首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Hyperconcentrated floods, with sediment concentrations higher than 200 kg/m3, occur frequently in the Yellow River and its tributaries on the Loess Plateau. This paper studies the fluvial hydraulics of hyperconcentrated floods by statistical analysis and comparison with low sediment concentration floods. The fluvial process induced by hyperconcentrated floods is extremely rapid. The river morphology may be altered more at a faster rate by one hyperconcentrated flood than by low sediment concentration floods over a decade. The vertical sediment concentration distribution in hyperconcentrated floods is homogeneous. The Darcy–Weisbach coefficient of hyperconcentrated floods varies with the Reynolds number in the same way as normal open channel flows but a representative viscosity is used to replace the viscosity, η. If the concentration is not extremely high and the Reynolds number is larger than 2000, the flow is turbulent and the Darcy–Weisbach coefficient for the hyperconcentrated floods is almost the same as low sediment concentration floods. Serious channel erosion, which is referred to as ‘ripping up the bottom’ in Chinese, occurs in narrow‐deep channels during hyperconcentrated floods. However, in wide‐shallow channels, hyperconcentrated floods may result in serious sedimentation. Moreover, a hyperconcentrated flood may cause the channel to become narrower and deeper, thus, reducing the flood stage by more than 1 m if the flood event lasts longer than one day. The fluvial process during hyperconcentrated floods also changes the propagation of flood waves. Successive waves may catch up with and overlap the first wave, thus, increasing the peak discharge of the flood wave during flood propagation along the river course. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
It is often believed that extreme but infrequent events are most important in the development of landforms. When evaluating the overall effect of large floods on floodplain sedimentation, quantitative measurements of both high- and low-magnitude events should be considered. To analyse the role of flood magnitude on floodplain sedimentation, we measured overbank sedimentation during floods of different magnitude and duration. The measurements were carried out on two embanked floodplain sections along the rivers Rhine and Meuse in The Netherlands, using sediment traps made of artificial grass. The results showed an increase in total sediment accumulation with flood magnitude, mainly caused by enhanced accumulation of sand. At low floodplain sections the increase in sediment deposition was smaller than expected from the strong increase in suspended sediment transport in the river. Spatial variability in sediment accumulation was found to depend both on flood magnitude and duration. Deposition of sand on natural levees mainly takes place during high-magnitude floods, whilst low floods and slowly receding floods are important for the deposition of silt and clay in low-lying areas, at greater distance from the main channel. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

4.
Engineered flood bypasses, or simplified conveyance floodplains, are natural laboratories in which to observe floodplain development and therefore present an opportunity to assess delivery to and sedimentation within a specific class of floodplain. The effects of floods in the Sacramento River basin were investigated by analyzing hydrograph characteristics, estimating event‐based sediment discharges and reach erosion/deposition through its bypass system and observing sedimentation patterns with field data. Sediment routing for a large, iconic flood suggests high rates of sedimentation in major bypasses, which is corroborated by data for one bypass area from sedimentation pads, floodplain cores and sediment removal reporting from a government agency. These indicate a consistent spatial pattern of high sediment accumulation both upstream and downstream of lateral flow diversions and negligible sedimentation in a ‘hydraulic shadow’ directly downstream of a diversion weir. The pads located downstream of the shadow recorded several centimeters of deposition during a moderate flood in 2006, increasing downstream to a peak of ~10 cm thick and thinning rapidly thereafter. Flood deposits in the sediment cores agree with this spatial pattern, containing discrete sedimentation layers (from preceding floods) that increase in thickness with distance downstream of the bypass entrance to several decimeters thick at the peak and then thin downstream. These patterns suggest that a quasi‐natural physical process of levee construction by advective overbank transport and deposition of sediment is operating. The results improve understanding of the evolution of bypass flood control structures, the transport and deposition of sediment within these environments and the evolution of one class of natural levee systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Retrogressive erosion, a widespread phenomenon of sediment transport in reservoirs, often impacts on both the reservoir capacity and the sedimentation in the downstream river channel. Based on field data from the Sanmenxia Reservoir and the Lower Yellow River over the past decades, three courses of ret-rogressive erosion with distinctive features were analyzed. The results indicate that retrogressive erosion, especially caused by rapid reduction in the water level till the reservoir is empty, often results in the serious siltation of the lower Yellow River and threatens the safety of the flood control in the Lower Yellow River. Unreasonable operation of the reservoir and incoming hyperconcentrated floods accom-panied by retrogressive erosion also aggravate the siltation of the main channel of the river. However, a reasonable operation mode of the reservoir so named"storing the clear (low sediment concentration) water in the non–flood season, and sluicing the muddy(high sediment concentration) water in the flood season" was found, which might mitigate the deposition in both the reservoir and the Lower Yellow River. This operation mode provides important experience for the design and operation of large reser-voirs in other large rivers carrying huge amounts of sediment.  相似文献   

6.
