首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
伽马射线与地层介质的康普顿(Compton)效应是密度测井的理论基础,介质对伽马射线的康普顿吸收系数取决于介质的原子核性质及其体积密度.(超热或热)中子测井主要反映地层介质的减速性质,而后者主要取决于介质的含氢量.介质含氢量是由介质的组分及其体积密度决定的.本文从上述两种测井方法的测量原理出发,从理论上证明了这两种测井方法并非两种互相独立的测量手段.对于含油气盆地常见沉积岩石及矿物,两种测井测量结果具有相关性.这一结论为密度、中子测井方法组合地质应用提供了理论依据,利用密度-中子测井的相关性可有效地识别轻质油气层特别是天然气层.实例表明,无论水层还是油气层,两种测井曲线均具有良好的相关性.利用这种相关性明显改善了识别天然气层和划分油-气界面的精度.  相似文献   

2.
伽马射线与地层介质的康普顿(Compton)效应是密度测井的理论基础,介质对伽马射线的康普顿吸收系数取决于介质的原子核性质及其体积密度.(超热或热)中子测井主要反映地层介质的减速性质,而后者主要取决于介质的含氢量.介质含氢量是由介质的组分及其体积密度决定的.本文从上述两种测井方法的测量原理出发,从理论上证明了这两种测井方法并非两种互相独立的测量手段.对于含油气盆地常见沉积岩石及矿物,两种测井测量结果具有相关性.这一结论为密度、中子测井方法组合地质应用提供了理论依据,利用密度-中子测井的相关性可有效地识别轻质油气层特别是天然气层.实例表明,无论水层还是油气层,两种测井曲线均具有良好的相关性.利用这种相关性明显改善了识别天然气层和划分油-气界面的精度.  相似文献   

3.
齐家北地区高台子油层为高含钙致密储层,钙质发育导致部分水层的电阻率大幅提高,高阻水层、油水同层、油层在电测曲线上具有相同的电性特征,给以电测特征为解释基础的油层、油水同层的判别带来极大的困难.针对上述解释技术难题,本文在储层"四性"关系研究的基础上,提出了剥层法:其核心思想是根据各流体类型储层典型的电性特征,将干层、水层、油水同层从其他储层中逐一剥离出来.即依据干层的电性特征,首先将干层与产层区分开;再利用水层识别图版,将水层特别是钙质水层与油水同层区分开;最后利用油层与油水同层解释图版,再将油层与油水同层区分开来.该方法尽可能地降低干层、水层特别是钙质水层对油水同层和油层解释的干扰,提高测井解释符合精度.研究表明:感应测井曲线可反映致密砂岩孔隙中低阻可动水含量,是钙质水层、油水同层解释的敏感曲线;多曲线联合定性识别方法与解释图版相结合可提高油水层测井解释符合率;所建立的测井解释图版精度均达到了90%以上,经过3口实际试油井进行的背对背验证,油层的测井解释符合率达到了100%.  相似文献   

4.
阐明核磁共振测井(NMR)在储层评价中的作用。利用NMR测井资料对桩海地区长堤油田的储层特性及产能、复杂岩性储层的孔隙度作出评价,并在电阻率测井资料显示不好的复杂储层条件下进行油气水层识别,以及指导完井和钻井方案的实施等。不阐明了核磁共振测井技术具有常规测井技术所不具备的特点,特别是定量的评价孔隙流体流动特性、准确划分产层、直接识别油气水等优点,从而有利于解复杂的地质问题。  相似文献   

