首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composts with five different ratios of agricultural wastes, viz. rice straw (RS), wheat straw (WS), potato plant (PP), and mustard stover (MS) were prepared with or without fish pond bottom sediment to investigate the compost maturity and their suitability for field application. The composting process was monitored through the changes in physico‐chemical parameters and germination index (GI) at every 7 days interval of the composting process. All the composts were dark brown and smelled like forest soil within 56 days of composting, which reflected its matured status. On the basis of the physico‐chemical parameters (bulk density: 0.84 g/cm3; pH 7.05; electrical conductivity: 3.52 mS/cm; cation exchange capacity:82.4 cmol/kg; total carbon:321.4 g/kg; total nitrogen: 16.9 g/kg; As: 6.8 mg/kg; Cd: 2.96 mg/kg; Cr: 29.6 mg/kg, Cu: 243.6 mg/kg; Hg: 0.019 mg/kg; Ni: 24.3 mg/kg; Pb: 62.1 mg/kg and Zn: 812 mg/kg) and GI (89–96%), it could be concluded that RS/WS/PP/MS, 1:1:2:1 v/v/v/v with fish pond sediment produced better compost in accordance with the Indian compost standard. Application of a combined randomized block design analysis revealed that there is a significant difference in the responses of the five composts, in relation to the time of composting. Hierarchical clustering algorithm was applied with a view to form homogeneous groups of five different composts on the basis of different physico‐chemical parameters. Therefore, the ratio of waste incorporation is an important decision for composting and addition of pond sediment can improve the quality of compost.  相似文献   

2.
Low cost lime‐based waste materials have recently been used to immobilize metals in contaminated soils. This study was conducted to evaluate the effects of oyster shells and eggshells as lime‐based waste materials on immobilization of cadmium (Cd) and lead (Pb) in contaminated soil, as well as their effects on metal availability to maize plants (Zea mays L.). Oyster shells and eggshells were applied to soils at 1 and 5% w/w, after which they were subject to 420 days of incubation. The toxicity characteristic leaching procedure (TCLP) test was employed to determine the mobility of Cd and Pb in soils. The results showed that the addition of waste materials effectively reduced the metal mobility as indicated by the decrease in the concentration of TCLP‐extractable Cd and Pb, and this was mainly due to significant increases in soil pH (from 6.74 in untreated soil to 7.85–8.13 in treated soil). A sequential extraction indicated that the addition of such alkaline wastes induced a significant decline in the concentration of Cd in the exchangeable fraction (from 23.64% in untreated soil to 1.90–3.81% in treated soil), but it increased the concentration of Cd in the carbonate fraction (from 19.59% in untreated soil to 36.66–46.36% in treated soil). In the case of Pb, the exchangeable fraction was also reduced (from 0.67% in untreated soil to 0.00–0.01% in treated soil), and the fraction of Pb bound to carbonate was slightly increased (from 16.61% in untreated soil to 16.41–18.25% in treated soil). Phytoavailability tests indicated that the metal concentrations in the shoots of maize plant were reduced by 63.39–77.29% for Cd and by 47.34–75.95% for Pb in the amended soils, with no significant differences being observed for the amendment types and the application rates. Overall, these results indicate that oyster shells and eggshells can be used as low cost lime‐based amendments for immobilizing Cd and Pb in contaminated soils.  相似文献   

3.
Radioecological studies were carried out in a territory polluted by 90Sr delivered by groundwater after leakage from a tank in a near-surface radioactive waste repository. The layer-by-layer vertical distribution of 90Sr in soil down to 3 m is analyzed. The area of radioactive pollution above the minimal significant activity level (1 Bq/kg by NRB-99/2009) in the examined soil layers decrease with depth as follows: 1808 m2 at 0–5 cm, 302 m2 at 5–10 cm, and 181 m2 at 10–15 cm. The accumulation of 90Sr takes place at a natural sorption geochemical barrier—a swampy area in a near-terrace depression. The radiation dozes were calculated for terrestrial mollusk of Bradybaena fruticum, accumulating strontium in its shell; the doses are in excess of the screening value of 2.4 μGr/day in 41% of the territory. This is higher than the acceptable risk level (5%) for this mollusk population. An excess of the intervention level for 90Sr was recorded in both subsurface and surface waters in this geosystem during winter and summer dry seasons and autumn showers.  相似文献   

