首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hydrological and Morphological Processes in the Kura River Delta   总被引:1,自引:0,他引:1  
Peculiarities of the development of the Kura Delta over the last 200 years are discussed. As shown, changes in the delta were greatly affected by the Caspian Sea level drop during 1929–1977 and its rise during 1978–1995 as well as by natural and human-induced variations in the water and sediment runoff of the river. It was noted that the delta area decreased by nearly 40% as a result of the sea level rise. The following significant changes in the Kura Delta were revealed in recent years using space images: river water rushed through the right mouth spit and, hence, the main Southeastern Branch was devoid of its flow and a new sea spit began its formation in the branch mouth using wave-cut products.  相似文献   

2.
The connectivity and upscaling of overland runoff and sediment transport are important issues in hillslope hydrology to identify water flux and sediment transport within landscape. These processes are highly variable in time and space with regard to their interactions with vegetation and soil surface conditions. The generation of overland runoff and its spatial connectivity were examined along a slope to determine the variations in the transport mechanism of runoff and soil particles by rain splash and overland runoff. Field experiments were conducted by erosion plots on a steep hillslope at lengths of 5, 10, and 15 m. The overland runoff connectivity and flow transport distance decreased with the slope length, while spatial variability of infiltration increased significantly with the slope length. Observation of subsurface flow revealed that surface soil and litter layer could have important role in water transport. However, the surface soil water content and water flux transport along the slope was highly variable for different storm events; the variability was related to the complexity of the system, mainly by way of the initial wetness conditions and infiltration characteristics. Only net rain‐splashed soil was measurable, but examination of the water flux, overland runoff and sediment transport connectivity, characteristics of sheetwash, and the variability in spatial infiltration indicated an increase in the contribution of the rain splash transport mechanism along the slope. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Analysis of Long-Term Variations in the Volga Annual Runoff   总被引:2,自引:0,他引:2  
Ismaiylov  G. Kh.  Fedorov  V. M. 《Water Resources》2001,28(5):469-477
The stability of sample estimates of statistical parameters was analyzed for segments of the initial time series of annual runoff volumes of the Volga River at Volgograd for 1881/1882–1994/1995. The segments of series considered in this study differ in the extent of anthropogenic impact on the runoff and the type of atmospheric circulation and correspond to characteristic periods in the Caspian Sea level variations. The conclusion is made that there are statistically significant variations in the annual runoff of the Volga, caused by both natural–climatic and anthropogenic variations in the hydrological cycle.  相似文献   

4.
Yonghui Yang  Fei Tian   《Journal of Hydrology》2009,374(3-4):373-383
Runoff in Haihe River Catchment of China is steadily declining due to climate change and human activity. Determining abrupt changes in runoff could enhance identification of the main driving factors for the sudden changes. In this study, the sequential Mann–Kendall test analysis is used to determine abrupt changes in runoff in eight sub-catchments of Haihe River Catchment, while trend analysis via the traditional Mann–Kendall test for the period 1960–1999 is used to identify the basic trend of precipitation and runoff. The results suggest an insignificant change in precipitation and a significant decline in runoff in five of the eight sub-catchments. For most of the sub-catchments, abrupt changes in runoff occurred in 1978–1985. Through correlation comparisons for precipitation and runoff for the periods prior to and after abrupt runoff changes, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. It is also noted that abrupt decline in runoff was actually at the beginning of China’s 1978–1985 land reform. Given that the land reform motivated farmers to productively manage their reallocated lands, agricultural water use therefore increased. Hence percent agricultural land is analyzed in relation to land use/cover pattern for the late 1970s and early 1980s. The analysis shows that when cultivated farmland exceeds 25% of a sub-catchment area, an abrupt decline in runoff occurs. It is therefore concluded that high percent agricultural land and related agricultural water use are the most probable driving factors of runoff decline in the catchment.  相似文献   

