首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 817 毫秒
1.
The geomorphological characteristics of small debris flows in a maritime sub‐Antarctic environment are described. The morphological and sedimentological characteristics of the debris flows are comparable to debris flows documented for other parts of the world; their initiation appears closely linked to the unusual environment in which they are found. Sediment supply is generated by diurnal frost heave of loamy sediment associated with Azorella selago. The debris flows are triggered by sediment mobilization upon saturation of the frost‐heaved surface gravel and overland flow over the low‐permeability and frost‐susceptible slope materials. Morphological effects of the flows are short‐lived due to obliteration by subsequent frost heave activity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The rheology of debris flows is difficult to characterize owing to the varied composition and to the uneven distribution of the components that may range from clay to large boulders, in addition to water. Few studies have addressed debris flow rheology from observational, experimental, and theoretical viewpoints in conjunction. We present a coupled rheological‐numerical model to characterize the debris flows in which cohesive and frictional materials are both present. As a first step, we consider small‐scale artificial debris flows in a flume with variable percentages of clay versus sand, and measure separately the rheological properties of sand–clay mixtures. A comparison with the predictions of a modified version of the numerical model BING shows a reasonable agreement between measurements and simulations. As application to a field case, we analyse a recent debris flow that occurred in Fjærland (Western Norway) for which much information is now available. The event was caused by a glacial lake outburst flood (GLOF) originating from the failure of a moraine ridge. In a previous contribution (Breien et al., Landslides, 2008 , 5: 271–280) we focused on the hydrological and geomorphological aspects. In particular we documented the marked erosion and reported the change in sediment transport during the event. In contrast to the laboratory debris flows, the presence of large boulders and the higher normal pressure inside the natural debris flow requires the introduction of a novel rheological model that distinguishes between mud‐to–clast supported material. We present simulations with a modified BING model with the new cohesive‐frictional rheology. To account for the severe erosion operated by the debris flow on the colluvial deposits of Fjærland, we also suggest a simple model for erosion and bulking along the slope path. Numerical simulations suggest that a self‐sustaining mechanism could partly explain the extreme growth of debris flows running on a soft terrain.  相似文献   

3.
Lahars (volcanic debris flows) have been responsible for 40% of all volcanic fatalities over the past century. Mount Semeru (East Java, Indonesia) is a persistently active composite volcano that threatens approximately one million people with its lahars and pyroclastic flows. Despite their regularity, the behaviour and the propagation of these rain‐triggered lahars are poorly understood. In situ samples were taken from lahars in motion at two sites in the Curah Lengkong River, on the southeast flank of Semeru, providing estimates of the particle concentration, grain size spectrum, grain density and composition. This enables us to identify flow sediment from three categories of lahars: (a) hyperconcentrated flow, (b) non‐cohesive, clast‐ and matrix‐supported debris flow, and (c) muddy flood. To understand hyperconcentrated flow sediment transport processes, it is more appropriate to sample the active flows than the post‐event lahar deposits because in situ sampling retains the full spectrum of the grain‐size distribution. Rheometrical tests on materials sampled from moving hyperconcentrated flows were carried out using a laboratory vane rheometer. Despite technical difficulties, results obtained on the <63, <180, and <400 µm fractions of the sampled sediment, suggest a purely frictional behaviour. Importantly, and contrary to previous experiments conducted with monodisperse suspensions, our results do not show any transition towards a viscous behaviour for high shear rates. These data provide important constraints for future physical and numerical modelling of lahar flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Debris flows generated from landslides are common processes and represent a severe hazard in mountain regions due to their high mobility and impact energy. We investigate the dynamics and the rheological properties of a 90 000 m3 debris‐flow event triggered by a rapid regressive landslide with high water content. Field evidence revealed a maximum flow depth of 7–8 m, with an estimated peak discharge of 350–400 m3 s?1. Depositional evidence and grain‐size distribution of the debris pose the debris flow in an intermediate condition between the fluid‐mud and grain‐flow behaviour. The debris‐flow material has silt–clay content up to 15 per cent. The rheological behaviour of the finer matrix was directly assessed with the ball measuring system. The measurements, performed on two samples at 45–63 per cent in sediment concentration by volume, gave values of 3·5–577 Pa for the yield strength, and 0·6–27·9 Pa s for the viscosity. Based on field evidence, we have empirically estimated the yield strength and viscosity ranging between 4000 ± 200 Pa, and 108–134 Pa s, respectively. We used the Flo‐2D code to replicate the debris‐flow event. We applied the model with rheological properties estimated by means of direct measurements and back‐analyses. The results of these models show that the rheological behaviour of a debris‐flow mass containing coarse clasts can not be assessed solely on the contribution of the finer matrix and thus neglecting the effects of direct grain contacts. For debris flows composed by a significant number of coarse clasts a back‐analysis estimation of the rheological parameters is necessary to