首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Although much is known about overall sediment delivery ratios for catchments as components of sediment production and sediment yield, little is known about the component of temporary sediment storage. Sediment delivery ratios focused on the influence of storm-related sediment storage are measured at Matakonekone and Oil Springs tributaries of the Waipaoa River basin, east coast of New Zealand. The terrace deposits of both tributaries show abundant evidence of storm-related sedimentation, especially sediment delivered from Cyclone Bola, a 50 year return rainfall event which occurred in 1988. The sediment delivery ratio is calculated by dividing the volume of sediment transported from a tributary to the main stream by the volume of sediment generated at erosion sites in the tributary catchment. Because the sediment delivery volume is unknown, it can be calculated as the difference between sediment generation volume and sediment storage volume in the channel reach of the tributary. The volume of sediment generated from erosion sites in each tributary catchment was calculated from measurements made on aerial photographs dating from 1960 (1:44 000) and 1988 (1:27 000). The volume of sediment stored in the tributary can be calculated from measurements of cross-sections located along the tributary channel, which are accompanied by terrace deposits dated by counting annual growth rings of trees on terrace surfaces. Sediment delivery ratios are 0·93 for both Matakonekone catchment and Oil Springs catchment. Results indicate that Oil Springs catchment has contributed more than twice the volume of sediment to the Waipaoa River than the Matakonekone catchment (2·75 × 106 m3 vs 1·22 × 106 m3). Although large volumes of sediment are initially deposited during floods, subsequent smaller flows scour away much of these deposits. The sediment scouring rate from storage is 1·25 × 104 m3 a−1 for Matakonekone stream and 0·83 × 104 m3 a−1 for Oil Springs stream. Matakonekone and Oil Springs channels respond to extreme storms by instantaneously aggrading, then gradually excavating the temporarily stored sediment. Results from Matakonekone and Oil Springs streams suggest a mechanism by which event recurrence interval can strongly influence the magnitude of a geomorphic change. Matakonekone stream with its higher stream power is expected to excavate sediment deposits more rapidly and allow more rapid re-establishment of storage capacity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
The Holocene volumetric sediment budget is estimated for coarse textured sediments (sand and gravel) in a large, formerly glaciated valley in southwest British Columbia. Erosion is estimated by compiling volumetric loss estimated in digital elevation models (DEMs) of gullied topography and by applying a non‐linear diffusion model on planar, undissected hillslopes. Estimates of steepland yield are based on estimates of post‐glacial deposition volumes in fans, cones and deltas at the outlets of low‐order tributary catchments. Erosion of post‐glacial fans and tributary valley fills is estimated by reconstructing formerly continuous surfaces. Results are classed by catchment order and compared across scales of contributing area, revealing declining specific sediment yield (in m3 km?2 a?1) with catchment area for the smaller tributaries (<10 km2) and increasing specific sediment yield for larger tributaries and Chilliwack Valley itself. Approximately 60% of mobilized sediment is redeposited in first‐ to third‐order catchments, with lesser proportions stored at the outlets of higher order catchments. A simple network routing model emphasizes the significant sediment flux contributions from colluvium, drift blankets and gullies in steeper terrain. As this material is deposited at junctions within the lower drainage network, an increasing proportion of material is derived from remnant valley fills and para‐glacial fans in the major valleys. Yield from lower‐order, steepland catchments tends to remain in storage, indefinitely sequestered on footslopes. These observations have implications for modelling the post‐glacial sediment balance amongst catchments of varying size. After 104 years, the system remains in disequilibrium. The critical linkage lies between low‐order, hillslope catchments (相似文献   

3.
