首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on an analogy between stellar and solar flares, we investigate the ten-second oscillations detected in the U and B bands on the star EV Lac. The emission pulsations are associated with fast magnetoacoustic oscillations in coronal loops. We have estimated the magnetic field, B ≈ 320 G; the temperature, T ≈ 3.7 × 107 K; and the plasma density, n ≈ 1.6 × 1011 cm?3, in the region of energy release. We provide evidence suggesting that the optical emission source is localized at the loop footpoints.  相似文献   

2.
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.  相似文献   

3.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   

4.
G. S. Lakhina  B. Buti 《Solar physics》1996,165(2):329-336
Hot electrons injected during solar flares at the top of coronal loops interact with the cooler chromospheric plasma and excite lower hybrid (LH) instabilty. The saturation electric fields due to LH instability can be of the order of a few hundred V cm–1. Such high electric fields can stochastically accelerate protons and other minor ions. The heavier ions are preferentially accelerated by this stochastic process.  相似文献   

5.
McDonald  L.  Harra-Murnion  L.K.  Culhane  J.L. 《Solar physics》1999,185(2):323-350
We analyse four solar flares which have energetic hard X-ray emissions, but unusually low soft X-ray flux and GOES class (C1.0–C5.5). These are compared with two other flares that have soft and hard X-ray emission consistent with a generally observed correlation that shows increasing hard X-ray accompanied by increasing soft X-ray flux. We find that in the four small flares only a small percentage of the nonthermal electron beam energy is deposited in a location where the heating rate of the electron beam exceeds the radiative cooling rate of the ambient plasma. Most of the beam energy is subsequently radiated away into the cool chromosphere and so cannot power chromospheric evaporation thus reducing the soft X-ray emission. We also demonstrate that in the four small flares the nonthermal electron beam energy is insufficient to power the soft X-ray emitting plasma. We deduce that an additional energy source is required, and this could be provided by a DC-electric field (where quasi-static electric field channels in the coronal loops accelerate electrons, and those electrons with velocity below a critical velocity will heat the ambient plasma via Joule heating) in preference to a loop-top thermal source (where heat flux deposited in the corona is conducted along magnetic field lines to the chromosphere, heating the coronal plasma and giving rise to further chromospheric evaporation).  相似文献   

6.
The impulsive phases of three flares that occurred on April 10, May 21, and November 5, 1980 are discussed. Observations were obtained with the Hard X-ray Imaging Spectrometer (HXIS) and other instruments aboard SMM, and have been supplemented with Hα data and magnetograms. The flares show hard X-ray brightenings (16–30 keV) at widely separated locations that spatially coincide with bright Hα patches. The bulk of the soft X-ray emission (3.5–5.5 keV) originates from in between the hard X-ray brightenings. The latter are located at different sides of the neutral line and start to brighten simultaneously to within the time resolution of HXIS. Concluded is that:
  1. The bright hard X-ray patches coincide with the footpoints of loops.
  2. The hard X-ray emission from the footpoints is most likely thick target emission from fast electrons moving downward into the dense chromosphere.
  3. The density of the loops along which the beam electrons propagate to the footpoints is restricted to a narrow range (109 < n < 2 × 1010 cm-3), determined by the instability threshold of the return current and the condition that the mean free path of the fast electrons should be larger than the length of the loop.
  4. For the November 5 flare it seems likely that the acceleration source is located at the merging point of two loops near one of the footpoints.
It is found that the total flare energy is always larger than the total energy residing in the beam electrons. However, it is also estimated that at the time of the peak of the impulsive hard X-ray emission a large fraction (at least 20%) of the dissipated flare power has to go into electron acceleration. The explanation of such a high acceleration efficiency remains a major theoretical problem.  相似文献   

7.
This review surveys hard X-ray emissions of non-thermal electrons in the solar corona. These electrons originate in flares and flare-related processes. Hard X-ray emission is the most direct diagnostic of electron presence in the corona, and such observations provide quantitative determinations of the total energy in the non-thermal electrons. The most intense flare emissions are generally observed from the chromosphere at footpoints of magnetic loops. Over the years, however, many observations of hard X-ray and even γ-ray emission directly from the corona have also been reported. These coronal sources are of particular interest as they occur closest to where the electron acceleration is thought to occur. Prior to the actual direct imaging observations, disk occultation was usually required to study coronal sources, resulting in limited physical information. Now RHESSI has given us a systematic view of coronal sources that combines high spatial and spectral resolution with broad energy coverage and high sensitivity. Despite the low density and hence low bremsstrahlung efficiency of the corona, we now detect coronal hard X-ray emissions from sources in all phases of solar flares. Because the physical conditions in such sources may differ substantially from those of the usual “footpoint” emission regions, we take the opportunity to revisit the physics of hard X-radiation and relevant theories of particle acceleration.  相似文献   