4.
In order to aid in the efforts of the 2016 Olympic Games, the organizers of 2011 Rock in Rio decided to build a permanent venue next to the Olympic Park. The area is problematic from the geotechnical point of view since it presents soils with low shear strength, low permeability, and high plasticity, so major soil improvement works were carried out. Bored soil–cement columns were placed to increase soil shear strength and reduce compressibility. A meter thick fill composed of gneiss residual soil was placed and trenches were digged to drain rainwater. However, earlier studies conducted on Jacarepaguá Lagoon have detected the presence of heavy metals in these sediments. In this study, an environmental survey on the Jacarepaguá Lagoon sediments took place in order to choose a place where its sediments could be dredged to be later used in the drainage facilities. The results indicated areas where the threshold level 1 (low probability of adverse effects) issued by the general procedures for sediments quality assessments for dredging purposes, Resolution no 344 of the Brazilian Federal Government, was surpassed. Levels above the limits established for cadmium (Cd), lead (Pb), copper (Cu), nickel (Ni), and zinc (Zn) were detected. Based on this consideration the State Environmental Agency issued a permit allowing the organizers of 2011 Rock in Rio to dredge an area close to City of Rock in order to obtain coarse sediments for the drainage facilities. In addition, it was found that those sediments were ideal for this application since their hydraulic conductivity is on the order of 10?2 cm/s.  相似文献   

5.
This study investigates structural and adsorption properties of the powdered waste shells of Rapana gastropod and their use as a new cheap adsorbent to remove reactive dye Brilliant Red HE‐3B from aqueous solutions under batch conditions. For the powder shells characterization, solubility tests in acidic solutions and X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform IR spectroscopy (FT‐IR) and thermogravimetric analyses were performed. The results revealed that the adsorbent surface is heterogeneous consisting mainly from calcium carbonate layers (either calcite or aragonite) and a small amount of organic macromolecules (proteins and polysaccharides). The dye adsorptive potential of gastropod shells powder was evaluated as function of initial solution pH (1–5), adsorbent dose (6–40 g L?1), dye concentration (50–300 mg L?1), temperature (5–60°C), and contact time (0–24 h). It was observed that the maximum values of dye percentage removal were obtained at the initial pH of solution 1.2, shells dose of 40 g L?1, dye initial concentration of 50–50 mg L?1 and higher temperatures; the equilibrium time decreases with increasing of dye concentration. It is proved that the waste seashell powder can be used as low cost bioinorganic adsorbent for dyes removal from textile wastewaters.  相似文献   