In the Négron River catchment area (162 km2), surface‐sediment stores are composed of periglacial calcareous ‘grèze’ (5 × 106 t) and loess (21 × 106 t), and Holocene alluvium (12·6 × 106 t), peat (0·6 × 106 t) and colluvium (18·5 × 106 t). Seventy‐five per cent of the Holocene sediments is stored along the thalwegs. Present net sediment yield, calculated from solid discharge at the Négron outlet, is low (0·6 t km?2 a?1) due to the dominance of carbonate rocks in the catchment. Mean sediment yield during the Holocene period is 7·0 t km?2 a?1 from alluvium stores and 7·6 t km?2 a?1 from colluvium stores. Thus, the gross sediment yield during the Holocene period is about 18·7 t km?2 a?1 and the sediment delivery ratio 3 per cent. The yield considerably varies from one sub‐basin to another (3·9 to 24·5 t km?2 a?1) according to lithology: about 25 per cent and 50 per cent of initial stores of periglacial grèze and loess respectively were reworked during the Holocene period. Sediment yield has increased by a factor of 6 in the last 1000 years, due to the development of agriculture. The very high rate of sediment storage on the slope during that period (88 per cent of the yield) can be accounted for by the formation of cultivation steps (‘rideaux’). It is predicted that the current destruction of these steps will result in a sediment wave reaching the valley floors in the coming decades. Subboreal and Subatlantic sediments and pollen assemblages in the Taligny marsh, where one‐third of the alluvium is stored, show the predominant influence of human activity during these periods in the Négron catchment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Hugh G. Smith 《水文研究》2008,22(16):3135-3148
Historically upland headwater catchments in south‐eastern Australia have undergone extensive gully erosion that has removed large amounts of sediment to lowlands. Recent research suggests these upland areas may continue to dominate fine sediment loads in lowland rivers. Improved understanding of sediment transfer through upland headwater catchments may have implications for interpreting downstream sediment supply. In this study a nested catchment design was utilized to examine suspended sediment yields and delivery from a small tributary sub‐catchment (1·64 km2) to the study catchment outlet (53·5 km2). Monitoring of suspended sediment concentration and discharge was undertaken for a period of nearly two years and used to estimate suspended sediment loads. Estimated total suspended sediment exports over the period of monitoring were 24·16 t from the sub‐catchment and 550·3 t from the catchment, which are generally less than previous reported small catchment yields in south‐eastern Australia. The extent of sediment delivery was examined using between‐site ratios of specific sediment yield per unit area and incised channel length. Sediment delivery was high under average rainfall conditions, but seasonally dependent. Both suspended sediment yields and the extent of delivery peaked over spring months, supplemented by remobilization of sediment stored during summer months in the main catchment channel. The findings of this study suggest much of the suspended sediment exported from small incised upland sub‐catchments (1–2 km2) may be delivered to downstream reaches under average rainfall conditions, which, in conjunction with the findings of previous research supports the potential importance of contributions from these areas to suspended sediment loads in lowland rivers during high flow periods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Growing awareness of the wider environmental significance of fine sediment transport by rivers and associated sediment problems linked to sediment–water quality interactions, nutrient and contaminant transfer, and the degradation of aquatic habitats has resulted in the need for an improved understanding of the mobilization and transfer of sediment in catchments to support the development of effective sediment management strategies. The sediment budget provides a key integrating concept for assembling information on the internal functioning of a catchment in terms of its sediment dynamics by providing information on the mobilization, transfer, storage and output of sediment. One key feature of a catchment sediment budget is the relationship between the sediment yield at the catchment outlet and rates of sediment mobilization and transfer within the catchment, which is commonly represented by the sediment delivery ratio. To date, most attempts to derive estimates of this ratio have been based on a comparison of the measured sediment yield from a catchment with an estimate of the erosion occurring within the catchment, derived from an erosion prediction procedure, such as the Universal Soil Loss Equation (USLE) or its revised version, RUSLE. There is a need to obtain more direct and spatially distributed evidence of the erosion rates occurring within a catchment and to characterize the links between sediment