首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A start‐up study for biohydrogen production from palm oil mill effluent (POME) is carried out in a pilot‐scale up‐flow anaerobic sludge blanket fixed‐film reactor (UASFF). A substrate with a chemical oxygen demand (COD) of 30 g L?1 is used, starting with molasses solution for 30 days and followed by a 10% v/v increment of POME/molasses ratio. At 100% POME, a hydrogen content of 80%, hydrogen production rate of 36 L H2 per day, and maximum COD removal of 48.7% are achieved. Bio‐kinetic coefficients of Monod, first‐order, Grau second‐order, and Stover‐Kincannon kinetic models are calculated to describe the performance of the system. The steady‐state data with 100% POME shows that Monod and Stover‐Kincannon models with bio‐kinetic coefficients of half‐velocity constant (Ks) of 6000 mg COD L?1, microbial decay rate (Kd) of 0.0015 per day, growth yield constant (Y) of 0.786 mg volatile suspended solids (VSS)/mg COD, specific biomass growth rate (μmax) of 0.568 per day, and substrate consumption rate of (Umax) 3.98 g/L day could be considered as superior models with correlation coefficients (R2) of 0.918 and 0.989, respectively, compared to first‐order and Grau's second‐order models with coefficients of K1 1.08 per day, R2 0.739, and K2s 1.69 per day, a = 7.0 per day, b = 0.847.  相似文献   

2.
郑鑫  王文静  盛彦清 《湖泊科学》2023,35(6):1917-1926
水体富营养化极易引起湖泊水库如藻类水华等水生态系统环境问题。氮素作为初级生产力的限制性生源要素之一,认识其在水华形成过程中潜在作用至关重要。本研究选取胶东半岛低碳高氮水库水体进行模拟实验,通过添加不同剂量硝态氮,探究高硝态氮输入对库区水体藻类和细菌群落结构的影响。结果表明:(1)当硝态氮作为唯一氮源,随着培养时间延长,硝态氮浓度显著下降,亚硝态氮和氨氮浓度逐渐升高,表明微藻和细菌共同作用可能将硝态氮转化为亚硝态氮和氨氮;(2)当硝态氮浓度为6 mg/L时,藻类叶绿素a浓度达到最高值,随着硝态氮浓度升高,叶绿素a浓度则会降低;(3)添加硝态氮后,蓝藻门成为优势藻类,绿藻门次之;变形菌门相对丰度显著升高。研究结果为低碳高氮类水体暴发蓝绿藻水华及有效防控提供理论依据和技术支撑。  相似文献   

3.
In this study the occurrence of diclofenac and sub‐products in effluent emerging from the University Hospital at the Federal University of Santa Maria was investigated. One metabolite was identified and, in aqueous solution, three degradation products. The quantification was conducted by means of HPLC‐DAD, and the determination of metabolite and degradation products by LC–ESI–MS/MS–QTrap. For the HPLC‐DAD method, a 70:30 mixture of methanol/sodium phosphate was used in isocratic mode. For the LC–ESI–MS/MS–QTrap determinations, a mobile phase, where phase A was an ammonium acetate solution 5 × 10?3 mol L?1, and phase B was methanol (5 × 10?3 mol L?1)/ammonium acetate (9:1, v/v), on gradient mode. The LDs for the HPLC and LC–MS/MS methods, respectively, were 2.5 and 0.02 µg L?1, the LQs, 8.3 and 0.05 µg L?1, and the linear range from 10 up to 2000 µg L?1 and 0.05 up to 10 µg L?1. As expected, the LC–ESI–MS/MS–QTrap method was more sensitive and less laborious. The metabolite 4′‐hydroxy‐diclofenac was identified. Photolysis was used for the degradation studies and three products of diclofenac were identified (m/z of 214, 286 and 303) in aqueous solution. These results notwithstanding, no degradation products of diclofenac were found in the hospital effluent.  相似文献   

4.
In this study, we tested a practical strategy useful for accurate chlorinated volatile organic compound (cVOC) sorption prediction. Corresponding to the feature of the superposition of adsorption due to thermally altered carbonaceous matter (TACM) with organic carbon‐water partitioning, a nonlinear Freundlich sorption isotherm covering a wide range of aqueous concentrations was defined by equilibrium sorption measurement at one or a few low concentration points with extrapolation to the empirical organic carbon‐water partition coefficient (Koc,e) near compound solubility. We applied this approach to obtain perchloroethene equilibrium sorption isotherm parameters for TACM‐containing glacial sand and gravel subsoil samples from a field site in New York. Sorption and associated Koc,c applicable to low (5–500 µg/L) and high (>100,000 µg/L) aqueous concentrations were determined in batch experiments. (The Koc,c is the organic carbon‐normalized sorption partition coefficient corresponding to aqueous concentration Cw.) The Koc,c measurements at low concentration (~5 µg/L) were 6 to 34 times greater than the Koc,e. The importance of this type of data is illustrated through presentation of its substantial impact on the site remedy. In so doing, we provide an approach that is broadly applicable to cVOC field sites with similar circumstances (low carbon content glacial sand and gravel with TACM).  相似文献   