6.
Pitambar  Gautam  Ulrich  Blaha  Erwin  Appel 《Island Arc》2005,14(4):424-435
Abstract Soil profiles of the Kathmandu urban area exhibit significant variations in magnetic susceptibility (χ) and saturation isothermal remanence (SIRM), which can be used to discriminate environmental pollution. Magnetic susceptibility can be used to delineate soil intervals by depth into normal (< 10?7 m3/kg), moderately enhanced (10?7–< 10?6 m3/kg) and highly enhanced (≥ 10?6 m3/kg). Soils far from roads and industrial sites commonly fall into the ‘normal’ category. Close to a road corridor, soils at depths of several centimeters have the highest χ, which remains high within the upper 20 cm interval, and decreases with depth through ‘moderately magnetic’ to ‘normal’ at approximately 30–40 cm. Soils in the upper parts of profiles in urban recreational parks have moderate χ. Soil SIRM has three components of distinct median acquisition fields (B1/2): soft (30–50 mT, magnetite‐like phase), intermediate (120–180 mT, probably maghemite or soft coercivity hematite) and hard (550–600 mT, hematite). Close to the daylight surface, SIRM is dominated by a soft component, implying that urban pollution results in enrichment by a magnetite‐like phase. Atomic absorption spectrometry of soils from several profiles for heavy metals reveals remarkable variability (ratio of maximum to minimum contents) of Cu (16.3), Zn (14.8) and Pb (9.3). At Rani Pokhari, several metals are well correlated with χ, as shown by a linear relationship between the logarithmic values. At Ratna Park, however, both χ and SIRM show significant positive correlation with Zn, Pb and Cu, but poor and even negative correlation with Fe (Mn), Cr, Ni and Co. Such differences result from a variety of geogenic, pedogenic, biogenic and man‐made factors, which vary in time and space. Nevertheless, for soil profiles affected by pollution (basically traffic‐related), χ exhibits a significant linear relationship with a pollution index based on the contents of some urban elements (Cu, Pb, Zn), and therefore it serves as an effective parameter for quantifying the urban pollution.  相似文献   

7.
《Marine pollution bulletin》2009,58(6-12):381-391
Composting is one of the waste disposal methods adopted for disposal of livestock waste in Hong Kong. The composting livestock waste normally undergoes 6–8 weeks fermentation, followed by 16–20 weeks maturation. The matured compost is sold as soil conditioner in the local market. In 2006, feedstock material and a time-series of compost samples were collected throughout the fermentation and maturation process from the Sha Ling Composting Plant in the New Territories. The feedstock material and compost samples were analyzed for contents of three unintentional persistent organic pollutants (POPs), i.e. dioxins/furans, dioxin-like PCBs and total PCBs. These POPs are unintentionally produced by-products of chemical industrial processes and combustion processes. Selected heavy metals were also analyzed, which served as conservative tracers to determine potential mass loss during the composting process. Levels of contamination by these POPs were found to be low in the matured compost for sale. The mean concentrations (lower–upper bound) of total dioxins/furans, total dioxin-like PCBs and total PCBs were 2.01–2.05 ng I-TEQ/kg dw, 0.04–0.05 ng WHO-TEQ/kg dw and 1.55–1.55 μg/kg dw, respectively. Progressively elevated levels of these POPs were observed in the compost samples during the fermentation process. Analysis of the congener profiles revealed that the heptaCDD and octaCDD were the main contributors to the observed increase in dioxin/furan content. The possible sources of dioxins/furans in the compost were discussed. The study results established a local dioxins/furans emission factor specific to the trade and provided a better estimate of the annual dioxins/furans emission for the livestock waste composting activity in Hong Kong.  相似文献   

8.
The electrical conductivity of Tibetan eclogite was investigated at pressures of 1.5–3.5 GPa and temperatures of 500–803 K using impedance spectroscopy within a frequency range of 10-1–106 Hz. The electrical conductivity of eclogite increases with increasing temperature(which can be approximated by the Arrhenius equation), and is weakly affected by pressure. At each tested pressure, the electrical conductivity is weakly temperature dependent below ~650 K and more strongly temperature dependent above ~650 K. The calculated activation energies and volumes are 44±1 kJ/mol and-0.6±0.1 cm3/mol for low temperatures and 97±3 kJ/mol and-1.2±0.2 cm3/mol for high temperatures, respectively. When applied to the depth range of 45–100 km in Tibet, the laboratory data give conductivities on the order of 10-1.5–10-4.5 S/m, within the range of geophysical conductivity profiles.  相似文献   