8.
F. Nagai 《Solar physics》1980,68(2):351-379
A dynamical model is proposed for the formation of soft X-ray emitting hot loops in solar flares. It is examined by numerical simulations how a solar model atmosphere in a magnetic loop changes its state and forms a hot loop when the flare energy is released in the form of heat liberation either at the top part or around the transition region in the loop.When the heat liberation takes place at the top part of the loop which arches in the corona, the plasma temperature around the loop apex rises rapidly and, as the result, the downward thermal conductive flux is increased along the magnetic tube of force. Soon after the thermal conduction front rushes into the upper chromosphere, a local peak of pressure is produced near the conduction front and the chromospheric material begins to expand into the corona to form a high-temperature (107 K-3 × 107 K at the loop apex) and high-density (1010 cm–3-1011 cm–3 at the loop apex) loop. The velocity of the expanding material can reach a few hundred kilometres per second in the coronal part. The thermal conduction front also plays a role of piston pushing the chromospheric material downward and gives birth to a shock wave which propagates through the minimum temperature region into the photosphere. If, on the other hand, the heat source is placed around the transition region in the loop, the expansion of the material into the corona occurs from the beginning of the flare and the formation process of the hot loop differs somewhat from the case with the heat source at the top part of the loop.Thermal components of radiations emitted from flare regions, ranging from soft X-rays to radio wavelengths, are interpreted in a unified way by using physical quantities obtained as functions of time and position in our flare loop model as will be discussed in detail in a following paper.  相似文献   

9.
E. Y. Zlotnik 《Solar physics》2013,284(2):579-588
Solar radio emission is a significant source of information regarding coronal plasma parameters and the processes occurring in the solar atmosphere. High resolution frequency, space, and time observations together with the developed theory make it possible to retrieve physical conditions in the radiation source and recognize the radiation mechanisms responsible for various kinds of solar radio emission. In particular, the high brightness temperature of many bursts testifies to coherent radiation mechanisms, that is, to plasma instabilities in the corona. As an example, the fine structure of solar radio spectra looking like a set of quasi-harmonic stripes of enhanced and lowered radiation, which is observed against the type IV continuum at the post-flare phase of activity, is considered. It is shown that such emission arises from a trap-like source filled with a weakly anisotropic equilibrium plasma and a small addition of electrons which have a shortage of small velocities perpendicular to the magnetic field. For many recorded events with the mentioned fine spectral structure the instability processes responsible for the observed features are recognized. Namely, the background type IV continuum is due to the loss-cone instability of hot non-equilibrium electrons, and the enhanced striped radiation results from the double-plasma-resonance effect in the regions where the plasma frequency f p coincides with the harmonics of electron gyrofrequency f B ; f p=sf B . Estimations of the electron number density and magnetic field in the coronal magnetic traps, as well as the electron number density and velocities of hot electrons necessary to excite the radiation with the observed fine structure, are given. It is also shown that in some cases several ensembles of non-equilibrium electrons can coexist in magnetic traps during solar flares and that its radio signature sensitively depends on the parameters of the distribution functions of the various ensembles.  相似文献   

10.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

11.
We carried out an electromagnetic acoustic analysis of the solar flare of 14 August 2004 in active region AR10656 from the radio to the hard X-ray spectrum. The flare was a GOES soft X-ray class M7.4 and produced a detectable sun quake, confirming earlier inferences that relatively low energy flares may be able to generate sun quakes. We introduce the hypothesis that the seismicity of the active region is closely related to the heights of coronal magnetic loops that conduct high-energy particles from the flare. In the case of relatively short magnetic loops, chromospheric evaporation populates the loop interior with ionised gas relatively rapidly, expediting the scattering of remaining trapped high-energy electrons into the magnetic loss cone and their rapid precipitation into the chromosphere. This increases both the intensity and suddenness of the chromospheric heating, satisfying the basic conditions for an acoustic emission that penetrates into the solar interior.  相似文献   

