首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parabolic dunes are widely distributed on coasts and margins of deserts and steppes where ecosystems are vulnerable and sensitive to environmental changes and human disturbances. Some studies have indicated that vegetated parabolic dunes can be activated into highly mobile barchan dunes and the catastrophic shift of eco‐geomorphic systems is detrimental to land management and social‐economic development; however, no detailed study has clarified the physical processes and eco‐geomorphic interactions that control the stability of a parabolic dune and its resistance to unfavorable environmental changes. This study utilizes the Extended‐DECAL (Discrete Eco‐geomorphic Aeolian Landscapes) model, parameterized by field measurements of dune topography and vegetation characteristics combined with remote sensing, to explore how increases in drought stress, wind strength, and grazing stress may lead to the activation of stabilizing parabolic dunes into highly mobile barchans. The modeling results suggest that the mobility of an initial parabolic dune at the onset of a perturbation determines the capacity of a system to absorb environmental change, and a slight increase in vegetation cover of an initial parabolic dune can increase the activation threshold significantly. The characteristics of four eco‐geomorphic interaction zones control the processes and resulting morphologies of the transformations. A higher deposition tolerance of vegetation increases the activation threshold of the dune transformation under both a negative climatic impact and an increased sand transport rate, whereas the erosion tolerance of vegetation influences the patterns of resulting barchans (a single barchan versus multiple barchans). The change in the characteristics of eco‐geomorphic interaction zones may indirectly reflect the dune stability and predict an ongoing transformation, whilst the activation angle may be potentially used as a proxy of environmental stresses. In contrast to the natural environmental changes that tend to affect relatively weak and young plants, grazing stress can exert a broader impact on any plant indistinctively. A small increase in grazing stress just above the activation threshold can accelerate dune activation significantly. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
A computer simulation model for transverse‐dune‐field dynamics, corresponding to a uni‐directional wind regime, is developed. In a previous formulation, two distinct problems were found regarding the cross‐sectional dune shape, namely the erosion in the lee of dunes and the steepness of the windward slopes. The first problem is solved by introducing no erosion in shadow zones. The second issue is overcome by introducing a wind speedup (shear velocity increase) factor, which can be accounted for by adding a term to the original transport length, which is proportional to the surface height. By incorporating these features we are able to model dunes whose individual shape and collective patterns are similar to those observed in nature. Moreover we show how the introduction of a non‐linear shear‐velocity‐increase term leads to the reduction of dune height, and this may result in an equilibrium dune field configuration. This is thought to be because the non‐linear increase of the transport length makes the sand trapping efficiency lower than unity, even for higher dunes, so that the incoming and the outgoing sand flux are in balance. To fully describe the inter‐dune morphology more precise dynamics in the lee of the dune must be incorporated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
The introduction of vegetation to bare barchan dunes can result in a morphological transformation to vegetated parabolic dunes. Models can mimic this planform inversion, but little is known about the specific processes and mechanisms responsible. Here we outline a minimalist, quantitative, and process‐based hypothesis to explain the barchan–parabolic transformation. The process is described in terms of variations in the stabilization of wind‐parallel cross‐sectional dune slices. We hypothesize that stabilization of individual ‘dune slices’ is the predictable result of feedbacks initiated from colonization of vegetation on the slipface, which can only occur when slipface deposition rates are less than the deposition tolerance of vegetation. Under a constant vegetation growth regime the transformation of a barchan dune into a parabolic dune is a geometric response to spanwise gradients in deposition rates. Initial vegetation colonization of barchan horns causes shear between the anchored sides and the advancing centre of the dune, which rotates the planform brinkline angle from concave‐ to convex‐downwind. This reduces slipface deposition rate and allows vegetation to expand inward from the arms to the dune centre. The planform inversion of bare barchans dunes into vegetated parabolic dunes ultimately leads to complete stabilization. Our hypothesis raises several important questions for future study: (i) are parabolic dunes transitional landforms between active and vegetation‐stabilized dune states? (ii) should stabilization modelling of parabolic dune fields be treated differently than linear dunes? and (iii) are stabilized parabolic dune fields ‘armoured’ against re‐activation? Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gürbantünggüt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.  相似文献   

6.