Flow records, rising‐stage sediment samplers, and a sand suspension model are used to examine suspended sediment concentrations during major floods caused by tropical cyclones TC Joni and TC Kina in the Rewa River, Fiji. The highest concentrations of total suspended solids were measured during the early stages of TC Kina. The suspension model predicts higher sand concentrations for TC Kina compared with TC Joni because of the larger slope and higher shear stresses during Kina. Extremely high wash load concentrations early in TC Kina are at least partly due to remobilization of fine sediment deposited during the earlier TC Joni flood. Samples from the TC Kina had volumetric concentrations larger than 5%, indicating hyperconcentrated streamflows. Mass‐density shear stresses in the hyperconcentrated flows are up 1·6 times larger than clear‐water shear stresses, but they occur early during low stages of the flood and probably do not result in severe bed erosion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Due to the temporal decoupling of water and sediment sources in a large river basin, a flood from a sediment source area with high suspended sediment concentration (SSC) may be diluted by flow from a major runoff source area with low SSC. In this paper, this dilution effect is considered for 145 flood events from the Yellow River, China. Two indices (β1 and β2) describing the dilution effect are proposed, based on water and sediment from the clear water source area and the coarse sediment producing area. Regression equations between channel sedimentation (Sdep) and β1 and β2 are established based on flood events and annual data, respectively. The results show that dilution reduces channel sedimentation in the lower reaches by 34?1% and that this is related to a reduced frequency of hyperconcentrated flows in the lower reaches. The Longyangxia Reservoir for hydro‐electric generation has stored huge quantities of clear runoff from the upper Yellow River during high‐flow season since 1985, greatly reducing the dilution of the hyperconcentrated floods and therefore enhancing sedimentation in the lower reaches. For the purpose of reducing sedimentation, changing the operational mode of the Longyangxia Reservoir to restore the dilution effect is suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Deposition and erosion play a key role in the determination of the sediment budget of a river basin, as well as for floodplain sedimentation. Floodplain sedimentation, in turn, is a relevant factor for the design of flood protection measures, productivity of agro‐ecosystems, and for ecological rehabilitation plans. In the Mekong Delta, erosion and deposition are important factors for geomorphological processes like the compensation of deltaic subsidence as well as for agricultural productivity. Floodplain deposition is also counteracting the increasing climate change induced hazard by sea level rise in the delta. Despite this importance, a sediment database of the Mekong Delta is lacking, and the knowledge about erosion and deposition processes is limited. In the Vietnamese part of the Delta, the annually flooded natural floodplains have been replaced by a dense system of channels, dikes, paddy fields, and aquaculture ponds, resulting in floodplain compartments protected by ring dikes. The agricultural productivity depends on the sediment and associated nutrient input to the floodplains by the annual floods. However, no quantitative information regarding their sediment trapping efficiency has been reported yet. The present study investigates deposition and erosion based on intensive field measurements in three consecutive years (2008, 2009, and 2010). Optical backscatter sensors are used in combination with sediment traps for interpreting deposition and erosion processes in different locations. In our study area, the mean calculated deposition rate is 6.86 kg/m2 (≈ 6 mm/year). The key parameters for calculating erosion and deposition are estimated, i.e. the critical bed shear stress for deposition and erosion and the surface constant erosion rate. The bulk of the floodplain sediment deposition is found to occur during the initial stage of floodplain inundation. This finding has direct implications on the operation of sluice gates in order to optimize sediment input and distribution in the floodplains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Red Creek, in the Red Desert area of the Great Divide Basin, Wyoming, is an arid-region anastomosing stream. The narrow, deep, and sinuous main channel is flanked by anastomosing flood channels, or anabranches. Most anabranches are initiated at meander bends. The primary mechanism of anabranch initiation is avulsion during overbank floods. Anabranch enlargement occurs by headward erosion. Anabranches act as distributary channels during floods, when water and sediment from overbank flows are transported to and deposited on the floodplain via the anabranches. During periods of low discharges, the anabranches act as tributaries to the main channel, transporting runoff from the floodplain and surrounding hillslopes to the main channel of Red Creek. Aggradation is occurring in the main channel and on the floodplain throughout the study reach. Infilling of the main channel occurs primarily by lateral accretion, while the floodplain accretes vertically through deposition of overbank sediment from the main channel and anabranches. Infilling of the main channel may cause avulsion of the main channel into an anabranch. The abandoned main channel segment may then fill completely or act as an anabranch. Because lateral migration of channels is inhibited by the high cohesion of the silt and clay channel sediment, periodic avulsion is the primary form of lateral mobility in the system.  相似文献   

12.