9.
The effect of nutrient and surfactant addition on the biodegradation of phenanthrene was studied in a batch scale soil–slurry system using isolated Mycoplana sp. MVMB2strain. The study was conducted using an artificially phenanthrene spiked and as well as contaminated soil from petrochemical industrial site. Maximum phenanthrene degradation and subsequent high microbial growth were observed at optimum pH (pH 6) and C/N/P ratio (100:20:3). To investigate maximum substrate degradation potential of Mycoplana sp. MVMB2, very high concentrations of phenanthrene (50–200 mg/kg soil) were used. The organism was capable of degrading >60% for a concentration below 20 mg/kg soil and >40% for concentrations up to 200 mg/kg within 8 days. Further the influence of five different surfactants namely Span 80, Tween 20, Triton X‐100, cetyl trimethyl ammonium bromide, and sodium dodecyl sulfate were tested at their critical micelle concentration (CMC) levels for phenanthrene degradation in the soil. The addition of surfactant enhanced the biodegradation and a maximum of 84.49% was obtained for Triton X‐100. Complete phenanthrene degradation by Mycoplana sp. MVMB2 was observed at 3 CMC concentration of Triton X‐100. The optimized parameters obtained were used for the degradation of phenanthrene present in the contaminated soil and 98.6% biodegradation was obtained. Thus, the results obtained in the study suggested that biodegradation of phenanthrene by Mycoplana sp. MVMB2 appeared to be feasible to remediate phenanthrene rich contaminated sites.  相似文献   

10.
Alang–Sosiya located on the Western Coast of Gulf of Cambay, is the largest ship recycling yard in the world. Every year on average 365 ships having a mean weight (2.10 × 106 ± 7.82 × 105 LDT) are scrapped. This industry generates a huge quantity of solid waste in the form of broken wood, rubber, insulation materials, paper, metals, glass and ceramics, plastics, leather, textiles, food waste, chemicals, paints, thermocol, sponge, ash, oil mixed sponges, miscellaneous combustible and non-combustible. The quantity and composition of solid waste was collected for a period of three months and the average values are presented in this work. Sosiya had the most waste 15.63 kg/m2 compared to Alang 10.19 kg/m2. The combustible solid waste quantity was around 83.0% of the total solid waste available at the yard, which represents an average weight of 9.807 kg/m2; whereas, non-combustible waste is 1.933 kg/m2. There is not much difference between the average of total solid waste calculated from the sampling data (96.71 MT/day) and the data provided by the port authorities (96.8 MT/day).  相似文献   

11.
The Starunia oil-ozokerite deposit occurs in the Boryslav-Pokuttya Unit of the Carpathian Foredeep, which is the main oil- and gas-bearing part of the Ukrainian Carpathians. Starunia is of great interest in studying the relationship between the magnetic properties of rocks, soils and hydrocarbons due to extensive surface microseeps yielding oil and gas, mineral water, and clay pulp containing hydrocarbons. We identified a local negative magnetic anomaly (30–35 nT) with a width of about 700 m within the MAG1 profile. The magnetic high is associated with the area of the largest mud volcanoes in the Starunia structure. Magnetic susceptibility of the soil was measured on a site with three distinct landscape features: a patch of forest with phaeozem and mass-specific susceptibility (χ) of 20–45 × 10?8 m3/kg for the surface topsoil; an area near the volcano and Nadia-1 well with visible hydrocarbon microseepage at the surface and the topsoil showing no visible evidence of hydrocarbon presence with χ = 20–50 × 10?8 m3/kg; and a patch of lowland with gleysols and χ = 10–20 × 10?8 m3/kg. Hydrocarbon-containing clays and soils from the alluvial sediments of the Velyky Lukavets River and bedrock clays near the Nadia-1 well demonstrated high χ values (up to 250–440 × 10?8 m3/kg).  相似文献   