replicate satisfactorily the depositional extent of debris flows. In these cases, the back‐estimated coefficients do not adequately describe the rheological properties of the debris flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Tree‐ring records from conifers have been regularly used over the last few decades to date debris‐flow events. The reconstruction of past debris‐flow activity was, in contrast, only very rarely based on growth anomalies in broad‐leaved trees. Consequently, this study aimed at dating the occurrence of former debris flows from growth series of broad‐leaved trees and at determining their suitability for dendrogeomorphic research. Results were obtained from gray alder (Alnus incana (L.) Moench), silver birch and pubescent birch (Betula pendula Roth and Betula pubescens Ehrh.), aspen (Populus tremula L.), white poplar, black poplar and gray poplar (Populus alba L., Populus nigra L. and Populus x canescens (Ait.) Sm.), goat willow (Salix caprea L.) and black elder (Sambucus nigra L.) injured by debris‐flow activity at Illgraben (Valais, Swiss Alps). Tree‐ring analysis of 104 increment cores, 118 wedges and 93 cross‐sections from 154 injured broad‐leaved trees allowed the reconstruction of 14 debris‐flow events between AD 1965 and 2007. These events were compared with archival records on debris‐flow activity at Illgraben. It appears that debris flows are very common at Illgraben, but only very rarely left the channel over the period AD 1965–2007. Furthermore, analysis of the spatial distribution of disturbed trees contributed to the identification of six patterns of debris‐flow routing and led to the determination of preferential breakout locations of events. The results of this study demonstrate the high potential of broad‐leaved trees for dendrogeomorphic research and for the assessment of the travel distance and lateral spread of debris‐flow surges. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Coupling morphological, sedimentological, and rheological studies to numerical simulations is of primary interest in defining debris‐flow hazard on alluvial fans. In particular, numerical runout models must be carefully calibrated by morphological observations. This is particularly true in clay‐shale basins where hillslopes can provide a large quantity of poorly sorted solid materials to the torrent, and thus change both the mechanics of the debris flow and its runout distance. In this context, a study has been completed on the Faucon stream (southeastern French Alps), with the objectives of (1) defining morphological and sedimentological characteristics of torrential watersheds located in clay‐shales, and (2) evaluating through a case study the scouring potential of debris flows affecting a clay‐shale basin. Morphological surveys, grain‐size distributions and petrographic analyses of the debris‐flow deposits demonstrate the granular character of the flow during the first hectometre, and its muddy character from there to its terminus on the debris fan. These observations and laboratory tests suggest that the contributing areas along the channel have supplied the bulk of the flow material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The characteristics of two recent (AD 1994) debris flows in upper Leirdalen, Jotunheimen, Norway, suggest deposition controlled by fluid loss into the underlying, highly permeable, coarse talus. The evidence comprises: (1) drainage holes (sieveholes) up to 44 cm wide and 125 cm deep in the debris‐flow channel floors, which remained open throughout the debris‐flow event; (2) marked channel narrowing, with reduced cross‐sectional areas and termination of the debris flows in flat‐topped, clast‐dominated lobes within a relatively short distance after crossing the junction between impermeable and permeable substrate; (3) the presence of fines deposited in the sieveholes demonstrating the passage of transported matrix; and (4) the absence of substantial lateral drainage through (or dissection of) the levées or the terminal lobes. The term ‘sieve deposition’ is considered particularly well suited to this process involving drainage through the substrate, which is likely to be most effective where debris flows traverse coarse talus either for the first time or only infrequently. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The Crimean Mountains (Ukraine) are renowned for the highest occurrence of debris flows along the northern coast of the Black Sea, but information on their origin, frequency and triggers is widely lacking. This study reconstructs a regional time series of debris flows in eight catchments located on the slopes above Yalta. Dendrogeomorphic analyses were performed on 1122 increment cores selected from 566 black pines (Pinus nigra ssp. pallasiana) with clear signs of external damage induced by past debris‐flow activity. The trees sampled were divided into old and young trees. The sample contains 361 young trees with post‐1930 innermost rings and 205 old trees with pre‐1930 germination dates. The two groups of trees were analyzed separately to identify possible age effects in the reconstructed debris‐flow series and to assess the ability of P. nigra to record geomorphic disturbances over time. We date a total of 215 debris flows back to ad 1701 and observe a mean decadal frequency of 6.9 events, with a peak in activity during the 1940s (20 events). The young trees record an increase in debris‐flow activity over the last 70 years, whereas the frequency of events remained fairly constant in the old trees for the same period. By contrast, the formation of reaction wood became increasingly scarce with increasing tree age whereas the occurrence of abrupt growth suppression increased. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The quantification of debris‐flow hazard requires estimates of debris‐flow frequency and magnitude. Several methods have been proposed to determine the probable volume of future debris flows from a given basin, but most have neglected to account for debris recharge rates over time, which may lead to underestimation of debris‐flow volumes in basins with rare debris flows. This paper deals with the determination of debris recharge rates in debris‐flow channels based on knowledge of debris storage and the elapsed time since the last debris flow. Data are obtained from coastal British Columbia and a relation is obtained across a sample of basins with similar terrain and climatic conditions. For Rennell Sound on the west coast of the Queen Charlotte Islands, the power‐law relation for area‐normalized recharge rate, Rt, versus elapsed time, te was Rt = 0·23te?0·58 with an explained variance of 75 per cent. A difference in recharge rates may exist between creeks in logged and unlogged forested terrain. The power function for undisturbed terrain was Rt = 0·20te?0·49, while the function for logged areas was Rt = 0·30te?0·77. This result suggests that for the same elapsed time since the last debris flow, clearcut gullies tend to recharge at a slower rate than creeks in old growth forest. This finding requires verification, particularly for longer elapsed times since debris flow, but would have important implications for forest resource management in steep coastal terrain. This study demonstrates that commonly used encounter probability equations are inappropriate for recharge‐limited debris flow channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Till deposition by glacier submarginal,incremental thickening   总被引:1,自引:0,他引:1  
Macro‐ and micro‐scale sedimentological analyses of recently deposited tills and complex push/squeeze moraines on the forelands of Icelandic glaciers and in a stacked till sequence at the former Younger Dryas margin of the Loch Lomond glacier lobe in Scotland are used to assess the depositional processes involved in glacier submarginal emplacement of sediment. Where subglacial meltwater is unable to flush out subglacial sediment or construct thick debris‐rich basal ice by cumulative freeze‐on processes, glacier submarginal processes are dictated by seasonal cycles of refreezing and melt‐out of tills advected from up‐ice by a combination of lodgement, deformation and ice keel and clast ploughing. Although individual till layers may display typical A and B horizon deformation characteristics, the spatially and temporally variable mosaic of subglacial processes will overprint sedimentary and structural signatures on till sequences to the extent that they would be almost impossible to classify genetically in the ancient sediment record. At the macro‐scale, Icelandic tills display moderately strong clast fabrics that conform to the ice flow directions documented by surface flutings; very strong fabrics typify unequivocally lodged clasts. Despite previous interpretations of these tills as subglacial deforming layers, micro‐morphological analysis reveals that shearing played only a partial role in the emplacement of till matrixes, and water escape and sediment flowage features are widespread. A model of submarginal incremental thickening is presented as an explanation of these data, involving till slab emplacement over several seasonal cycles. Each cycle involves: (1) late summer subglacial lodgement, bedrock and sediment plucking, subglacial deformation and ice keel ploughing; (2) early winter freeze‐on of subglacial sediment to the thin outer snout; (3) late winter readvance and failure along a decollement plane within the till, resulting in the carriage of till onto the proximal side of the previous year's push moraine; (4) early summer melt‐out of the till slab, initiating porewater migration, water escape and sediment flow and extrusion. Repeated reworking of the thin end of submarginal till wedges produces overprinted strain signatures and clast pavements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In 1996 a large debris flow occurred on the fan of the Chalance torrent system, a tributary of the Séveraisse river, French Alps. To investigate the magnitude and frequency of such debris flows on this fan, fieldwork was carried out in the summer of 1998. Detailed investigation revealed that several debris flows have occurred in the past 200 years. Lichenometry was used as a dating technique to obtain the frequency of these debris‐flow events. Also the volume of these flows was estimated. With these data a magnitude–frequency relationship was constructed. This relationship shows a maximum magnitude of at least 50 × 103 m3. Based on data for the past c. 150 years, a debris flow of such a volume appears to have a recurrence interval of approximately 34 years. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Based on the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy, this paper presents an approach to simulate debris flow maximum run‐out. On the basis of the flow source areas and an average thickness of 1·2 m of the scarps, we estimated debris flow volumes of the order of 104 and 105 m3. Flow mobility ratios (ΔH/L) derived from the x, y, z coordinates of the lower‐most limit of the source areas (i.e. apex of the alluvial fan) and the distal limit of the flows ranged between 0·27 and 0·09. We performed regression analyses that showed a good correlation between the estimated flow volumes and mobility ratios. This paper presents a methodology for predicting maximum run‐out of future debris flow events, based on the developed empirical relationship. We implemented the equation that resulted from the calibration as a set of GIS macros written in Visual Basic for Applications (VBA) and running within ArcGIS. We carried out sensitivity analyses and observed that hazard mapping with this methodology should attempt to delineate hazard zones with a minimum horizontal resolution of 0·4 km. The developed procedure enables the rapid delineation of debris flow maximum extent within reasonable levels of uncertainty, it incorporates sensitivities and it facilitates hazard assessments via graphic user interfaces and with modest computing resources. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The assessment of the dominant flow type on alluvial fans usually refers to two categories: debris‐flow fans (i.e. sediment gravity flows) and fluvial fans (i.e. fluid gravity flows). Here we report the results of combined morphometric, stratigraphic and sedimentological approaches which suggest that hyperconcentrated flows, a transitional process rheologically distinct from debris flows and floods and sometimes referred to as debris floods, mud floods, or transitional debris flows, are the dominant fan building process in eastern Canada. These flows produce transitional facies between those of debris flows which consist of a cohesive matrix‐supported diamicton, and those of river flows which display more distinct stratification. The size of the blocks in the channels and the abrasion scars at the base of several trees attest to the high transport capacity of these flows. The fan channels are routed according to various obstacles comprised primarily of woody debris that impede sediment transit. However, these conditions of sediment storage are combined with readily available sediment due to the friable nature of the local lithology. Tree‐ring analysis allowed the reconstruction of eight hydrogeomorphic events which are characterized by a return period of 9.25 years for the period 1934–2008, although most of the analyzed events occurred after 1970. Historical weather data analysis indicates that they were related to rare hydrometeorological events at regional and local scales. This evidence led to the elaboration of weather scenarios likely responsible for triggering flows on the fan. According to these scenarios, two distinct hydrologic regimes emerge: the torrential rainfall regime and the nival regime related to snowmelt processes. Hydrogeomorphic processes occurring in a cold‐temperate climate, and particularly on small forested alluvial fans of north‐eastern North America, should receive more attention from land managers given the hazard they represent, as well as because of their sensitivity to various meteorological parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
High-field torque-meter measurements of diamagnetic susceptibility anisotropy of a suite of samples of Carrara marble, axially shortened by amounts up to 50% at (1.5–3.0) · 108 Pa confining pressure and at 20–500°C (mainly 400°C), have been compared with optical measurements of preferred crystallographic orientation. A revised value for the susceptibility anisotropy of calcite has been obtained from studies of single crystals, and it has been shown to be almost independent of the state of intracrystalline plastic strain. From the measured anisotropy of calcite, quantitative comparison of optical and magnetic fabric measurements is possible. It is found that these measurements agree and the implications of the observed progressive development of fabric intensity with strain are discussed.  相似文献   

15.
The evolution of a debris‐flow cone depends on a multitude of factors in the hydrogeomorphic system. Investigations of debris‐flow history and cone dynamics in highly active catchments therefore require an integrative approach with a temporal and spatial resolution appropriate for the goals of the study. We present the use of an orthophoto time series to augment standard dendrogeomorphic techniques to describe the spatio‐temporal dynamics of debris flows on a highly active cone in the western Austrian Alps. Analysis of seven orthophotos since 1951 revealed a migration of active deposition areas with a resulting severe loss of forest cover (> 80%) and a mean tree loss per year of 10·4 (range 1·3–16·6 trees per year). Analysis of 193 Pinus mugo ssp. uncinata trees allowed the identification of 161 growth disturbances corresponding to 16 debris flows since 1839 and an average decadal frequency of 0·9 events. As a result of the severe loss of forest cover, we speculate that < 20% of the more recent events were actually captured in the tree‐ring record, giving a decadal return interval of ~7·5 events for a period of 60 years. Based on three annual field observations, it is evident that this catchment (the Bärenrüfe) produces very frequent (< 1 yr), small (in the order of a few 10 to 100 m3) debris flows with minor material relocation. The specific challenges of tree‐ring analysis in this tree species and in highly active environments are explicitly addressed in the discussion and underline the necessity of employing complementary methods of analysis in an integrative manner. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Particle size analysis and scanning electron microscopy have been used with some success to differentiate sediments sampled from varying geomorphological environments. In the paraglacial environment, however, discrimination of paraglacially reworked deposits from in situ glacigenic deposits has proven to be problematic. We consider till sediments that have been reworked by paraglacial debris flows and in situ, unreworked parent material, and apply a series of quantitative techniques in an attempt to discriminate samples from each environment. Initial analysis of particle size suggests some eluviation of fines from the debris‐flow‐reworked deposits but is of insufficient significance to allow reliable differentiation of geomorphological environment. Similarly, although slight differences are identified in terms of quartz grain surface microtextures and quartz grain outline shape, subsequent PCA, cluster and Fourier analyses fail to reliably differentiate quartz grains from each geomorphological environment, owing to high levels of intra‐sample heterogeneity. This lack of apparent difference may arise from a lack of paraglacial process operation of significant magnitude or duration for a characteristic process imprint to emerge at this scale of observation. Accordingly, further assessment of particle‐size and microtextural characteristics of glacial and paraglacial sediments may be most fruitful where sediments have been reworked over long distances. Moreover, differentiating glacial from paraglacial deposits is likely to yield the most reliable results where rigorous statistical analyses are combined with a wide range of sedimentological and geomorphological techniques. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

17.