5.
Sulfate‐reduction data from various anaerobic reactor configurations, e. g., upflow anaerobic sludge blanket reactor (UASBR), completely stirred tank reactor (CSTR), and batch reactor (BR) with synthetic wastewaters, having glucose and acetate as the substrates and different levels of sulfate, were evaluated to determine the level of sulfate‐reducing activity by sulfate‐reducing bacteria coupled to organic matter removal. Anaerobic reactors were observed for the degree of competition between sulfate‐reducing sulfidogens and methane producing bacteria during the degradation of glucose and acetate. Low sulfate‐reducing activity was obtained with a maximum of 20% of organic matter degradation with glucose‐fed upflow anaerobic sludge bed reactors (UASBRs), while a minimum of 2% was observed with acetate‐fed batch reactors. The highest sulfate removal performance (72–89%) was obtained from glucose fed‐UASB reactors, with the best results observed with increasing COD/SO4 ratios. UASB reactors produced the highest level of sulfidogenic activity, with the highest sulfate removal and without a performance loss. Hence, this was shown to be the optimum reactor configuration. Dissolved sulfide produced as a result of sulfate reduction reached 325 mg/L and 390 mg/L in CST and UASB reactors, respectively, and these levels were tolerated. The sulfate removal rate was higher at lower COD/SO4 ratios, but the degree of sulfate removal improved with increasing COD/SO4 ratios.  相似文献   

6.
By way of introduction the general fundamentals and kinetic setups of the competitive and non-competitive as well as substrate inhibition of cultures of microorganisms are stated. Investigated on a laboratory scale is the degradation of liquid pig slurry in a 600-1 stirring fermenter with discontinuous addition (pO2≧=30 = saturation) of methanol as external substrate by a yeast mixed culture of Metschnikowia and Pichia membranifaceans to utilize the steam-volatile fatty acids (12 g/l) and of Acetobacter methanolicus to utilize methanol. A stable fermentation with stable residual concentrations of 235 mg/l fatty acids, 142 mg/l mH4-N an 100 … 300 mg/l methanol for aperiod of 2400 h can be achieved.  相似文献   

7.
The numerical and proportional distributions of benthic macroinvertebrates in Tunca (Tundja, Tundzha) River (Edirne/Turkey) were determined from July 2002 to June 2003 at monthly intervals at four different stations. It was found that the benthic macrofauna consisted of 63% Oligochaeta, 24% Chironomidae larvae, and 13% Varia by numbers. According to the Shannon‐Wiener index, Tunca River had a diversity of 1.36; station 2 and September were found to have the highest diversity while station 4 and December to have the poorest. According to Bray‐Curtis similarity index, stations 2 and 3 and April and May were found to be the most similar to each other while stations 1 and 4 and August and January were found to be the most different from each other for the dynamics of the benthic macrofauna. Also some physicochemical parameters of the water (water temperature, electrical conductivity, pH, dissolved oxygen, chloride, total hardness, NO3‐N, NO2‐N, sulfate, phosphate, biochemical and chemical oxygen demands) were analyzed. Pearson correlation index supported the relationships between the dynamics of organisms and physicochemical variables. The relation between the number of macroinvertebrates and pH (r = +0.57, P < 0.05) was direct proportional while the relation between the number of macroinvertebrates and NO3‐N (r = –0.99, P < 0.05) was inverse proportional. Furthermore, the Chironomidae larvae of Bryophaenocladius muscicola and Mesosmittia flexuella were new records for Turkish Thrace region. High pH and supersaturated oxygen levels, hard water quality, second quality levels of NO3‐N, BOD, COD and fourth quality levels of NO2‐N as well as the density of 490 individuals m–2 for 124 taxa and the diversity of 1.36 showed that similar studies should be repeated periodically in Tunca to determine the future of the river.  相似文献   