mobilization, transfer, storage and output more explicitly. In this context, fallout radionuclides have proved particularly useful as sediment tracers. This paper reports the results of a study aimed at exploring the use of caesium‐137 (137Cs) measurements to establish sediment budgets for three catchments of different sizes and contrasting land use located in Calabria, southern Italy. Long‐term measurements of sediment output were available for the catchments, and, by using the estimates of gross and net rates of soil loss within the catchments provided by 137Cs measurements, it was possible to establish the key components of the sediment budget for each catchment. By documenting the sediment budgets of three catchments of different sizes, the study provides a basis for exploring the effects of scale on catchment sediment budgets and, in particular, the increasing importance of catchment storage as the size of the catchment increases. The results of this study demonstrate a reduction in the sediment delivery ratio from 98 to 2% as catchment area increases from 1·47 ha to 31·2 km2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The utility of sediment budget analysis is explored in revealing spatio‐temporal changes in the sediment dynamics and morphological responses of a fluvial system subject to significant human impacts during the recent Anthropocene. Sediment budgets require a data‐intensive approach to represent spatially‐differentiated impacts adequately and are subject to numerous estimation uncertainties. Here, field and topographic surveys, historical data, numerical modelling and a representative‐area extrapolation method are integrated to construct a distributed, process‐based sediment budget that addresses historical legacy factors for the highly regulated Lagunitas Creek (213 km2), California, USA, for the period 1983–2008. Independent corroboration methods and error propagation analysis produce an uncertainty assessment unique to a catchment of this size. Current sediment yields of ~20 000 t a‐1 ± 6000 t a‐1 equate to unit rates of ~300 t km‐2 a‐1 ± 90 t km‐2 a‐1 over the effective sediment contributing area of 64 km2. This is comparable with yields associated with early Euro‐American settlement in the catchment, despite loss of sediment supply upstream of the two large dams. It occurs because ~57% of the sediment is now derived from incision‐related channel erosion. Further, the highly efficient routing of channel‐derived sediments in these incised channels suggests an efflux of 84% of contemporary sediment production, contrasting with the efflux of ≈10–30% reported for unregulated agricultural catchments. The results highlight that sediment budgets for regulated rivers must accommodate channel morphological responses to avoid significantly misrepresenting catchment yields, and that volumetric precision in sediment budgets may best be improved by repeat, spatially dense, channel cross‐section surveys. Human activities have impacted every aspect of the sediment dynamics of Lagunitas Creek (production, storage, transfer, rates of movement through storage), confirming that, while distributed sediment budgets are data demanding and subject to numerous error sources, the approach can provide valuable insights into Anthropocene fluvial geomorphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we present a methodology to construct a sediment budget for meso‐scale catchments. We combine extensive field surveys and expert knowledge of the catchment with a sediment delivery model. The meso‐scale Mediterranean drainage basin of the Dragonja (91 km2), southwest Slovenia, was chosen as case study area. During the field surveys, sheet wash was observed on sloping agricultural fields during numerous rainfall events, which was found to be the main source of sediment. With the sediment yield model WATEM/SEDEM the estimated net erosion on the hillslopes 4·1 t ha–1 y–1 (91% of inputs). The second source, bank erosion (4·2%; 0·25 t ha–1 y–1) was monitored during several years with erosion pins and photogrammetric techniques. The last source, channel incision, was derived from geomorphological mapping and lichenomery and provided 3·8% (0·17 t ha–1 y–1) of the sediment input. The river transports its suspended sediment mainly during high‐flow events (sampled with automated water samplers). About 27% (1·2 t ha–1 y–1) of the sediment delivered to the channel is deposited on floodplains and low terraces downstream (estimated with geomorphological mapping, coring and cesium‐137 measurements). The sediment transported as bedload disintegrates during transport to the outlet due to the softness of the bedrock material. As a result, the river carries no bedload when it reaches the sea. The results imply a build‐up of sediment in the valleys catchment. However, extreme flood events may flush large amounts of sediment stored in the lower parts of the system. Geomorphological evidence exists in the catchment that such high magnitude, low frequency events have happened in the past. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Recent emphasis on sediment connectivity in the literature highlights the need for quantitative baseline studies on the patterns and distribution of sediment stores to facilitate understanding of how sediment moves through the landscape at various temporal and spatial scales. This study evaluates the distribution and make‐up of sediment stores within the dramatically incised landscapes of the upper Yellow River, where basin fill deposits up to 1200 m in depth have been extensively reworked following incision by the Yellow River. Field and GIS analyses highlight the discontinuous distribution of sediment stores in Garang catchment, a 236 km2 tributary of the upper Yellow River. Volumetric estimates of sediment storage were obtained through a combination of field mapping, GPR transects, and GIS analyses. Sediment stores cover 20% of the Garang catchment, with an estimated volume of 474.0 × 106 m3, and inferred residence times from OSL and 14C dating of 103–104 years. Fans and terraces reworked from basin fill deposits, and associated cut and fill terrace features, are the dominant forms of sediment storage (~90% of total). A space‐for‐time argument is used to assess stages of basin infilling and subsequent landscape responses to incision, outlining a dramatic example of changes to sediment dynamics and connectivity relationships within the upper Yellow River. Sediments within the upper catchment lie above the regional basin fill level, offering a glimpse of pre‐incisional conditions. This contrasts markedly with the enduring influence of basin incisional history seen within the middle catchment, and the contemporary landscapes of the lower catchment where nearly all available sediment has been excavated from the basin and the landscape effectively operates under post‐incisional conditions. The need to contextualise catchment‐scale studies in terms of landscape history is emphasised. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In response to the potential shortcomings of single-technique strategies in the investigation of erosion and sedimentation, a combined magnetic and radiometric (13Cs and 210Pb) approach has been undertaken in the upland, watershed-lake system of Howden Reservoir, Derbyshire. By combining these techniques, some assessment of sediment sources and the erosion status of the catchment has been achieved. Alone, each approach would have been unable to determine unequivocally sediment provenance. Furthermore, the parallel use of these measurements has highlighted limitations and/or uncertainties in both the magnetic and 137Cs techniques. These problems reflect the particular soil characteristics and drainage conditions of this upland catchment. Despite the documented severity of peat erosion in the region, Howden Reservoir has a mixture of sediment sources and a relatively moderate rate of sedimentation. Sediment yields (total 127·7 t km?2 yr?1 including organic fraction 31·3 t km?2 yr?1) are, however, higher than in other British upland areas.  相似文献   

11.
A sediment budget for an upland catchment–reservoir system at Burnhope Reservoir, North Pennines, UK has been developed. This provides a framework for quantifying historic and contemporary sediment yields and drainage basin response to disturbance from climate change and human activities in the recent past. Bathymetric survey, core sampling, 137Cs dating and aerial photographs have been used to assess sediment accumulation in the reservoir. The average reservoir sedimentation rate is 1·24 cm yr?1 (annual sediment yield 33·3 t km?2 yr?1 ± 10%, trap efficiency 92%). Mean annual reservoir sedimentation over the 67 year period has been estimated at 592 t ± 10%. Inputs of suspended sediment from direct catchwater streams account for 54% of sediment supply to the budget (best estimate yield of 318 t yr?1 ± 129%), while those from actively eroding reservoir shorelines contribute 328 t yr?1 ± 92%. Sediment yield estimates from stream monitoring and reservoir sedimentation are an order of magnitude lower than those reported from South Pennine reservoirs of comparable drainage basin area. Analysis of historical rainfall series for the catchment shows fluctuations in winter and summer rainfall patterns over the past 62 years. From 1976 to 1998 there has been a diverging trend between winter and summer rainfall, with a large increase in winter and a gradual decrease in summer totals. Periods of maximum variation occur during the summer drought events of the late 1970s, early 1980s and mid‐1990s. Analysis of the particle size of core sediments highlights abrupt increases in sand‐sized particles in the top 20 cm of the core. Based on the 137Cs chronology, these layers were deposited from the late 1970s onwards and relate to these diverging rainfall records and rapidly fluctuating reservoir levels. This provides evidence of potential sediment reworking within