5.
As a result of global warming, the discharges from rivers in permafrost regions have varied significantly. However, its mechanism remains unclear. One of possible factors is active soil freeze–thaw cycle, which may influence surface runoff in the variation of permafrost water cycle processes. In this study, a typical permafrost watershed in the Qinghai-Tibet plateau was selected, its hydrological processes were monitored from 2004 to 2007, and the effects of the freezing and thawing depth of the soil active layer on runoff processes were assessed. The runoff modulus, runoff coefficient, direct runoff ratio, recession gradient and their seasonal variations were estimated and analyzed. The active soil dynamics and water budget were analyzed to prove the features of the surface runoff and the influences of active soil freeze–thaw processes. The primary factors influencing surface runoff processes during different seasons were analyzed by Principal Component Analysis (PCA) and statistical regression methods. The results showed that the high runoff coefficient and low direct runoff ratio were the main characteristics during the spring flood period (May–June) and during the autumn recession period (September). The runoff modulus and its year-to-year variability were the greatest in the summer flood period. The direct runoff ratio decreased from 0.43 in May to 0.29 in September, with the exception of the highest ratio, which occurred during the summer recession period (July). The active soil thawing in the upper layer of depth of 60 cm had contributed to increase in discharge, but the increase in thawing depth deeper than 60 cm led to a decrease in surface runoff and slowness in the recession process. Precipitation played a small role in the spring flood runoff and the autumn runoff. The soil active layer freeze–thaw variation, which affected seasonal soil water dynamic and water budget and reformed seasonal runoff characteristics, along with vegetation cover changes, is considered the potential major factor in control of the hydrological processes in the permafrost region.  相似文献   

6.
The hydroclimatic conditions of water runoff formation and the hydrography of Parana and Uruguay river basins in the South America are considered. A survey of the recent studies of the hydrological regime of these rivers is given. Observation data are used to evaluate the long-term average values of water runoff and suspended sediment yield in the Parana and Uruguay and their variations along the rivers. Characteristics of many-year runoff variations in the rivers were evaluated. A climate-induced increase was identified in the Parana and Uruguay water runoff, and the corresponding present-day trends in river runoff variations in both rivers were evaluated. The total water runoff and suspended sediment yield of the Parana and Uruguay into La Plata estuary were calculated. Water balance of the drainage basin of La Plata estuary was characterized.  相似文献   

7.
8.
Investigation of the variations in runoff, sediment load, and their dynamic relation is conducive to understanding hydrological regime changes and supporting channel regulation and fluvial management. This study is undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load, and their relationship at multi-temporal scales from 1966 to 2016. The results showed that runoff changed significantly for more months, whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. Annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (p < 0.05) with a significant mutation in 1993 (p < 0.05). The average annual runoff in the change period (1994–2016) decreased by 49.58% and annual sediment load displayed a substantial decline with a reduction of 77.77% in comparison with the reference period (1966–1993) due to climate change and intensive human activity. The power functions were satisfactory to describe annual and extreme monthly runoff–sediment relationships, whereas the monthly runoff–sediment relationship and extreme monthly sediment-runoff relationship were changeable. Spatially, annual runoff–sediment relationship alteration could be partly attributed to sediment load changes in the upstream area and runoff variations in the downstream region. Three quantitative methods revealed that the main driver for significant reductions of annual runoff and sediment load is the human activity dominated by soil and water conservation measures, while climate change only contributed 22.73%–38.99% (mean 32.07%) to the total runoff reduction and 3.39%–35.56% (mean 17.32%) to the total decrease in sediment load.  相似文献   

9.
Formation of the Runoff of Small Rivers in the Southern Ural Region   总被引:1,自引:0,他引:1  
The formation of the runoff of small rivers in different natural zones of the cis-Urals Region is analyzed. Correlation between variations in the flood flow of small rivers and changes in the system of agricultural land use in 1936–1995 in the Southern cis-Urals is shown. The dependence of the balance of melt water on the topography and type of farming lands on the slope is discussed. The effect of fall plowing on the coefficient of snowmelt runoff is assessed.  相似文献   