8.
Topography influences hydrological processes that in turn affect biogeochemical export to surface water on forested landscapes. The differences in long‐term average annual dissolved organic carbon (DOC), organic and inorganic nitrogen [NO3?‐N, dissolved organic nitrogen (DON)], and phosphorus (total dissolved phosphorus, TDP) export from catchments in the Algoma Highlands of Ontario, Canada, with similar climate, geology, forest and soil were established. Topographic indicators were designed to represent topographically regulated hydrological processes that influence nutrient export, including (1) hydrological storage potential (i.e. effects of topographic flats/depressions on water storage) and (2) hydrological flushing potential (i.e. effects of topographic slopes on potential for variable source area to expand and tap into previously untapped areas). Variations in NO3?‐N export among catchments could be explained by indicators representing both hydrological flushing potential (91%, p < 0.001) and hydrological storage potential (65%, p < 0.001), suggesting the importance of hydrological flushing in regulating NO3?‐N export as well as surface saturated areas in intercepting NO3?‐N‐loaded runoff. In contrast, hydrological storage potential explained the majority of variations among catchments in DON (69%, p < 0.001), DOC (94%, p < 0.001) and TDP (82%, p < 0.001) export. The lower explanatory power of DON (about 15% less) compared with that of DOC and TDP suggests another mechanism influencing N export, such as controls related to alternative fates of nitrogen (e.g. as gas). This study shows that simple topographic indicators can be used to track nutrient sources, sinks and their transport and export to surface water from catchments on forest landscapes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A simple and rapid soft‐templating coupled with one‐pot solvent thermal method is developed to synthesize S‐doped magnetic mesoporous carbon (S‐doped MMC). In this method, phenolic resin is used as a carbon precursor and Pluronic copolymer P123 is used as a template and 2,5‐dimercapto‐1,3,4‐thiadiazole is used as sulfur source. Prepared S‐doped MMC processes a high specific surface area, the Fe3O4 particles are well embedded in the mesoporous carbon walls that exhibit a strong magnetic response, and the hydrated iron nitrate loading amount of 0.808 g is the best. Batch adsorption experiments are carried out at different pH, initial concentration, temperature, and contact time on the adsorption of methyl orange (MO) by S‐doped MMC. The kinetic data of the adsorption process are better fitted with pseudo‐second‐order model than the pseudo‐first‐order model. Langmuir model is more suitable for the equilibrium data than Freundlich model. The thermodynamic parameters including ΔG0, ΔH0, and ΔS0 indicate that the adsorption is a feasible, spontaneous, and endothermic process. Finally, it is found that the coexistence of PO43?, NO3?, SO42?, Cl?, and CO32? does not influence the adsorption process. These results illustrate S‐doped MMC can be an efficient adsorbent for the removal of MO from wastewater.  相似文献   

10.
Three main reservoirs were identified that contribute to the shallow subsurface flow regime of a valley drained by a fourth‐order stream in Brittany (western France). (i) An upland flow that supplied a wetland area, mainly during the high‐water period. It has high N‐NO3? and average Cl? concentrations. (ii) A deep confined aquifer characterized by low nitrate and low chloride concentrations that supplied the floodplain via flow upwelling. (iii) An unconfined aquifer under the riparian zone with high Cl? and low N‐NO3? concentrations where biological processes removed groundwater nitrate. This aquifer collected the upland flow and supplied a relict channel that controlled drainage from the whole riparian zone. Patterns of N‐NO3? and Cl? concentrations along riparian transects, together with calculated high nitrate removal, indicate that removal occurred mainly at the hillslope–riparian zone interface (i.e. first few metres of wetland), whereas dilution occurred in lower parts of the transects, especially during low‐water periods and at the beginning of recharge periods. Stream flow was modelled as a mixture of water from the three reservoirs. An estimation of these contributions revealed that the deep aquifer contribution to stream flow averaged 37% throughout the study period, while the contribution of the unconfined reservoir below the riparian zone and hillslope flow was more variable (from ca 6 to 85%) relative to rainfall events and the level of the riparian water table. At the entire riparian zone scale, NO3? removal (probably from denitrification) appeared most effective in winter, despite higher estimated upland NO3? fluxes entering the riparian zone during this period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Glucose‐fed high‐rate UASB reactors were tested at three COD/SO4 ratios and hydraulic retention times to promote sulfate reducing activity and observe the effects on reactor performance. Different COD/SO4 ratios (20, 10, and 5) resulted in changes in organic matter removal, methane production, alkalinity, dissolved sulfide and biomass concentrations and profile. The COD removal dropped from 95 to 80–84 % at the lowest COD/SO4 ratio. Sulfate was removed at 79 to 89 % at the highest ratio and dropped to 72 to 74 % with increasing sulfate loading. Alkalinity was produced at higher levels with increasing sulfate loading. Specific methane production dropped with decreasing hydraulic retention times. Sulfate‐reducing activity used a maximum of 11.7 % of organic matter at the highest sulfate loading level, producing a slight shift to sulfate‐reducing activity in the substrate competition between sulfate‐reducing bacteria and methanogens. Increased sulfate loading at COD/SO4 ratios of 10 and 5 caused deterioration of the concentration profile of the sludge, resulting in biomass washout and decreased volatile fraction of biosolids in the reactors.  相似文献   