12.
Abstract

Electromagnetic induction measurements (EM) were taken in a saline gypsiferous soil of the Saharan-climate Fatnassa oasis (Tunisia) to predict the electrical conductivity of saturated soil extract (ECe) and shallow groundwater properties (depth, Dgw, and electrical conductivity, ECgw) using various models. The soil profile was sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The best input to predict the log-transformed soil salinity (lnECe) in surface (0–0.2 m) soil was the EMh/EMv ratio. For the 0–0.6 m soil depth interval, the performance of multiple linear regression (MLR) models to predict lnECe was weaker using data collected over various seasons and years (R a 2 = 0.66 and MSE = 0.083 dS m-1) as compared to those collected during the same period (R a 2 = 0.97, MSE = 0.007 dS m-1). For similar seasonal conditions, for the DgwEMv relationship, R 2 was 0.88 and the MSE was 0.02 m for Dgw prediction. For a validation subset, the R 2 was 0.85 and the MSE was 0.03 m. Soil salinity was predicted more accurately when groundwater properties were used instead of soil moisture with EM variables as input in the MLR.

Editor D. Koutsoyiannis; Associate editor K. Heal

Citation Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R., 2012. Electromagnetic induction predictions of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrological Sciences Journal, 57 (7), 1473–1486.  相似文献   

13.
The effects of visitor activities on surface soil environmental conditions and aboveground herbaceous biomass in Ayder Natural Park, Turkey, were investigated. Soil properties and aboveground herbaceous biomass were identified and characterized as heavily trafficked site (HTS), moderately trafficked sites (MTS) and control (non‐trafficked site) in grassland in a forest gap. Some soil properties were measured on 60 pits at 0–5 and 5–10 cm soil depths. The intensity of visitor activities had a negative impact on both surface soil properties and the aboveground herbaceous plant biomass and root mass in the study area in Ayder. The soil bulk density and soil penetration resistance increased from 0.94 to 1.47 g cm–3 and 0.55 to 1.65 MPa, respectively, saturated hydraulic conductivity decreased from 77.98 to 8.85 mm h–1, and soil organic matter decreased from 6.71 to 1.77% in moderately and heavily trafficked sites, respectively, at 0–5 cm soil depth. The soil properties were degraded at both the surface layer and the subsurface layer and the greatest degradation was measured in the heavily trafficked site followed by the moderately trafficked site. There was a strong negative linear relationship between soil degradation and aboveground herbaceous plant biomass, which decreased by 50.05 and 78.19% in moderately and heavily trafficked sites, respectively.  相似文献   

14.
A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag+ and Pd2+ in various samples. After complexation with 2‐((2‐((1H‐benzo[d]imidazole‐2‐yl)methoxy)phenoxy)methyl)‐1H‐benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X‐114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0·10–5 mol/L BIMPI and 0.036% (w/v) Triton X‐114), calibration graphs were linear in the range of 28.0–430.0 μg/L and 57.0–720.0 μg/L with detection limits of 10.0 and 25.0 μg/L for Ag+ and Pd2+, respectively. The enrichment factors were 35.0 and 28.0 for Ag+ and Pd2+, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples.  相似文献   