10.
The organically rich, fine-grained, very soft, high porosity sediments in the inner portion of Eckernförde Bay, Germany have varying amounts of methane gas, with the horizon of gas fluctuating vertically on a seasonal cycle. The sharp vertical gradient in water content, with values exceeding 500% at the sediment–water interface, and corresponding gradient in density can be expected to cause a significant subbottom acoustic impedance contrast in these surficial sediments. Equations are presented to characterize geotechnical property variations of the upper 5 m. The upper 1.5 m exhibits appreciable ‘apparent’ overconsolidation with a trend toward a normally consolidated stress state at 2.5 m depth. The coefficient of permeability of the upper 40 cm is low (4×10-6 cm s-1) and the sediment is highly compressible with compression indices of 2.7–6.8. Triaxial compression test results indicate that the sediment behaves as a normally consolidated clay with a low friction angle (22°). The rheological behavior of the upper 20–30 cm, determined with a small vane device, is indicative of a shear-thinning material, implying that the resistance to penetration decreases with increasing velocity.  相似文献   

11.
Controls on event runoff coefficients in the eastern Italian Alps   总被引:3,自引:0,他引:3  
Analyses of event runoff coefficients provide essential insight on catchment response, particularly if a range of catchments and a range of events are compared by a single indicator. In this study we examine the effect of climate, geology, land use, flood types and initial soil moisture conditions on the distribution functions of the event runoff coefficients for a set of 14 mountainous catchments located in the eastern Italian Alps, ranging in size from 7.3 to 608.4 km2. Runoff coefficients were computed from hourly precipitation, runoff data and estimates of snowmelt. A total of 535 events were analysed over the period 1989–2004. We classified each basin using a “permeability index” which was inferred from a geologic map and ranged from “low” to “high permeability”. A continuous soil moisture accounting model was applied to each catchment to classify ‘wet’ and ‘dry’ initial soil moisture conditions. The results indicate that the spatial distribution of runoff coefficients is highly correlated with mean annual precipitation, with the mean runoff coefficient increasing with mean annual precipitation. Geology, through the ‘permeability index’, is another important control on runoff coefficients for catchments with mean annual precipitation less than 1200 mm. Land use, as indexed by the SCS curve number, influences runoff coefficient distribution to a lesser degree. An analysis of the runoff coefficients by flood type indicates that runoff coefficients increase with event snowmelt. Results show that there exists an intermediate region of subsurface water storage capacity, as indexed by a flow–duration curve-based index, which maximises the impact of initial wetness conditions on the runoff coefficient. This means that the difference between runoff coefficients characterised by wet and dry initial conditions is negligible both for basins with very large storage capacity and for basins with small storage capacity. For basins with intermediate storage capacities, the impact of the initial wetness conditions may be relatively large.  相似文献   

12.
Seasonal evolution of the vertical thermal, halininc, and density structure of water in the phases of warming and heat loss is shown. The annual cycle of variability of seasonal and deep-water thermo-, halo-, and pycnocline is discussed. It is revealed that variations in the seasonal (subsurface) thermo-, halo-, and pycnocline depend on the surface environmental factors (air temperature, river runoff, and precipitation), while variations in the deep-water thermo-, halo-, and pycnocline depend on the dynamic factor impact (seasonal variations in the intensity of the general cyclonic circulation in the Black Sea).Translated from Vodnye Resursy, Vol. 32, No. 1, 2005, pp. 28–34.Original Russian Text Copyright © 2005 by Titov.  相似文献   

13.
Due to the impacts of globe climate change and human activities, dramatic variations in runoff and sediment load were observed for the Yellow River. Analyses of nearly 65 years' data measured at main hydrologic-stations on the Yellow River from 1950 to 2014 indicated that, except for the Tangnaihai station in the head region, sharp downward trends existed in both the annual runoff and annual sedi-ment load according to the Mann–Kendal trend test;and their abrupt changes occurred in 1986 and in 1980, respectively, according to the rank sum test. Factors affecting the changes in the runoff and sediment load were very complicated. Results indicated that the reducing precipitation and the increasing water consumption were the main causes for the runoff decline, while the impoundment of the Longyangxia Reservoir and its combined operation with the Liujiaxia Reservoir exerted a direct bearing on the abrupt change in the annual runoff. In addition to the sediment load decrease associated with the runoff reduction, the reduced storm intensity, the conducted soil erosion control, and the constructed dam buildings all played an important role in the trends and abrupt changes of sediment load decline.  相似文献   