5.
致密砂岩储层具有物性差、孔隙结构差的特点,测井解释面临着低阻气层、高阻水层以及相似物性条件下产能相差大的难点.常规碎屑岩储层中使用的根据孔隙度及电阻率判断流体性质的方法完全失效,经典的定性的测录井结合及阵列声波"含气指示"法也符合率较低,制约了致密气的勘探及开发.为了明确致密砂岩储层的流体性质,以鄂尔多斯盆地临兴神府地区上古生界致密砂岩为研究对象,通过对常规测井资料深入挖掘,以经典的阿尔奇公式为理论依据,使用密度孔隙度与电阻率测井分别对已经测试的气层、水层及干层进行回归分析,求取幂函数的相关系数.分析结果表明:在产气的储层中,密度孔隙度与电阻率测井相关性较差,而测试为干层和水层的储层则相关性较好;水层及含水干层密度孔隙度与电阻率具有负相关性,而含气干层具有正相关性;在此基础上,通过对研究区已经测试的24个层位的密度孔隙度与电阻率进行回归分析并进行统计.统计结果显示:干层及水层相关系数在0.2以上,而工业气层相关系数小于0.2.该方法在致密砂岩测井解释工作中取得了很好的效果,大大提高了解释的符合率.  相似文献   

6.
橄榄石高温高压含水效应与光学性质实验研究   总被引:2,自引:1,他引:1  
高温高压下橄榄石(多晶)含水效应实验表明,水不但可进入矿物孔隙,且能进入其晶格中。从而与原(干)样相比,橄榄石显示了特有的光学性质和红外吸收谱带,矿物比重也下降约0.02。这些变化可能是上地幔低速层成因的构成因素。  相似文献   

7.
在Kuster-Toksöz(KT)模型与差分等效介质理论(DEM)结合过程中,通过用孔隙包含物逐渐替换基质的方法获得孔隙介质的岩石弹性模量。现有方法每次替换的孔隙体积是常量,而基质体积不断减小,实际参与替换的包含物体积与孔隙包含物计算体积是不同的。本文通过改进每次替换的孔隙体积计算公式,使得替换体积随迭代次数的增加而逐渐减小,保持替换体积相对基质体积的比率不变,在迭代次数足够大的条件下使得该比率足够小,满足了K-T计算公式的要求,计算结果更接近理论值。测试结果显示:随着孔隙度的增大,岩石等效弹性模量逐渐收敛于孔隙包含物的弹性模量,说明本方法与物理规律一致;与现有的KT迭代方法相比,采用本方法的计算结果与Xu-White模型更接近,本方法提出孔隙包含物的实际体积与计算体积的计算式更符合KT模型孔隙切分过程。   相似文献   

8.
应用地震波速度与岩石放射性生热率之间的实验关系,结合地表岩石生热率的测试,对黑水─泉州地学断面东段18条一维地震剖面上的热源垂向分布进行了评估.在此基础上,建立了一维和二维稳态热传导模型.根据干玄武岩固相线公式,估算了上地幔介质部分熔融开始的深度("热"岩石层厚度).模型显示出深部温度场沿断面方向侧向变化显著.莫霍界面温度在400-700℃间变化,相应的"热"岩石层厚度为75-205km.一维和二维温度模型的差异主要表现在侧向热传递显著的下地壳和上地幔中.温度场的变化与造山带的形成年代或后期叠加构造热事件的年龄有关.  相似文献   

9.
利用天然电磁场高分辨探测地下油气水的可能性   总被引:3,自引:1,他引:3       下载免费PDF全文
刘洪 《地球物理学报》1994,37(6):828-835
利用电磁波和地震波的性质以及目前对含流体多孔介质震电效应的认识,分析了电磁波对震电参数的分辨力,并与电磁波对电导率参数的分辨力进行了对比.据此指出了天然电磁场高分辨探测地下油气水地层的可能性.  相似文献   

10.
利用天然电磁场高分辨探测地下油气水的可能性   总被引:5,自引:2,他引:5       下载免费PDF全文
利用电磁波和地震波的性质以及目前对含流体多孔介质震电效应的认识,分析了电磁波对震电参数的分辨力,并与电磁波对电导率参数的分辨力进行了对比.据此指出了天然电磁场高分辨探测地下油气水地层的可能性.  相似文献   