Stratified scree is forming today on 34–45° north‐facing slopes in gullies in the Kluane Lake area of the St. Elias Range of the Yukon Territory. Low winter snowfall leaves the slopes snow‐free in the dry spring weather, so that dry grain flows are extremely active. The coarsest material moves to the bottom of the slope, while the finer material is left behind. Summer rains mobilize the matrix‐rich material upslope and cause it to flow down and cover the clast‐supported deposits from the dry grain flows. The matrix‐supported debris flow material dries and hardens, stabilizing the clast‐supported material. This occurs in a region of discontinuous permafrost, but permafrost is not involved in the processes. A remarkably similar Pleistocene deposit occurs at Noiseux in Belgium. Detailed examination of the deposits from the Yukon and Noiseux shows that they have essentially similar characteristics, suggesting that the main deposit at Noiseux formed in the same way from frost‐shattered Famenne siltstone with small quantities of loess. The deposit remaining today represents the sediments at the toe of this scree. Thus climatic conditions at Noiseux during part of the Late Pleistocene were similar to those found today at Kluane Lake. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The abrasion of coastal rock platforms by individual or clusters of clasts during transport has not been quantitatively assessed. We present a study which identifies the types of abrasion and quantifies erosion due to the transport of clasts during three storms in February and March 2016. We explore relationships between platform roughness, determined by the fractal dimension (D) of the topographic profiles, geomorphic controls and the type and frequency of abrasion feature observed. Clast transport experiments were undertaken in conjunction with the measurement of wave energy to assess transport dynamics under summer and winter (non‐storm) conditions. Platform abrasion occurred extensively during the storms. We identify two types of clast abrasion trails: simple and complex. In addition, we find two forms of erosion occur on these trails: Scratch marks and Percussion marks. An estimated 13.6 m2 of the platform surface was eroded by clast abrasion on simple abrasion trails during the three storms. We attribute approximately two thirds of this to scratch‐type abrasion. The total volume of material removed by abrasion was 67 808 cm3. Despite the larger surface area affected by scratch marks, we find that the volume of material removed through percussion impact was almost seven times greater. We also find that the type and frequency of abrasion features is strongly influenced by the effect of platform morphometry on transport mode, with impact‐type abrasion dominating areas of higher platform roughness. Results of the clast transport experiments indicate that abrasion occurs under non‐storm wave energy conditions with observable geomorphological effects. We suggest that abrasion by clasts is an important component of platform erosion on high energy Atlantic coastlines, particularly over longer timescales, and that the morphogenetic link between the cliff and the platform is important in this context as the sediment supplied by the cliff is used to abrade the platform. © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
Identification of debris‐flow hazard areas necessitates the knowledge of the flow thickness and the runout distance. Both have been investigated using a numerical runout model. On the Faucon stream (South French Alps), representative of clay‐shale basins, results of various rheological tests and numerical experiments are presented and discussed. The calibration of the model was undertaken using the results of both geomorphological surveys and sedimentological analyses. Rheological tests using either a parallel‐plate rheometer, a coaxial rheometer, slump tests, and an inclined plane were carried out on several samples. Results have shown that the flow behaviour could be described by an Herschel‐Bulkley constitutive equation. The rheological responses of several natural suspensions collected from surficial deposits (sandstones, moraines, weathered black marls) were also investigated. In order to model the runout of the flow, the model BING was used. The model describes well the influence of each type of sediment on the behaviour (runout distance, deposit thickness) of the flow, although the velocities were significantly overestimated. Different risk scenarios are tested and discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号