For development of embryo dunes on the highly dynamic land–sea boundary, summer growth and the absence of winter erosion are essential. Other than that, however, we know little about the specific conditions that favour embryo dune development. This study explores the boundary conditions for early dune development to enable better predictions of natural dune expansion. Using a 30 year time series of aerial photographs of 33 sites along the Dutch coast, we assessed the influence of beach morphology (beach width and tidal range), meteorological conditions (storm characteristics, wind speed, growing season precipitation, and temperature), and sand nourishment on early dune development. We examined the presence and area of embryo dunes in relation to beach width and tidal range, and compared changes in embryo dune area to meteorological conditions and whether sand nourishment had been applied. We found that the presence and area of embryo dunes increased with increasing beach width. Over time, embryo dune area was negatively correlated with storm intensity and frequency. Embryo dune area was positively correlated with precipitation in the growing season and sand nourishment. Embryo dune area increased in periods of low storm frequency and in wet summers, and decreased in periods of high storm frequency or intensity. We conclude that beach morphology is highly influential in determining the potential for new dune development, and wide beaches enable development of larger embryo dune fields. Sand nourishment stimulates dune development by increasing beach width. Finally, weather conditions and non‐interrupted sequences of years without high‐intensity storms determine whether progressive dune development will take place. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Aeolian sand landforms in the Yarlung Zangbo River valley can be divided into 4 classes and 21 types. The river valley has favourable environment conditions for the development of aeolian sand landforms. Simulation of MM4 mid-scale climate model showed that the near-surface flow field and wind vector field during the winter half year in the river valley are generally favourable for the aeolian sand deposition and as a whole they also affect the distribution mneu and sites of aeolian sand landforms. Sand dunes and sand dune grouup in the river valley developed mainly in three ways, namely windward retarding deposition, leeward back flow deposition and bend circumfluence deposition. Through alternating positive-reverse processes of sand dune formation under wind actions and sand dune vanishing under water actions, sand dunes developed fmm primary zone thmugh main-body zone then to vanishing zone where climbing dunes and falling dunes are declining and are even disappearing. Project supported by the National Natural Science Foundation of China (Grant No. 49471009) and Xi’an State Key Laboratory of Loess and Quaternary Geology (Grant No. 9401)  相似文献   

8.
A study of the erosion rate and the stability of sandy slopes was conducted on an eastern arm of a parabolic coastal sand dune, De Blink, central Netherlands. The contribution of rabbits to these processes was found to depend on two types of activity; the building of caves and sand mounds of up to 1·5 m2 in area; and the digging of shallow burrows, whereby amounts of sand up to 1 kg per burrow were excavated. The burrowing activity was found over the whole dune, while cave holes were dug mainly on the northern slope. The total amount of sand actually transported on the dune due to this activity is not clear yet, but their influence on the development of stepped slopes is well established.  相似文献   

9.
Transverse dunes appear in regions of mainly unidirectional wind and high sand availability. A dune model is extended to two‐dimensional calculation of the shear stress. It is applied to simulate dynamics and morphology of three‐dimensional transverse dunes. In the simulations they seem to reach translational invariance and do not stop growing. Hence, simulations of two‐dimensional dune ?elds have been performed. Characteristic laws were found for the time evolution of transverse dunes. Bagnold's law of the dune velocity is modi?ed and reproduced. The interaction between transverse dunes led to the interesting conclusion that small dunes can travel over bigger ones. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Coastal dunes are dynamic features that are continuously evolving due to constructive (e.g., wind- and wave-driven sediment transport) and destructive (e.g., elevated total water levels during storm events) processes. However, the relative importance of these processes in determining dune evolution is often poorly understood. In this study, ten lidar datasets from 1997 to 2016 are used to determine the relative role of erosion and accretion processes driving foredune change on the coast of Cape Lookout National Seashore, North Carolina, USA. Beach and dune morphometrics reveal that dune toe locations have generally retreated since 1997, while dune crest heights accreted by 0.01–0.02 m/year. We develop three univariate metrics that represent (1) the potential for erosion, i.e., total water level impact hours per year, (2) accretion, i.e., dune building hours per year, and (3) the relative net effect of foredune accretion and erosion processes, i.e., constructive–destructive dune forcing (CDDF) ratio, and test the correlative power of these metrics in explaining changes in foredune morphology. The total water level impact hours per year metric explained as much as 66% and 67% of the variance in dune crest and toe elevations, respectively, across the nearly two decades of dune evolution. The greatest number of dune building hours per year and largest dunes within the study site co-occurred at locations exposed to the dominant cross-shore wind direction as a result of varying shoreline orientation. The CDDF ratio was positively correlated to changes in the dune toe elevation in approximately 70% of dunes within the study site, outperforming the impact and dune building hours per year metrics. Our results show that these three metrics can provide first-order estimates of dune morphometric change across multiple spatial and temporal scales, which may be particularly useful at sites where lidar acquisition is intermittent.  相似文献   

11.