11.
Electrical resistance heating (ERH) experiments were performed in a two‐dimensional water‐saturated porous medium comprising an electrically conductive, low‐permeability clay lens embedded within a less electrically conductive, higher permeability silica sand. These were compared to experiments performed in homogeneous silica sand. All experiments were performed in the absence of a non‐aqueous phase liquid (NAPL) or dissolved volatile organic compound (VOC). Temperature monitoring showed preferential heating in the clay lens and higher overall heating rates throughout the test cell compared to the homogeneous case. Gas production was localized around the sand–clay interface due to high temperature and low capillary displacement pressure. Above the clay lens, unexpected temperature plateaus were observed, similar to those observed in previous experiments during NAPL–water co‐boiling. A conceptual model based on the consumption of thermal energy as latent heat of vaporization in the highly localized heating and gas production region adjacent to the clay lens is proposed to explain the temperature plateaus. Supporting data is drawn from images of the gas phase and electric current measurements. These results show that the use of co‐boiling plateaus as an indicator of NAPL–water co‐boiling could be misleading during applications of ERH at sites containing electrically conductive, low‐permeability clay lenses embedded within less electrically conductive, higher‐permeability sands.  相似文献   

12.
Dunn AM  Silliman SE 《Ground water》2003,41(6):729-734
A laboratory tank was used to study entrapment of water in coarse sand lenses above the water table and of air in coarse sand lenses below the water table. Monitoring of these experiments involved a combination of visual inspection, measurement of moisture content, and measurement of air/water pressure. The medium consisted of coarse sand lenses with various degrees of vertical connectivity embedded within a fine sand matrix. Experiments were performed under conditions of both drainage (from a fully saturated medium) and imbibition. Observations during drainage included: (1) water was trapped in the coarse sand zones above the water table at heights significantly greater than anticipated from consideration of capillary rise in the coarse sand; (2) rapid drainage of these same coarse zones occurred when air penetrated into these zones through the surrounding fine sands; and (3) prior to the time of penetration of the coarse sand by air, water pressure in the coarse zone dropped significantly below atmospheric pressure. Observations during imbibition included: (1) entrapment of air within coarse sands below the water table, (2) the pore fluids in these zones varied spatially from predominantly air to predominantly water, and (3) pressure in the trapped air phase was significantly greater than pressure in the water phase in the surrounding fine sand. Overall, these results demonstrated significant sensitivity to the geometry of the coarse sand inclusions, particularly the vertical connectivity of the coarse sand lens.  相似文献   

13.
基于油砂组分的吸收光谱物理响应机理,通过对比矿物基团平均吸收深度,建立主要蚀变矿物ASTER多光谱遥感数据异常提取模式以识别油砂分布.研究表明,与传统的烃类微渗漏遥感研究手段相比,该模式可以更有效地指示油砂的分布.利用油砂组分基团光谱平均吸收深度与孔隙度及渗透率进行相关分析,研究了油砂光谱与所处地质背景环境中储层物性之间的关联关系.结果表明,表征粘土矿物含量的粘土基团吸收深度与孔渗值呈负相关关系,指示含油性的烃类基团吸收深度与孔渗值呈显著正相关关系.  相似文献   

14.
不同泥质分布形式泥质砂岩导电规律实验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
本文利用人工制作的不同含量分散泥质和层状泥质砂岩岩心样品,测量不同矿化度和不同含油饱和度的岩心电阻率,从实验角度研究了不同泥质分布形式和含量的岩心导电规律,结果表明,泥质分布形式或含量不同,则泥质砂岩导电规律不同.基于层状泥质与分散泥质砂岩的并联导电实验规律,以及分散粘土和地层水混合物的导电规律可用HB电阻率方程描述,建立了考虑泥质分布形式影响的泥质砂岩电阻率模型.通过1组不同泥质分布形式泥质砂岩人造岩心实验数据的测试,表明该模型可以描述分散泥质砂岩、层状泥质砂岩和混合泥质砂岩地层的导电规律.分散泥质,层状泥质,人造岩样,实验测量,并联导电,HB方程,电阻率模型  相似文献   