the reservoir by rapid water‐level rise after drought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Lowland permeable catchments in the UK are particularly prone to sedimentation problems, on account of the increased fine sediment loadings generated by recent land‐use change and their stable seasonal hydrological regimes, which are frequently depleted by groundwater abstraction. Fine‐grained sediment storage on the bed of the main channel systems of the Frome (437 km2) and Piddle (183 km2) catchments, Dorset, UK, has been examined at 29 sites using a sediment remobilization technique. Measurements encompassed the period February 2003–July 2004. At individual sites in the Frome, average values ranged between 410 and 2630 g m?2, with an overall mean of 918 g m?2. In the Piddle, the average values for individual sites varied between 260 and 4340 g m?2, with an overall mean of 1580 g m?2. Temporal variations in fine bed sediment storage at each site were appreciable, with the coefficients of variation ranging between 43 and 155% in the Frome and between 33 and 160% in the Piddle. Average reach‐scale specific bed sediment storage increased markedly downstream along each main stem from 2 to 29 t km?1 (Frome) and from 4 to 19 t km?1 (Piddle). Total fine sediment storage on the channel bed of the Frome varied between 479 t (5 t km?1) and 1694 t (17 t km?1), with a mean of 795 t (7 t km?1), compared with between 371 t (5 t km?1) and 1238 t (14 t km?1) with a mean of 730 t (9 t km?1) in the Piddle. During the study period, fine bed sediment storage was typically equivalent to 18% (Frome) and 57% (Piddle) of the mean annual suspended sediment flux at the study catchment outlets. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
An overall approach to assess the effectiveness of soil conservation measures at catchment scale is the comparison of sediment budgets before and after implementation of a catchment management programme. In the May Zeg‐zeg catchment (187 ha) in Tigray, north Ethiopia, integrated catchment management has been implemented since 2004: stone bunds were built in the whole catchment, vegetation was allowed to re‐grow on steep slopes and other marginal land, stubble grazing abandoned, and check dams built in gullies. Land use and management were mapped and analysed for 2000 and 2006, whereby particular attention was given to the quantification of changes in soil loss due to the abandonment of stubble grazing. Sediment yield was also measured at the catchment's outlet. A combination of decreased soil loss (from 14·3 t ha–1 y–1 in 2000 to 9·0 t ha–1 y–1 in 2006) and increased sediment deposition (from 5·8 to 7·1 t ha–1 y–1) has led to strongly decreased sediment yield (from 8·5 to 1·9 t ha–1 y–1) and sediment delivery ratio (from 0·6 to 0·21). This diachronic comparison of sediment budgets revealed that integrated catchment management is most effective and efficient and is the advisable and desirable way to combat land degradation in Tigray and other tropical mountains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
《水文科学杂志》2013,58(4):619-635
Abstract

The drawdown of Crombie Reservoir in November 2001 afforded the opportunity to examine the exposed sediments trapped since impoundment in 1868. Direct measurements of infill depth enabled an isopachyte map to be produced. Gravimetric conversion using measured bulk densities and a trap efficiency term indicated a long-term catchment sediment yield of 59.1 t km?2 year?1. Core stratigraphy analysis indicated that sediments were dark brown/black cohesive silty-muds with multiple sandy sub-units, representing a combination of discrete flood events and previous drawdown surfaces. Dating, constrained by mineral magnetic and 137Cs analysis, indicated that sedimentation rates have varied from 0.2 to 0.8 g cm?2 year?1, corresponding to a four-fold variation in catchment sediment yield (approximately 20–93 t km?2 year?1), most likely controlled by extensive conversion of moorland to woodland, and post-World War II agricultural expansion. The Crombie investigation is combined with other reservoir sedimentation surveys within the Midland Valley of Scotland. Area-specific sediment yields (t km?2 year?1) evidence a weak, though statistically significant (p > 0.05), positive correlation with catchment area (km2). The increase in area-specific yield with catchment area contradicts the decline, which is generally expected, and is taken to reflect the significance of channel erosion within water supply basins featuring mainly natural and semi-natural vegetation cover and low-intensity land management practices. With stable slopes channel erosion dominates and area-specific sediment yield increases downstream due to greater entrainment and transport potential. The high degree of scatter in the Midland Valley database reflects significant variations in the extent of land-use change and the local importance of agricultural improvements and afforestation practices.  相似文献   

15.