14.
Data of network and expedition measurements and information about water management arrangements were used to study in detail the peculiarities of along-channel and long-term variations in the major characteristics of suspended sediment runoff in the lower reach and the delta of the Kuban River. For characteristics periods, the annual volumes of actual and estimated sediment runoff and the contribution of economic activity in its variations are evaluated and possible changes in sediment runoff characteristics in the XXI century are forecasted. The specific features, values, and causes of sediment runoff transformation in Kuban delta in the past and the present are analyzed; sediment balance in the delta is calculated.  相似文献   

15.
Observations of dense water formation on the shelf of the Gulf of Thermaikos (North Aegean) are presented, based mainly on continuous monitoring of temperature and currents, during the winter of 2001–2002, at an instrumented mooring and a CTD survey carried out in early February 2002. A 2.5-month realistic simulation, corresponding to the period of observation, was performed to investigate the processes of dense water formation and cascading. The simulation is first compared to the main characteristics of the dense water, time variation of bottom temperature and spatial distribution of the dense water on the shelf. Subsequently, the simulation is used (a) to show that the formation of dense water takes place within the semi-enclosed Thessaloniki Bay and (b) to explain the intermittence of cascading out of the bay in relation to wind variations. The pathways of the dense water through the shelf are investigated with an emphasis on the role of the bottom slope and friction in the Ekman layer. The export of dense water towards the open sea occurs primarily along the slope bounding the western coast.  相似文献   

16.
The degradation of grasslands is a common problem across semi‐arid areas worldwide. Over the last 150 years, much of the south‐western United States has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Plot‐based experiments to determine how spatio‐temporal characteristics of soil moisture, runoff and erosion change over a transition from grassland to shrubland were carried out at four sites over a transition from black grama (Bouteloua eriopoda) grassland to creosotebush (Larrea tridentata) shrubland at the Sevilleta NWR LTER site in New Mexico. Each site consisted of a 10 × 30 m bounded runoff plot and adjacent characterization plots with nested sampling points where soil moisture content was measured. Results show distinct spatio‐temporal variations in soil moisture content, which are due to the net effect of processes operating at multiple spatial and temporal scales, such as plant uptake of water at local scales versus the redistribution of water during runoff events at the hillslope scale. There is an overall increase in runoff and erosion over the transition from grassland to shrubland, which is likely to be associated with an increase in connectivity of bare, runoff‐generating areas, although these increases do not appear to follow a linear trajectory. Erosion rates increased over the transition from grassland to shrubland, likely related in part to changes in runoff characteristics and the increased capacity of the runoff to detach, entrain and transport sediment. Over all plots, fine material was preferentially eroded which has potential implications for nutrient cycling since nutrients tend to be associated with fine sediment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The sediment balance in the mouth of the Kiliya Branch was analyzed on the basis of new data on the Danube sediment runoff and its distribution among branches. Through the comparison of variations in the fan volume in the branch mouth with the sediment runoff of this branch it was found that the sediment runoff data were underestimated, because they did not take into account the tractional load. The introduction of an appropriate correction made it possible not only to assess the sediment balance components for the Kiliya Branch mouth, but also to specify average long-term values of sediment runoff of the Danube River proper.  相似文献   