15.
Shaly sands reservoir is one of the most distributive types of the oil(gas)-bearing reservoirs discovered in China, and low resistivity oil(gas)-bearing reservoirs are mostly shaly sands reservoirs. Therefore, shaly sands reservoir conductive model is the key to evaluate low resistivity oil(gas)-bearing reservoirs using logging information. Some defects were found when we studied the clay distribution type conductive model, dual-water conductive model, conductive rock matrix model, etc. Some models could not distinguish the conductive path and nature of microporosity water and clay water and some models did not consider the clay distribution type and the mount of clay volume. So, we utilize the merits,overcome the defects of the above models, and put forward a new shaly sands conductive model-dual water clay matrix conductive model (DWCMCM) in which dual water is the free water and the microporosity water in shaly sands and the clay matrix(wet clay) is the clay grain containing water. DWCMCM is presented here, the advantages of which can tell the nature and conductive path from different water (microporosity water and freewater), in consid-eration of the clay distribution type and the mount of clay volume in shaly sands. So, the results of logging interpretation in the oil(gas)-bearing reservoirs in the north of Tarim Basin area, China with DWCMCM are better than those interpreted by the above models.  相似文献   

16.
The origin, formation and evolution of volcanic sands are less well known than the formation of the much more common quartz‐rich sand sheets. Combining active volcanism and a cold climate, Iceland is covered for about 21% of its surface by sandy areas. The sands were analyzed in detail at two sites and results reveal their diverse origins. The first site is Dyngjusandur, located north of Vatnajökull, and the second site is the Lambahraun area, located south of Langjökull. At both sites, the sand origin is determined from field observations (wind directions from ventifacts), chemical and mineralogical analyses of rocks and sands. At Dyngjusandur, the sand is dominated by glass grains, a situation typical of sand plains in Iceland. Hyaloclastite ridges presently buried beneath Vatnajökull are the dominant source of the sand, and only large size plagioclase crystals (0.5 cm) in sands seem to be derived from the lava flows. Hyaloclastite ridges were crushed by glaciers and mechanically eroded sediments were washed out by melt‐water onto flood plains. The sand chemical composition is spatially homogeneous and similar to the average composition of neighboring sub‐aerial lava flows, reflecting efficient mixing of distinct sources below the glacier. The presence of sand north of Dyngjujökull can be taken as a way to explore the average chemical composition of non‐exposed volcanic material beneath the glacier. In the case of Lambahraun, prevailing winds indicate several potential sources of sand at the north of the sand sheet. Comparison of chemical and mineralogical analyses of sands and rock samples helped to refine the exact origin. In contrast with the first site, the sand is dominated by crystals and is chemically consistent with a mixture of material derived from the lava flows of Eldborgir and Skersli shield volcanoes. Analysis of the contact between the lava flows and the glacier reveals that basaltic sand grains formed as the result of recent advances of the glacier abrading the rocks. The direct interaction of glacial and fluvio‐glacial activity with basaltic plains appears to be necessary to produce a large amount of sands in a relatively short period of time (<4000 years). This site appears to be an excellent natural laboratory for further studies concerning the sand evolution and physical sorting processes in basaltic material, which have important implications for understanding aeolian processes on Mars. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Shaly sands reservoir is one of the most distributive types of the oil(gas)-bearing reservoirs discovered in China, and low resistivity oil(gas)-bearing reservoirs are mostly shaly sands reservoirs. Therefore, shaly sands reservoir conductive model is the key to evaluate low resistivity oil(gas)-bearing reservoirs using logging information. Some defects were found when we studied the clay distribution type conductive model, dual-water conductive model, conductive rock matrix model, etc. Some models could not distinguish the conductive path and nature of microporosity water and clay water and some models did not consider the clay distribution type and the mount of clay volume. So, we utilize the merits,overcome the defects of the above models, and put forward a new shaly sands conductive model—dual water clay matrix conductive model (DWCMCM) in which dual water is the free water and the microporosity water in shaly sands and the clay matrix(wet clay) is the clay grain containing water. DWCMCM is presented here, the advantages of which can tell the nature and conductive path from different water (microporosity water and free-water), in consideration of the clay distribution type and the mount of clay volume in shaly sands. So, the results of logging interpretation in the oil(gas)-bearing reservoirs in the north of Tarim Basin area, China with DWCMCM are better than those interpreted by the above models.  相似文献   