Cultivated fields have been shown to be the dominant sources of sediment in almost all investigated UK catchments, typically contributing 85 to 95% of sediment inputs. As a result, most catchment management strategies are directed towards mitigating these sediment inputs. However, in many regions of the UK such as the Nene basin there is a paucity of sediment provenance data. This study used the caesium‐137 (137Cs) inventories of lake and floodplain cores as well as the 137Cs activities of present day sediment to determine sediment provenance. Sediment yields were also reconstructed in a small lake catchment. Low 137Cs inventories were present in the lake and floodplain cores in comparison to the reference inventory and inventories in cores from other UK catchments. Caesium‐137 activities in the present day sediments were low; falling close to those found in the channel bank catchment samples. It was estimated that 60 to 100% of the sediment in the Nene originated from channel banks. Pre‐1963 sediment yields were approximately 11.2 t km?2 yr?1 and post‐1963 was approximately 11.9 t km?2 yr?1. The lack of increased sediment yield post‐1963 and low sediment yield is unusual for a UK catchment (where a yield of 28 to 51 t km?2 yr?1 is typical for a lowland agricultural catchment), but is explained by the low predicted contribution of sediment from agricultural topsoils. The high channel bank contribution is likely caused by the river being starved of sediment from topsoils, increasing its capacity to entrain bank material. The good agreement between the results derived using cores and recently transported sediments, highlight the reliability of 137Cs when tracing sediment sources. However, care should be taken to assess the potential impacts of sediment particle size, sediment focusing in lakes and the possible remobilization of 137Cs from sedimentary deposits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Field studies that investigate sediment transport between debris-flow-producing headwaters and rivers are uncommon, particularly in forested settings, where debris flows are infrequent and opportunities for collecting data are limited. This study quantifies the volume and composition of sediment deposited in the arterial channel network of a 14-km2 catchment (Washington Creek) that connects small, burned and debris-flow-producing headwaters (<1 km2) with the Ovens River in SE Australia. We construct a sediment budget by combining new data on deposition with a sediment delivery model for post-fire debris flows. Data on deposits were plotted alongside the slope–area curve to examine links between processes, catchment morphometry and geomorphic process domains. The results show that large deposits are concentrated in the proximity of three major channel junctions, which correspond to breaks in channel slope. Hyperconcentrated flows are more prominent towards the catchment outlet, where the slope–area curve indicates a transition from debris flow to fluvial domains. This shift corresponds to a change in efficiency of the flow, determined from the ratio of median grain size to channel slope. Our sediment budget suggests a total sediment efflux from Washington Creek catchment of 61 × 103 m3. There are similar contributions from hillslopes (43 ± 14 × 103 m3), first to third stream order channel (35 ± 12 × 103 m3) and the arterial fourth to fifth stream order channel (31 ± 17 × 103 m3) to the total volume of erosion. Deposition (39 ± 17 × 103 m3) within the arterial channel was higher than erosion (31 ± 17 × 103 m3), which means a net sediment gain of about 8 × 103 m3 in the arterial channel. The ratio of total deposition to total erosion was 0.44. For fines <63 μm, this ratio was much smaller (0.11), which means that fines are preferentially exported. This has important implications for suspended sediment and water quality in downstream rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