15.
Winter wheat–summer fallow is the conventional cropping system employed on >1·5 million ha within the Columbia Plateau of eastern Washington and northern Oregon. Wind erosion contributes to poor air quality in the region, yet little is known concerning the magnitude of soil and PM10 (particulate matter of ≤10 µm in aerodynamic diameter) loss from agricultural lands. Therefore, loss of soil and PM10 was assessed from a silt loam in eastern Washington during 2003 and 2004. Field sites were maintained in fallow using conventional tillage practices in 2003 (9 ha field) and 2004 (16 ha field) and instrumented to assess horizontal soil flux and PM10 concentrations at the windward and leeward positions in the field during high‐wind events. Soil flux was measured using creep and airborne sediment collectors while PM10 concentrations were measured using high‐volume PM10 samplers. Aggregate size distribution of parent soil and eroded sediment was characterized by rotary and sonic sieving. Six high‐wind events occurred over the two year period, with soil loss ranging from 43 kg ha?1 for the 12–22 September 2003 event to 2320 kg ha?1 for the 27–29 October 2003 event. Suspension‐sized particulates (<100 µm in diameter) comprised ≥90 per cent of the eroded sediment, indicating that direct suspension may be an important process by which the silt loam eroded. The corresponding loss of PM10 for these two events ranged from 5 to 210 kg ha?1. Loss of PM10 comprised 9–12 per cent of the total soil loss for the six events. This study suggests that the relatively small loss of PM10 from eroding agricultural fields maintained in summer fallow can affect air quality in the Columbia Plateau. Therefore, alternative tillage practices or cropping systems are needed for minimizing PM10 emissions and improving air quality in the region. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Conservative solute injections were conducted in three first-order montane streams of different geological composition to assess the influence of parent lithology and alluvial characteristics on the hydrological retention of nutrients. Three study sites were established: (1) Aspen Creek, in a sandstone–siltstone catchment with a fine-grained alluvium of low hydraulic conductivity (1·3×10−4 cm/s), (2) Rio Calaveras, which flows through volcanic tuff with alluvium of intermediate grain size and hydraulic conductivity (1·2×10−3 cm/s), and (3) Gallina Creek, located in a granite/gneiss catchment of coarse, poorly sorted alluvium with high hydraulic conductivity (4·1×10−3 cm/s). All sites were instrumented with networks of shallow groundwater wells to monitor interstitial solute transport. The rate and extent of groundwater–surface water exchange, determined by the solute response in wells, increased with increasing hydraulic conductivity. The direction of surface water–groundwater interaction within a stream was related to local variation in vertical and horizontal hydraulic gradients. Experimental tracer responses in the surface stream were simulated with a one-dimensional solute transport model with inflow and storage components (OTIS). Model-derived measures of hydrological retention showed a corresponding increase with increasing hydraulic conductivity. To assess the temporal variability of hydrological retention, solute injection experiments were conducted in Gallina Creek under four seasonal flow regimes during which surface discharge ranged from baseflow (0·75 l/s in October) to high (75 l/s during spring snowmelt). Model-derived hydrological retention decreased with increasing discharge. The results of our intersite comparison suggest that hydrological retention is strongly influenced by the geologic setting and alluvial characteristics of the stream catchment. Temporal variation in hydrological retention at Gallina Creek is related to seasonal changes in discharge, highlighting the need for temporal resolution in studies of the dynamics of surface water–groundwater interactions in stream ecosystems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
Prediction of Bulk Density of Soils in the Loess Plateau Region of China   总被引:4,自引:0,他引:4  
Soil bulk density (BD) is a key soil physical property that may affect the transport of water and solutes and is essential to estimate soil carbon/nutrients reserves. However, BD data are often lacking in soil databases due to the challenge of directly measuring BD, which is considered to be labor intensive, time consuming, and expensive especially for the lower layers of deep soils such as those of the Chinese Loess Plateau region. We determined the factors that were closely correlated with BD at the regional scale and developed a robust pedotransfer function (PTF) for BD by measuring BD and potentially related soil and environmental factors at 748 selected sites across the Loess Plateau of China (620,000 km2) at which we collected undisturbed and disturbed soil samples from two soil layers (0–5 and 20–25 cm). Regional BD values were normally distributed and demonstrated weak spatial variation (CV = 12 %). Pearson’s correlation and stepwise multiple linear regression analyses identified silt content, slope gradient (SG), soil organic carbon content (SOC), clay content, slope aspect (SA), and altitude as the factors that were closely correlated with BD and that explained 25.8, 6.3, 5.8, 1.4, 0.3, and 0.3 % of the BD variation, respectively. Based on these closely correlated variables, a reasonably robust PTF was developed for BD using multiple linear regression, which performed equally with the artificial neural network method in the current study. The inclusion of topographic factors significantly improved the predictive capability of the BD PTF and in which SG was an important input variable that could be used in place of SA and altitude without compromising its capability for predicting BD. Thus, the developed PTF with only four input variables (clay, silt, SOC, SG), including their common transformations and interactive terms, predicted BD with reasonable accuracy and is thus useful for most applications on the Loess Plateau of China. More attention should be given to the role of topography when developing PTFs for BD prediction. Testing of the developed PTF for use in other loess regions in the world is required.  相似文献   