《国际泥沙研究》2020,35(1):97-104
The flood season is the main period of flow,sediment transport,and sedimentation in the lower Yellow River(LYR).Within the flood season,most of the flow,sediment transport,and sedimentation occurs during flood events.Because of the importance of floods in forming riverbeds in the LYR,the regularity of sediment transport and sedimentation during floods in the LYR was studied.Measured daily discharge and sediment transport rate data for the LYR from 1960 to 2006 were used.A total of 299 floods were selected;these floods had a complete evolution of the flood process from the Xiaolangdi to the Lijin hydrological stations.For five hydrological stations(Xiaolangdi,Huayuankou,Gaocun,Aishan,and Lijin),a correlation was first established for floods of different magnitudes between the average sediment transport rate at a given station and the average sediment concentration at the closest upstream station.The results showed that the sediment transport rate at the downstream station was strongly correlated with the inflow(upstream station) sediment concentration during a flood event.A relation then was established between sedimentation in the LYR and the average sediment concentration at the Xiaolangdi station during a flood event.From this relation,the critical sediment concentrations were obtained for absolute erosion,sedimentation equilibrium,and absolute deposition during floods of different magnitudes in the LYR.The results of the current study contri b ute to a better understanding of the mechanisms of sediment transport and the regularity of sedimentation in the LYR during floods,and provide technical support to guide the joint operation of reservoirs and the regulation of the LYR.  相似文献   

13.
LINTRODUCTIONTheYellowforeriswellknownasaheavilysilt-caacingriverintheworld.Haaer-concentratedfloodsoftenoccurinitsmasterstemandaswellasthetriblltaries.ThecharacteristicsofdeformationandsedimellttranSportdifferfromreachtOreach.Duetohighsedimelltconcelltration,StrongfluvialactionandthenatUreofunSteadysedimenttranSPOrt,problemsandabnormalphenomenonareoflencreated.ThelaterbringinimpacttOnoodcontrolOfthelowerreach.Thus,itishelpfultoenhancetheunderstandingofthemotionlawsOfhaer-concentrat…  相似文献   

14.
Field observations on hydraulics and sediment dynamics during extreme floods in two mountain torrents show the influence of man-made constructions such as bridges and check dams, in addition to the sediment supplied naturally by the basin and the channel network, on the formation of hyperconcentrated flows. In the Pyrenean Arás basin, hyperconcentrated flow occurred after collapse of a bridge, which in turn mobilized large volumes of sediment from the stream channel and, subsequently, destroyed a series of check dams. Boulders up to several metres in size were transported in a mixture of sand and fine material. A minimum of 100000 tonnes of sediment were deposited on the alluvial fan during the event. Prior to bridge destruction, mean bedload transport rates had reached 0.4t m−1 s−1 upstream. In the alpine Lainbach basin, the flood was characterized by transportation of large amounts of slope material, including debris flows. Along its main tributary an intensive hyperconcentrated flow occurred during the rising stage, whereas in the main valley smaller flows occurred after failure of check dams. The depth of coarse material deposited reached 80 cm. The effectiveness of the Aràs and Lainbach floods was attained due to exceptional rates of energy expediture. Flood power ranged from 20000 W m−2 to 40000 W m−2 on average. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents the result of measurements of floodplain sedimentation using sediment traps. The study was carried out on two embanked floodplains along the Rivers Rhine and Meuse in The Netherlands during a 3 day flood in January 1993. Raster maps of sediment accumulation were made by interpolating the measurements from the traps using block kriging. The sediment maps show clear patterns in sediment accumulation, together with the estimated interpolation errors. Average sediment accumulation ranges between 0·57 and 1·0 kg m?2. High sediment accumulation is found on the levees (4 kg m?2 or more) and on low lying areas (1·6 kg m?2); sediment accumulation decreases with distance from the main channel. The sedimentation patterns are related to floodplain topography and sediment transporting mechanisms. Sediment transport by turbulent diffusion as well as by convection can be recognized. Also, flood duration and the process of sediment settling out in ponding water in closed depressions are important. The applied method allows comparison of the results with raster-based sedimentation models.  相似文献   

17.