Bonäsheden, Sweden's largest continuous dune field, situated in the county of Dalarna, central Sweden, has been investigated using LiDAR (light detection and ranging) remote sensing, ground penetrating radar as well as by field observations and luminescence dating. The use of LiDAR in conjunction with geographic information system (GIS) software proved to be efficient in mapping the inactive dune field and classifying the dune morphology, especially when slope raster images were used. The dunes have formed mostly by winds from the northwest (NW) and are of a transverse type. Still other dune types, such as parabolic dunes, and transverse dunes with a deviating orientation are present. Also, there seems to be different generations of dunes, suggesting a complex palaeowind environment with a change from predominantly north‐westerly winds to more westerly winds. Luminescence dating finally allows us to have an absolute chronology of the development of the Bonäsheden dune field, revealing formation of the dune field closely following the de‐glaciation of this part of Sweden (c. 10.5 ka). The well preserved transverse shape of the majority of the dunes suggests rapid stabilization by vegetation, although sand drift still seems to have been active on a noticeable scale for at least 1500 years and also, occasionally and patchy, as coversand deposition during the Late Holocene. A simple model is proposed for the dune field development of Bonäsheden based on our findings. This model is a useful addition since the majority of present day dune field models focus on the formation of parabolic dunes or large unvegetated dune fields. Our results suggest that most models cannot adequately simulate the formation of such small dune fields as that of Bonäsheden, with apparently rapidly fixated transverse dunes in a previously glaciated, now vegetated area. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Sunset Crater in north‐central Arizona (USA) is a 900‐year‐old scoria‐cone volcano. Wind action has redistributed its widespread tephra deposit into a variety of aeolian dune forms that serve as a terrestrial analog for similar landforms and aeolian processes on Mars. Fieldwork was conducted to collect essential geomorphological and sedimentological data, and to establish a baseline for the type and morphometry of dunes, physical properties, interactions with topography, and saltation pathways. Our analyses focused primarily on coppice dunes, falling dunes, wind ripples, and sand streaks. For all collected volcaniclastic aeolian sediment samples, the sand‐size fraction dominated, ranging from almost 100% sand to 74.6% sand. No sample contained more than 1.6% silt. The composition is overwhelmingly basaltic with non‐basaltic particles composing 2 to 6% of the total. Coppice (nebkha) dunes form where clumps of vegetation trap saltating particles and create small mounds or hummocks. Mean grain size for coppice dune samples is coarse sand. Measured dune height for 15 coppice dunes ranged from 0.3 to 3.3 m with a mean of 1 m. Mean length was 6.7 m and mean width was 4.8 m. Falling dunes identified in this study are poorly developed and thin, lacking a prominent ramp‐like structure. Mean wavelength for three sets of measured ripples ranged from 22 to 36 cm. Sand streaks extend downwind for more than a kilometer and are up to 200 m in width. They commonly occur on the lee side of mesas and similar landforms and are typically the downwind continuation of falling dunes. Falling dunes, wind ripples, and sand streaks have been identified on Mars, while coppice dunes are similar to Martian shadow or lee dunes in which sand accumulates in the lee of obstacles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The main objective was to assess dune vulnerability—a reduced ability to adapt to change, which is of serious concern not only in Western Europe but on a world scale. A main root checklist together with two daughter ones were devised in order to achieve this objective. The main root checklist comprised six categories (site and dune morphology, beach condition, surface character of the seaward 200 m of dune, vegetation, anthropogenic impact and protection measures in place) and dunes were classified according to their vulnerability compared to protection measures. The Resilience daughter checklist encompassed dune erosion, sand input, sand retention, degradation by use and dune management. This was compared with risk factors such as obstacles to dune transgression and recreation. The geomorphology, aeolian, vegetation, anthropogenic, marine influences daughter checklist looked at 30 dune systems in the Gulf of Cadiz and assessed dune condition by a dune vulnerability index based on the above conditioning influences. Values for all checklists were expressed as percentages. Over 200 