18.
19.
Biological soil crusts (BSCs) cover up to 60 to 70% of the soil surface in grasslands after the ‘Grain for Green’ project was implemented in 1999 to rehabilitate the Loess Plateau. However, few studies exist that quantify the effects of BSCs on the soil detachment process by overland flow in the Loess Plateau. This study investigated the potential effects of BSCs on the soil detachment capacity (Dc), and soil resistance to flowing water erosion reflected by rill erodibility and critical shear stress. Two dominant BSC types that developed in the Loess Plateau (the later successional moss and the early successional cyanobacteria mixed with moss) were tested against natural soil samples collected from two abandoned farmland areas. The samples were subjected to flow scouring under six different shear stresses ranging from 7.15 to 24.08 Pa. The results showed that Dc decreased significantly with crust coverage under both moss and mixed crusts. The mean Dc of bare soil (0.823 kg m?2 s?1) was 2.9 to 48.4 times greater than those of moss covered soil (0.017–0.284 kg m?2 s?1), while it (3.142 kg m?2 s?1) was 4.9 to 149.6 times greater than those of mixed covered soil (0.021–0.641 kg m?2 s?1). The relative detachment rate of BSCs compared with bare soils decreased exponentially with increasing BSC coverage for both types of BSCs. The Dc value can be simulated by flow shear stress, cohesion, and BSC coverage using a power function (NSE ≥ 0.59). Rill erodibility also decreased with coverage of both crust types. Rill erodibility of bare soil was 3 to 74 times greater than those of moss covered soil and was 2 to 165 times greater than those of mixed covered soil. Rill erodibility could also be estimated by BSC coverage in the Loess Plateau (NSE ≥ 0.91). The effect of crust coverage on critical shear stress was not significant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Water is a limiting factor for life in the McMurdo Dry Valleys (MDV), Antarctica. The active layer (seasonally thawed soil overlying permafrost) accommodates dynamic hydrological and biological processes for 10–16 weeks per year. Wetted margins (visually wetted areas with high moisture content) adjacent to lakes and streams are potential locations of great importance in the MDV because of the regular presence of liquid water, compared with the rest of the landscape where liquid water is rare. At 11 plots (four adjacent to lakes, seven adjacent to streams), soil particle size distribution, soil electrical conductivity, soil water content and isotopic signature, width of the wetted margin, and active layer thaw depth were characterised to determine how these gradients influence physicochemical properties that determine microbial habitat and biogeochemical cycling. Sediments were generally coarse‐grained in wetted margins adjacent to both lakes and streams. Wetted margins ranged from 1·04 to 11·01 m in average length and were found to be longer at lakeside sites than streamside. Average thaw depths ranged from 0·12 to 0·85 m, and were found to be deepest under lake margins. Lake margins also had much higher soil electrical conductivity, steeper topographic gradients, but more gradual soil moisture gradients than stream margins. Patterns of soil water δ18O and δD distribution indicate capillary action and evaporation from wetted margins; margin pore waters generally demonstrated isotopic enrichment with distance from the shore, indicating evaporation of soil water. Lake margin pore waters were significantly more negative in DXS (DXS = δD‐8δ18O) than streamside pore waters, indicating a longer history of evaporation there. Differences between lake and stream margins can be explained by the more consistent availability of water to lake margins than stream margins. Differences in margin characteristics between lakes and streams have important consequences for the microbial habitat of these margins and their functional role in biogeochemical cycling at these terrestrial–aquatic interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号