The Ma?a Panew is a meandering river that flows 20 km through a closed forest. During times of high discharge the riverbed and floodplain are transformed under the influence of riparian trees. The changes provide the opportunity to measure the intensity of erosion and sediment accumulation based on tree ages, the dating of coarse woody debris (CWD) in the riverbed, and the dating of eccentric growth of tilting trees and exposed roots. The bed and floodplain in reaches of the Ma?a Panew River with low banks were greatly altered as a result of long periods of flooding between 1960 and 1975. Banks were undercut during these floods and black alders tilted. Those parts of alder crowns or stems which tilt and sink generate small sand shadows. When erosion is intensive alder clumps are undercut from concave banks and become mid‐channel islands, while on the other side of the channel meandering bar levels are created. The reaches with higher banks were altered by large floods, especially in 1985 and 1997. The concave banks are undercut and sediment with CWD is deposited within the riverbed, forming sand shadows behind the CWD. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A simple one‐dimensional model is developed to quantitatively predict the change in elevation, over a period of decades, for vertically accreting floodplains. This unsteady model approximates the monotonic growth of a floodplain as an incremental but constant increase of net sediment deposition per flood for those floods of a partial duration series that exceed a threshold discharge corresponding to the elevation of the floodplain. Sediment deposition from each flood increases the elevation of the floodplain and consequently the magnitude of the threshold discharge resulting in a decrease in the number of floods and growth rate of the floodplain. Floodplain growth curves predicted by this model are compared to empirical growth curves based on dendrochronology and to direct field measurements at five floodplain sites. The model was used to predict the value of net sediment deposition per flood which best fits (in a least squares sense) the empirical and field measurements; these values fall within the range of independent estimates of the net sediment deposition per flood based on empirical equations. These empirical equations permit the application of the model to estimate of floodplain growth for other floodplains throughout the world which do not have detailed data of sediment deposition during individual floods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This study focused on a spatial and temporal analysis of the active channel and associated floodplain lakes using aerial photographs spanning five decades (1942, 1962, 1985, 1999) over a 140 km long reach of the Sacramento. Planimetric changes were analysed longitudinally and temporally to highlight the spatial structures and their evolution through time. The results underline complex changes and space–time pattern in bank erosion, channel length and active channel width. The bank erosion and also channel lengthening were higher between 1962 and 1985 than in the two periods studied before and after. Active channel width significantly decreased from 1942 to 1999; partly progressively from upstream to downstream with local widening whatever the studied periods. Similarly the floodplain lakes observed before 1942–1962 were significantly different in size and geometry from those which appeared during the most recent period. The creation of lakes is less frequent after the 1940s, with a secondary peak of occurrence during the 1962–1985 period. The interpretation of these changes is complex because of various human pressures acting over different time scales (bank protection, flow diversion, sediment starvation, land‐use changes) and various natural influences (flood sequences through out the period, geological setting). The findings are discussed by comparison with previous work, and highlight the important effect of dam impact on peak flow and sediment starvation modifying longitudinally hydraulic conditions within the channel, but also the increase in riprap protection which induced change in bank erosion, channel planimetry and floodplain lake characters (geometry, frequency of renewal). Variation in flood intensities is also observed as having positive effects on the bank erosion pattern. Secondarily, land‐use changes also controlled bank erosion intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号