13.
To improve quantitative understanding of mixed‐land‐use impacts on nutrient yields, a nested‐scale experimental watershed study design (n = 5) was applied in a 303(d), clean water act impaired urbanizing watershed of the lower Missouri River Basin, USA. From 2010 to 2013, water samples (n = 858 sample days per site) were analysed for total inorganic nitrogen (TIN‐N), nitrite (NO2–N) nitrate (NO3–N), ammonia (NH3–N), and total phosphorus (TP‐P). Annual, seasonal, and monthly flow‐weighted concentrations (FWCs) and nutrient yields were estimated. Mean nutrient concentrations were highest where agricultural land use comprised 58% of the drainage area (NH3 = 0.111 mg/l; NO2 = 0.045 mg/l; NO3 = 0.684 mg/l, TIN = 0.840 mg/l; TP = 0.127 mg/l). Average TP‐P increased by 15% with 20% increased urban land use area. Highly variable annual precipitation was observed during the study with highest nutrient yields during 2010 (record setting wet year) and lowest nutrient yields during 2012 (extreme drought year). Annual TIN‐N and TP‐P yields exceeded 10.3 and 2.04 kg ha?1 yr?1 from the agricultural dominated headwaters. Mean annual NH3–N, NO2–N, NO3–N, TIN‐N, and TP‐P yields were 0.742, 0.400, 4.24, 5.38, and 0.979 kg ha?1 yr?1, respectively near the watershed outlet. Precipitation accounted for the majority of the explained variance in nutrient yields (R2 values from 0.68 to 0.85). Nutrient yields were also dependent on annual precipitation of the preceding year (R2 values from 0.87 to 0.91) thus enforcing the great complexity of variable mixed‐land‐use mediated source‐sink nutrient yield relationships. Study results better inform land managers and best management practices designed to mitigate nutrient pollution issues in mixed‐land‐use freshwater ecosystems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, temporal variations of surface ozone (O3) were investigated at tropical urban site of Hyderabad during the year 2009. O3, oxides of nitrogen (NOx = NO + NO2), black carbon (BC), and meteorological parameters were continuously monitored at the established air monitoring station. Results revealed the production of surface O3 from NO2 through photochemical oxidation. Averaged datasets illustrated the variations in ground‐level concentrations of these air pollutants along different time scales. Maximum mean concentrations of O3 (56.75 ppbv) and NOx (8.9 ppbv) were observed in summer. Diurnal‐seasonal changes in surface O3 and NOx concentrations were explicated with complex atmospheric chemistry, boundary layer dynamics, and local meteorology. In addition, nocturnal chemistry of NOx played a decisive role in the formation of O3 during day time. Mean BC mass concentration in winter (10.92 µg m?3) was high during morning hours. Heterogeneous chemistry of BC on O3 destruction and NOx formation was elucidated. Apart from these local observations, long‐range transport of trace gases and BC aerosols were evidenced from air mass back trajectories. Further, statistical modeling was performed to predict O3 using multi‐linear regression method, which resulted in 91% of the overall variance.  相似文献   

16.
Ambient concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at 51 sampling points by passive sampling technique in Kocaeli, an important industrial city in Turkey. Samples were analyzed by UV‐spectrophotometry for NO2 and O3 and by ion chromatography for SO2, respectively. Concentrations of SO2, NO2, and O3 were determined to investigate their spatial distribution and source characterization. The sampling campaigns revealed an average concentration of 8 µg/m3 (max. 82 µg/m3) for SO2, and 14 µg/m3 (max. 40 µg/m3) for NO2, in summer; while average winter concentrations were 25 µg/m3 (max. 61 µg/m3) for SO2, and 50 µg/m3 (max. 100 µg/m3) for NO2. The maximum ozone concentrations were determined to be 86 µg/m3 in summer and 61 µg/m3 in winter downwind of the source areas of the precursor pollutant emissions. The results showed that NO2 and SO2 concentrations in industrial and urban areas were two to four times higher compared with rural areas in the summer and winter. In the light of the information obtained from the spatial interpolation of the pollutant concentrations, a selection of appropriate locations for continuous monitoring was suggested according to the European Community (EU) directives.  相似文献   