12.
K. Ohki 《Solar physics》1975,45(2):435-452
Interferometric radio observations together with soft X-ray observations are presented here to show that during the growth phase of soft X-ray flares, a large mass increase occurs simultaneously with the creation of an X-ray hot region in the corona. The lack of an increase of radio flux from pre-flare active regions absolutely excludes the possibility of the coronal accumulation of low-temperature matter just prior to flare onset. Therefore we suggest a hypothesis that a large amount of hot matter, which contains almost the entire energy in the flare, is supplied from the chromosphere into the corona during each flare. Since even small flares produce coronal hot regions radiating thermal soft X-rays and microwaves, the formation of the hot region may be a basic process in most flares. Energy, created by some instability in the corona, travels by thermal conduction to the chromosphere where the dense matter is heated and subsequently expands into the corona, producing the observed hot region. Impulsive heating of the chromosphere by nonthermal electrons which simultaneously emit hard X-rays is not sufficient to be the energy source in our model. Slower heating, which supplies the flare more energy than that supplied in the impulsive phase, is required. If the temperature of the energy source in the corona exceeds 2 × 107 K, the conductive energy flux becomes sufficient to exceed the radiation loss from the chromosphere-corona transition region. This excess energy may cause the chromospheric gas expansion.  相似文献   

13.
We study a model of particle acceleration coupled with an MHD model of magnetic reconnection in unstable twisted coronal loops. The kink instability leads to the formation of helical currents with strong parallel electric fields resulting in electron acceleration. The motion of electrons in the electric and magnetic fields of the reconnecting loop is investigated using a test-particle approach taking into account collisional scattering. We discuss the effects of Coulomb collisions and magnetic convergence near loop footpoints on the spatial distribution and energy spectra of high-energy electron populations and possible implications on the hard X-ray emission in solar flares.  相似文献   

14.
We analyze the electric fields that arise at the footpoints of a coronal magnetic loop from the interaction between a convective flow of partially ionized plasma and the magnetic field of the loop. Such a situation can take place when the loop footpoints are at the nodes of several supergranulation cells. In this case, the neutral component of the converging convective flows entrain electrons and ions in different ways, because these are magnetized differently. As a result, a charge-separating electric field emerges at the loop footpoints, which can efficiently accelerate particles inside the magnetic loop under appropriate conditions. We consider two acceleration regimes: impulsive (as applied to simple loop flares) and pulsating (as applied to solar and stellar radio pulsations). We have calculated the fluxes of accelerated electrons and their characteristic energies. We discuss the role of the return current when dense beams of accelerated particles are injected into the corona. The results obtained are considered in light of the currently available data on the corpuscular radiation from solar flares.  相似文献   

15.
The problem of hydrodynamic response of the solar chromosphere on impulsive heating by energetic electrons is discussed. All basic physical processes are considered in a one-dimensional approximation, due to presence of a strong magnetic field. The calculations are performed for the heating of the chromosphere by electrons having a power-law energetic spectrum. In the upper chromosphere the electron temperature rises rapidly to values of order 107 K. The ion temperature is more than the order of magnitude less than the temperature of electrons. The heated high-temperature chromospheric plasma expands into corona with a velocity up to 1500 km s–1. In more dense layers, the fast re-emission of supplied energy takes place. This process gives rise to short-lived EUV flash. Just below the flare transition layer the thermal instability produces cold plasma condensation which moves downward at a velocity exceeding the sonic one in the quiet chromosphere.  相似文献   

16.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

17.
Loukas Vlahos 《Solar physics》1987,111(1):155-166
Energetic electrons, with energies 10–100 keV, accelerated during the impulsive phase of solar flares, sometimes encounter increasing magnetic fields as they stream towards the chromosphere. A consequence of the conservation of their magnetic moment is that the electrons with large initial pitch angle will be reflected at different heights from the atmosphere. Energetic electrons reflected below the transition zone will lose most of their energy to collisions and will never return to the corona. Thus, electrons reflected above the transition zone form a loss-cone velocity distribution which can be unstable to Electron Cyclotron Maser (ECM). The interaction of quasi-perpendicular shocks with the ambient coronal plasma will form a ‘ring’ or ‘hollow beam’ velocity distribution upstream of the shock. ‘Ring’ velocity distributions are also unstable to the ECM instability. A review of the recent results on the theory of ECM will be presented. We will focus our discussion on the questions: (a) What are the characteristics of the linear growth rate of the ECM during solar flares? (b) How does the ECM saturate and what is its efficiency? (c) How does the ECM generated radiation modify the flare environment? Finally we will review the outstanding questions in the theory of ECM and we will relate the theoretical predictions to current observations.  相似文献   