dune sites in Spain, France, Portugal and the UK were analysed by means of these checklists. Results confirmed that regional trends concerned with dune vulnerability could be assessed, although successful differentiation at the end of the dune spectrum (large sand sheets, e.g. Pyla, France and meadow formation, e.g. many of the UK systems) and at the local scale were muted. An innovative aerial digital photographic system was developed and photographs were successfully used to assess dune condition, anthropogenic impact on dune systems, etc., i.e. the checklist parameters and was used to modify checklist procedures in assessing regional dune degradation. Ca 70% of the checklist parameters could be obtained by this means. This also provided a photographic record of the current dune condition. Principal component analysis provided a strong justification for the majority of checklist questions and the approach and relevance of the technique. The enumerated techniques provide valuable tools for dune managers. Rapid assessment of large areas of coastline can be obtained at a low cost and the resulting remote sensed images can provide a permanent record of the condition of the photographed dunes.  相似文献   

15.
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Within the greater Ar Rub' al Khali (Empty Quarter) sand sea lies an internal depocentre, the Al Liwa Basin, which comprises a variety of mega‐scale dune types. Crescentic dunes dominant the north of the basin while megadunes of stellate or star form are a major landform of the south‐eastern reaches. Their development into dune fields is determined by the style and rate of dune–dune interactions, the boundary conditions imposed by a multi‐modal wind regime, fluctuating groundwater levels, and sediment availability under an assortment of climatic conditions throughout the Quaternary. As a result, dune field patterns are a collective response to these perturbations in space, time and environment. The R‐statistic is a collective measure of these responses, and is a metric capable of identifying the degree of pattern maturity or self‐organization of the aeolian system, and the pathways from which patterns evolve. The spatial signature of the southerly located star dunes is characterized by two definitive patterns of organization: the first, one of complete spatial randomness, the second, a low degree of spatial uniformity. In isolation, these results appear to be unrelated to those for crescentic dunes of the region in which a significantly higher degree of pattern dispersion is the norm. However, when spatial statistical measures are integrated with the theoretical understanding of dune–dune interactions and the involvement of environmental agents, the complex morphodynamic pathways and linkages between regional dune fields is better understood. In this case, both constructive (e.g. merging, lateral linking) and regenerative activity (e.g. calving) have played important roles in the development of dune size, and associated adjustments in spacing, and dune numbers, and subsequently dune field patterns. Synergetic patterns are emblematic of this vast dunescape, whereby transitional geographic, morphologic, dimensional and environmental modifications exist between the mega‐crescentic and mega‐stellate dunes of the Empty Quarter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Optically stimulated luminescence (OSL) dating studies of linear (longitudinal) dunes have been used extensively to elucidate late Quaternary environments and climates in arid or formerly arid regions, yet understanding of the development of such dunes is incomplete. In particular, conflicting opinions have been presented regarding the propensity of linear dunes to migrate laterally, the degree to which they rework their own sediment during accumulation and whether they form primarily by extension, as opposed to lateral sand movement from adjacent interdunes. This study focuses on this last point, although the importance of the other controversies is discussed in context. A simple linear dune in the south‐western Kalahari, which has a prominent termination on a pan (playa) surface, provides an opportunity to directly test hypotheses of dune extension. Chronostratigraphy along a ~600 m transect along the crest of the dune, constrained by 42 OSL ages, reveals that the dune grew by extension on occasions in the late Pleistocene and early Holocene, but has also been subject to reworking along its length, which has continued until recent times. Dune development by extensional growth is suggested to operate under environmental conditions more conducive to net accumulation, whereas reworking is largely independent of conditions throughout the last ~18 ka, and may represent seasonal fluctuations in the position of the dune crest. The relative