A sediment budget for the Late Glacial and Holocene periods was calculated for the Lac Chambon watershed which is located in a formerly glaciated temperate crystalline mountain area. It appears that over 15 500 years: (1) 69 per cent of eroded particles have been displaced by gravity processes and then stored within the watershed, compared to 31 per cent that have been displaced by running water and evacuated outward; (2) the mean mechanical erosion due to gravity processes on the slopes amounted to 16·1 ±6 m and only developed on a quarter of the watershed surface, whereas the mean mechanical erosion due to running water amounted 1·24 ± 0·37 m and involved the whole watershed surface. The mean sediment yields due to gravity processes on slopes were 2300 ± 1360, 1770 ± 960 and 380 ± 100 m3 km−3 a−1, respectively, for basalts, and basic and acidic trachyandesites. Values of sediment yield due to running water were 49±15, 120±36 and 79±24 m3 km−2 a−1, respectively, during the Bôlling–Allerôd, the Younger Dryas and the Pre-Boreal–Boreal periods. They were 56±17 and 166±50 m3 km−2 a−1 during the Sub-Atlantic period before and after 1360 a BP , respectively. These values reflect variations in the natural environment and the impact of human-induced deforestation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
The paraglacial reworking of glacial sediments by rivers and mass wasting is an important conditioning factor for modern sediment yields in mountainous catchments in formerly glaciated regions. Catchment scale and patterns of sediment storage are important influences in the rate of postglacial adjustment. We develop a quantitative framework to estimate the volume, sediment type, and fractional size distribution of legacy glacial materials in a large (1230 km2) watershed in the North Cascade Mountains in south‐western British Columbia, Canada. Chilliwack Valley is exceptional because of the well‐dated bounds of deglaciation. Interpolation of paleo‐surfaces from partially eroded deposits in the valley allows us to estimate the total evacuated sediment volume. We present a chronology of sediment evacuation from the valley and deposition in the outlet fan, based on infrared stimulated luminescence (IRSL) and 14 C dating of river terraces and fan strata, respectively. The effects of paraglacial sedimentation in Chilliwack Valley were intensified through a major fall in valley base‐level following ice retreat. The steepened mainstem valley gradient led to deep incision of valley fills and fan deposits in the lower valley network. The results of this integrated study provide a postglacial chronology and detailed sediment budget, accounting for long‐term sorting of the original sediments, lag deposit formation in the mainstem, deposition in the outlet fan, and approximate downstream losses of suspended sediment and wash load. The mass balance indicates that a bulk volume of approximately 3.2 km3 of glacial material has been evacuated from the valley. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
An important gap in the management of land erosion in mining-affected areas is the understanding of the entire sediment routing system and the links between sources and storage at the catchment scale. In this study, we examine sediment delivery and its seasonality in the nickel mining-affected Santa Cruz and Pamalabawan catchments in the Philippines. We monitored discharge, suspended sediment concentrations and suspended sediment loads across 13 sub-catchments with contrasting degrees of mining influence from June 2018 to July 2019. First, we show the importance of the size of the area that has been physically disturbed within our sub-catchments, with as little as 10–22% of relative disturbance area being enough to generate four-fold to eight-fold increase in the sediment yield relative to less disturbed and pristine areas. We found that sub-catchments with > 10% disturbance exhibit the highest sediment yields (15.5 ± 44.7 t km−2 d−1) compared with sub-catchments with < 10% disturbance (3.6 ± 17.7 t km−2 d−1) and undisturbed catchments (2.0 ± 5.7 t km−2 d−1). We also show that sediment flushing predominantly occurs in the most disturbed sub-catchments at the onset of the wet season. A small number of flood events transports the bulk of the sediment, with hysteresis effects being most pronounced in disturbed areas. Lastly, we show that floodplain sediment recycling exerts a key control on sediment delivery at both reach and catchment scales, with the relative contribution of floodplain sources to the sediment budget becoming dominant in the latter stages of the wet season- up to 89% of the total sediment export per storm event. This study highlights the importance of both degree of disturbance and sediment pathways in controlling sediment transport in mining-disturbed areas, and that considering the entire sediment routing system including intermediate stores is crucial to optimizing existing and future measures against siltation and potential contamination of trace metals and metalloids downstream of mining areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号