18.
Soil water repellency is a widespread phenomenon with the capacity to alter hydrological and geomorphological processes. Water repellency decays with time, and the consequences are only of concern during the timescale at which the water repellency persists. This study aimed to characterize the influence of temperature and humidity on the breakdown of water repellency. Apparent contact angle measurements were carried out on samples consisting of sand treated with stearic acid as well as naturally repellent dune sands and composts. Temperature and humidity were controlled using a cooled incubator and a purpose designed enclosed box in which humidity could be raised or lowered. Results showed the contact angle of the stearic‐acid‐treated sands decayed with time and that there was a significant increase with stearic acid concentration. For all samples, the decay in apparent contact angle could be described with a continuous breakdown model. The stearic‐acid‐treated sands showed a significant increase in contact angle with relative humidity at a temperature of 10 and 20 °C. These differences diminished with increasing temperature. Similar results were seen for the dune sands and composts. Despite the influence of temperature and humidity on contact angles, there was no significant change in the rate at which the contact angle decayed in any sample. Absolute humidity was found to provide a more relevant indicator than relative humidity when assessing the influence of humidity on repellency over a range of temperatures. The contact angle initially increased with absolute humidity before plateauing owing to the confounding effect of temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The variability of sedimentary thermal conductivities with increasing temperature are explored for their impact on estimates of present-day heat flux and subsurface temperature gradient. For sand thicknesses less than about 10–20 km, or shale thicknesses less than about 40–80 km, the subsurface temperature is closely linearly proportional to the thermal resistance integral obtained in the absence of the temperature dependence of thermal conductivity. Estimates of heat flux should be increased (decreased) by about 5% for sands and decreased by about 1% for shales. For salt, because of the much shorter temperature range over which its thermal conductivity decreases, effects produced by the temperature dependence are more noticeable: heat flux should be increased by around 13%, salt thicknesses in excess of 5 km will yield major (around 30–100°C) changes in their temperature regimes solely as a consequence of the temperature-dependent thermal conductivity, and the linear increase of temperature with increasing thermal resistance is not an adequate approximation but has to be replaced with a more exact exponential increase.The impact of the variations, particularly in the case of salt, for geologic processes is briefly considered.  相似文献   

20.
含气饱和度预测是天然气储层地震解释工作的重要目标.本文将岩石物理分析与地震物理模拟技术相结合,构建了部分;饱和砂岩储层物理模型并进行含气饱和度预测分析.物理模型中设置了高孔渗常规砂岩和低孑孔渗致密砂岩两种模拟储层,每种储层都是由具有不同含水饱和度的气-水双相饱和砂体组成.岩石物理分析结果显示在低孔渗致密砂岩中气-水混合流体更加倾向于非均匀的斑块分布,而结合了Brie等效流体公式的Gassmann流体替换理论可以更准确地描述纵波速度随含水饱和度的变化趋势.对物理模型进行地震资料采集处理后,对比了AVO特征和叠前同步反演结果对两种砂岩储层含气饱和度预测能力的差异.AVO特征结果显示,对于混合流体均匀分布的高孔渗砂岩储层,AVO响应曲线和属性变化很难对含气饱和度进行估算;对于混合流体斑块分布的致密砂岩储层,AVO特征可以定性地分辨出储层是否为高、中、低含气情况.反演结果显示,密度及纵横波速度比分别对高孔渗及致密砂岩储层的含气饱和度有着较好的指示能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号