significance of these two modes of development is suggested to be a key control on the efficacy of linear dunes as archives of environmental and climatic change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The Hulunbuir dune field (HLB) is situated near the northern limit of the East Asian summer monsoon (EASM), and vulnerable to climate change. The aeolian sand–paleosol sequences of this region are crucial for understanding the past landform processes in response to climate change, but not yet understood well due to chronological controversies. Here, we presented 20 optically stimulated luminescence (OSL) ages from five aeolian sand–paleosol profiles in the HLB, and reconstructed the aeolian landform processes since 18 ka. The findings of this study suggested that the HLB was probably dominated by mobile dunes before 18 ka, as 10 out of 11 aeolian samples were dated to 18–12 ka. Two strong sandy paleosol layers were found and dated to ∼9 ka and 5–0.5 ka, indicating that strong in situ pedogenic process on the accumulative sand could occur during the Holocene. The OSL ages of samples near the top of three profiles were >9.5 ka, indicating two possible surface processes. First, the land surface was stable since 9.5 ka after stabilization, with no accumulation or erosion. Alternatively, the surface could have been erosive with the eroded sediments feeding downwind active dunes. The latter explanation is consistent with the current local landforms, which has widespread blowout pits, indicators of strong wind erosion. We emphasized that the OSL age of a sand layer sample in fossil dunes implied the onset of mobile dune stabilization, not the age of dune activity, as previously stated.  相似文献   

19.
GPR provides high resolution images of aeolian strata in frozen sand in the McMurdo Dry Valleys of Antarctica. The results have positive implications for potential GPR surveys of aeolian strata on Mars. Within the Lower Victoria Valley, seasonal changes in climate and a topographically-constrained wind regime result in significant wind reversals. As a consequence, dunes show reversing crest-lines and flattened dune crests. Ground-penetrating radar (GPR) surveys of the dunes reveal sets of cross-strata and low-angle bounding surfaces produced by reversing winds. Summer sand transport appears to be dominant and this is attributed to the seasonal increase in solar radiation. Solar radiation which heats the valley floor melts ice cements making sand available for transport. At the same time, solar heating of the valley floor generates easterly winds that transport the sand, contributing to the resultant westward dune migration. The location of the dune field along the northern edge of the Lower Victoria Valley provides some shelter from the powerful föehn and katabatic winds that sweep down the valley. Topographic steering of the winds along the valley and drag against the valley wall has probably aided the formation, migration and preservation of the dune field. Optically-stimulated luminescence (OSL) ages from dune deposits range from 0 to 1.3 kyr showing that the dune field has been present for at least 1000 yr. The OSL ages are used to calculate end-point migration rates of 0.05 to 1.3 m/yr, which are lower than migration rates reported from recent surveys of the Packard dunes and lower than similar-sized dunes in low-latitude deserts. The relatively low rates of migration are attributed to a combination of dune crest reversal under a bimodal wind regime and ice cement that reduces dune deflation and restricts sand entrainment.  相似文献   

20.
The ASTER Global Digital Elevation Model (GDEM) has made elevation data at 30 m spatial resolution freely available, enabling reinvestigation of morphometric relationships derived from limited field data using much larger sample sizes. These data are used to analyse a range of morphometric relationships derived for dunes (between dune height, spacing, and equivalent sand thickness) in the Namib Sand Sea, which was chosen because there are a number of extant studies that could be used for comparison with the results. The relative accuracy of GDEM for capturing dune height and shape was tested against multiple individual ASTER DEM scenes and against field surveys, highlighting the smoothing of the dune crest and resultant underestimation of dune height, and the omission of the smallest dunes, because of the 30 m sampling of ASTER DEM products. It is demonstrated that morphometric relationships derived from GDEM data are broadly comparable with relationships derived by previous methods, across a range of different dune types. The data confirm patterns of dune height, spacing and equivalent sand thickness mapped previously in the Namib Sand Sea, but add new detail to these patterns. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号