17.
In this work, the treatment of actual agro‐industrial wastewaters (IWW) by a UV/H2O2 process has been investigated. The aqueous wastes were received from industrial olive oil mills and then treated by laboratory scale physicochemical methods, i. e., coagulation using ferrous and aluminum sulfate, decantation, filtration and adsorption on activated carbon. These wastes are brown colored effluents and have a residual chemical oxygen demand (COD) in the range of 1800 to 3500 mgO2 L–1, which cannot be further eliminated with physicochemical processes. The UV/H2O2 treatments were carried out under monochromatic irradiation at 254 nm using a thermostated reactor equipped with a mercury vapor lamp located in an axial position. The effects of initial H2O2 concentration, initial COD, pH and temperature have been studied in order to determine the optimum conditions for maximum color and COD removals. The experimental results reveal the suitability of the UV/H2O2 process for both removal of high levels of COD and effectively decolorizing the solution. In particular, 95% of color removal and 90% of COD removal were obtained under conditions of pH = 5 and 32°C using 2.75 g H2O2 g–1 COD L–1 during 6 h of UV‐irradiation. The treatment is unaffected by pH over the range 2 to 9. In addition, the COD removal is improved by increasing the temperature, whereas the color removal has not been affected by this parameter. The results show that the hydroxyl radicals generated from the catalytic decomposition of H2O2 by UV‐irradiation of the solution could be successfully used to mineralize the organics contained in IWW. The mineralization of the organics seems to occur in three main sequential steps: the first is the rapid decomposition of tannins leading to aromatic compounds, which are confirmed by the decolorization of the IWW; the second step corresponds to the oxidation of aromatics leading to aliphatic intermediates, which occurs by the cleavage of an aromatic ring, and is established by the removal of aromatics, and the final step is the slow oxidation of the aliphatic intermediates, which is measured by the COD removal.  相似文献   

18.
The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis‐DCE compound‐specific isotope analysis of carbon and chlorine collected over a 16‐month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis‐DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ37Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis‐DCE. Carbon isotopic values range between ?28.9 and ?20.7‰ VPDB for TCE, and ?26.5 and ?11.8‰ VPDB for cis‐DCE. In most wells, isotopic values remained steady over the 15‐month study. Isotopic enrichment from TCE to cis‐DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine‐carbon isotopic enrichment ratios (?Cl/?C) were 0.18 for TCE and 0.69 for cis‐DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume.  相似文献   

19.
The P-uptake by Acinetobacter calcoaceticus, Pseudomonas aeruginosa and Escherichia coli is determined in batch culture with peptone/glucose/sodium chloride or peptone/acetate/sodium chloride as substrate at 60 to 120 mg/1 orthophosphate for 20 h with cell densities of 2 · 107/ml (Acinetobacter) or 1.2 · 109. The measurements were carried out by means of an Na2HPO4 (32P) addition of 95 to 420 kBq. During the stationary phase the bacteria achieved the following P-contents in the biomass in fg/g bacterium: Acinetobacter 6 to 13, Pseudomonas 0.2 to 0.6, Escherichia 0.04 to 0.09; during the phase of growth Acinetobacter achieved 40 to 100 fg/bacterium. Acetate as the substrate did not result in any increase of the P-uptake. The maximum accumulation with Acinetobacter was 13 % P in the dry substance.  相似文献   

20.
Based on measured stream nitrogen concentrations at outlets of 12 small sub‐areas (1·3–54·7 km2) in a largely forested catchment during the base flow period, we investigated the influences of discharges and different catchment characteristics on stream nitrogen concentration. Our field surveys were carried out during the 11‐month's period from April 2001 to February 2002 and the correlations between nitrogen concentrations and catchment characteristics were studied. The results showed that the vegetation cover was strongly correlated to total nitrogen (TN) and nitrate + nitrite ? nitrogen (NOx‐N) concentrations. That is, the TN and NOx‐N concentrations had positive correlations with mean normalized difference vegetation cover index (NDVI) of each sub‐area during dormant seasons (mean NDVI < 0 · 70) and had negative correlations during the growing season (mean NDVI ≥ 0 . 70). The significance of catchment characteristics to TN and NOx‐N concentrations was ranked as vegetation cover > soil > topography > land use, and the best models can account for 55–64% of the variance of TN and NOx‐N concentrations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号