18.
Large-scale vegetation restoration has been helpful to prevent serious soil erosion, but also has aggravated water scarcity and resulted in soil desiccation below a depth of 200 cm in the Loess Plateau of China. To understand the dynamic mechanism of soil desiccation formation is very important for sustainable development of agriculture in the Loess Plateau. Based on natural and simulated rainfall, the characteristics of soil water cycle and water balance in the 0–400 cm soil layer on a steep grassland hillslope in Changwu County of Shaanxi Loess Plateau were investigated from June to November in 2002, a drought year with annual rainfall of 460 mm. It was similarly considered to represent a rainy year with annual rainfall of 850 mm under simulated rainfall conditions. The results showed that the temporal variability of water contents would decrease in the upper 0–200 cm soil layer with the increase in rainfall. The depth of soil affected by rainfall infiltration was 0–200 cm in the drought year and 0–300 cm in the rainy year. During the period of water consumption under natural conditions, the deepest layer of soil influenced by evapotranspiration (ET) rapidly reached a depth of 200 cm on July 21, 2002, and soil water storage decreased by 48 mm from the whole 0–200 cm soil layer. However, during the same investigation period under simulated rainfall conditions, soil water storage in the 0–400 cm soil layer increased by only 71 mm, although the corresponding rainfall was about 640 mm. The extra-simulated rainfall of 458 mm from May 29 to August 10 did not result in the disappearance of soil desiccation in the 200–400 cm deep soil layer. Most infiltrated rainwater retained in the top 0–200 cm soil layer, and it was subsequently depleted by ET in the rainy season. Because very little water moved below the 200 cm depth, there was desiccation in the deep soil layer in drought and normal rainfall years.  相似文献   

19.
Jiongxin Xu 《水文研究》2013,27(18):2623-2636
Fenwei Graben is a famous sediment sink. The Longmen‐Sanmexia sediment sink of middle Yellow River is located in the middle part. Using the sediment budget based on annual data from the period 1920–2006 and flood‐event data from 154 flood events from the period 1950–1985, the variations in sediment storage, release and transport have been analysed. Data from different methods and sources indicate that, during an 1800‐year period, the variation of sedimentation rate in this sink has undergone a cycle from increase to decline; the cause for this can be found in the changes in the manner and intensity of human activities. Over 87 years, sediment storage in this sink can be separated into four stages which showed different trends, depending on changing human activities, such as reservoir construction, soil and water conservation and water diversion. Stepwise multiple regression shows that the runoff and sediment yield from three major source areas have differing influences on sediment storage in the sink. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
《国际泥沙研究》2022,37(5):653-661
Granite red soil (GRS) and Quaternary red clay (QRC) are two typical erodible soils in the red-soil region of southern China. Analytical and comparative studies of the characteristics of runoff and sediment yield for the two soils at various slopes are currently needed. The purpose of the current study was to clarify the characteristics of runoff and sediment yield for GRS and QRC at different slopes and to establish models for estimating sediment yield for the two soils. Forty-eight runoff microplots with four slopes (5°, 15°, 25°, and 35°) and two soils (GRS and QRC) were established and exposed to natural rainfall. Runoff and sediment yield were measured 10 times during the study period. Runoff and sediment yield for the two soils under the various slopes had similar temporal variations, and both increased with prior cumulative erosive rainfall. Runoff for GRS and QRC was moderately temporally variable, with coefficients of variation (CVs) from 46.2% to 60.6%, and sediment yield for QRC was strongly temporally variable, with CVs from 114.8% to 145.8%. Sediment yield for GRS increased with slope, but sediment yield for QRC first increased and then decreased, with a calculated inflection point of 18°, but runoff for both soils decreased with slope. The CVs of both runoff and sediment yield with slope for the two soils ranged from 3.6% to 88.0%, lower than the temporal variabilities, indicating that rainfall may have a larger impact than slope on runoff and sediment yield for QRC and GRS. Under the various slopes, runoff and sediment yield for both soils increased with rainfall and sediment yield increased with runoff, but the proportions of effective rainfall and runoff differed. Pedotransfer-function models based on rainfall, runoff, and slope accurately estimated sediment yield for the two soils, with the model fit coefficient of determination (R2) > 0.81 and the R2 for verification >0.79. These results improve the understanding of the laws governing erosion for different soil types in the red-soil region of southern China and are important for managing the erosion of collapsing gullies and sloping farmland in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号