18.
D. J. Mullan 《Solar physics》1981,70(2):381-393
Thomas (1978) has shown that, if Alfvén waves exist in a sunspot umbra, they are normally reflected so strongly by the temperature minimum as to be essentially undetectable in the upper solar atmosphere. However, it is known that in many proton flares, chromospheric emission overlies the umbra of a sunspot, indicating that the transition region (TR) between chromosphere and corona in the umbral flux tube has moved down to lower altitudes. As a result of this lowering, umbral Alfvén waves have readier access to the corona: the coronal leakage depends exponentially on the altitude of the TR. We find that the Alfvén wave flux which leaks out of the umbra into the corona can exceed 107 ergs cm-2 s-1. A flux of this magnitude is expected to dissipate rapidly in the corona, thereby contributing to a positive feedback loop which ensures prolonged (1 hr) leakage of the umbral Alfvén waves into the corona. We propose that these Alfvén waves may contribute significantly to prolonged energization of proton flares in which umbral coverage occurs.  相似文献   

19.
C. Lindsey  A.-C. Donea 《Solar physics》2008,251(1-2):627-639
Instances of seismic transients emitted into the solar interior in the impulsive phases of some solar flares offer a promising diagnostic tool, both for understanding the physics of solar flares and for the general development of local helioseismology. Among the prospective contributors to flare acoustic emission that have been considered are: i) chromospheric shocks propelled by pressure transients caused by impulsive thick-target heating of the upper and middle chromosphere by high-energy particles, ii) heating of the photosphere by continuum radiation from the chromosphere or possibly by high-energy protons, and iii) magnetic-force transients caused by magnetic reconnection. Hydrodynamic modeling of chromospheric shocks suggests that radiative losses deplete all but a small fraction of the energy initially deposited into them before they penetrate the photosphere. Comparisons between the spatial distribution of acoustic sources, derived from seismic holography of the surface signatures of flare acoustic emission, and the spatial distributions of sudden changes both in visible-light emission and in magnetic signatures offer a possible means of discriminating between contributions to flare acoustic emission from photospheric heating and magnetic-force transients. In this study we develop and test a means for estimating the seismic intensity and spatial distribution of flare acoustic emission from photospheric heating associated with visible-light emission and compare this with the helioseismic signatures of seismic emission. Similar techniques are applicable to transient magnetic signatures.  相似文献   

20.
We have detected chromospheric footpoints of the giant post-flare coronal arches discovered by HXIS a few years ago. H photographs obtained at Big Bear and Udaipur Solar Observatories show chromospheric signatures associated with 5 sequential giant arch events observed in the interval from 6 to 10 November, 1980. The set of footpoints at one end of the arches consists of enhancements within a plage at the northeast periphery of the active region and the set of footpoints at the other end of the arch consists of brightenings of the chromosphere south of the active region. Both sets of footpoints show very slow brightness variations correlated in time with the brightness variations of the X-ray arches. Current-free modelling of the coronal magnetic field by Kopp and Poletto (1989), based on a Kitt Peak magnetogram, confirms the identification of the two sets of footpoints by showing magnetic field lines connecting them.The brightenings appear as a succession of point-like enhancements whose individual lifetimes are of the time-scale of minutes but which continue to occur for periods of several hours. This behaviour allows us to infer a fine structure in the coronal arches, undetectable in the X-ray images. The discovery of these brightenings and their location at the periphery of the active region also alters our conception of the relationship of the giant arches to the flares that begin concurrently with them. The giant arch phenomenon appears now to be either: (1) a long-lived, semi-permanent, coronal structure which is revived and fed with plasma and energy by underlying dynamic flares, or alternatively (2) a system of high-altitude loops which open at the onset of every such flare and subsequently reconnect over intervals of many hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号