noise bursts made by recording the output of two orthogonally polarized receiving channels and subsequent digital processing of selected data. The processed data yield total intensity, degree of polarization, ellipticity, and polarization ellipse orientation at 1 second intervals. The measurements are made in a 100 Hz bandwith to minimize the influence of the propagating medium on the measurements. The mean degree of polarization was found to be about 65% in contrast to previous studies which indicated that type III events were more weakly polarized. By assuming that type III bursts are flare related we study the polarization characteristics of type III bursts as a function of the solar longitude of the related flares. The relation between type III event polarization characteristics and flare importance is also investigated. The significance of polarization measurements in studies of solar radio events is pointed out and suggestions for further theoretical research are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号