首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The turbulent flow inside dense canopies is characterized by wake production and short-circuiting of the energy cascade. How these processes affect passive scalar concentration variability in general and their spectral properties in particular remains a vexing problem. Progress on this problem is frustrated by the shortage of high resolution spatial concentration measurements, and by the lack of simplified analytical models that connect spectral modulations in the turbulent kinetic energy (TKE) cascade to scalar spectra. Here, we report the first planar two-dimensional scalar concentration spectra (ϕ cc ) inside tall canopies derived from flow visualization experiments. These experiments were conducted within the deeper layers of a model canopy composed of densely arrayed cylinders welded to the bottom of a large recirculating water channel. We found that in the spectral region experiencing wake production, the ϕ cc exhibits directional scaling power laws. In the longitudinal direction (x), or the direction experiencing the largest drag force, the ϕ cc (k x ) was steeper than and followed an approximate at wavenumbers larger than the injection scale of wake energy, where k x is the longitudinal wavenumber. In the lateral direction (y), the spectra scaled as up to the injection scale, and then decayed at an approximate power law. This departure from the classical inertial subrange scaling (i.e., k −5/3) was reproduced using a newly proposed analytical solution to a simplified scalar spectral budget equation. Near the velocity viscous dissipation range, the scalar spectra appear to approach an approximate k −3, a tantalizing result consistent with dimensional analysis used in the inertial-diffusive range. Implications to subgrid modelling for large-eddy simulations (LES) inside canopies are briefly discussed.  相似文献   

2.
Water-tunnel measurements of velocity, turbulence and scalar concentration for three model urban canopies with aspect ratios A r of building height-to-width of 0.25, 1 and 3 are presented. The measurements for the canopies with A r = 1 and 3 are new, while the measurements for A r = 0.25 were previously published. A passive scalar was continuously released from a near-ground point source, and the concentration was measured at several distances from the source and at different heights above the ground. Plume spreads, concentration and distance from the source were non-dimensionalized using length, time and velocity scales reflecting the geometry of the buildings. The scaling collapses the data for all aspect ratios and is valid when the vertical extent of the plume is smaller than the canopy height. The observed plume spreads are compared with analytical relations, which predict linear growth in both transverse and vertical directions. The observed mean concentration is compared with a Gaussian dispersion model that predicts a ?2 power-law decay with distance from the source.  相似文献   

3.
A recently developed dynamic surface roughness model (Anderson and Meneveau, J Fluid Mech 679:288–314, 2011) for large-eddy simulation (LES) of atmospheric boundary-layer flow over multi-scale topographies is applied to boundary-layer flow over several types of fluvial-like landscapes. The landscapes are generated numerically with simulation of a modified Kardar–Parisi–Zhang equation (Passalacqua et al., Water Resour Res 42:WOD611, 2006). These surfaces possess the fractal-like channel network and anisotropic features often found in real terrains. The dynamic model is shown to lead to accurate flow predictions when the surface-height distributions exhibit power-law scaling (scale invariance) in the prevalent mean flow direction. In those cases, the LES provide accurate predictions (invariant to resolution) of mean velocity profiles. Conversely, some resolution dependence is found for applications in which the landscape’s streamwise spectra do not exhibit pure power-law scaling near wavenumbers corresponding to the LES grid resolution.  相似文献   

4.
Wind-tunnel experiments were carried out to study turbulence statistics in the wake of a model wind turbine placed in a boundary-layer flow under both neutral and stably stratified conditions. High-resolution velocity and temperature measurements, obtained using a customized triple wire (cross-wire and cold wire) anemometer, were used to characterize the mean velocity, turbulence intensity, turbulent fluxes, and spectra at different locations in the wake. The effect of the wake on the turbulence statistics is found to extend as far as 20 rotor diameters downwind of the turbine. The velocity deficit has a nearly axisymmetric shape, which can be approximated by a Gaussian distribution and a power-law decay with distance. This decay in the near-wake region is found to be faster in the stable case. Turbulence intensity distribution is clearly non-axisymmetric due to the non-uniform distribution of the incoming velocity in the boundary layer. In the neutral case, the maximum turbulence intensity is located above the hub height, around the rotor tip location and at a distance of about 4–5.5 rotor diameters, which are common separations between wind turbines in wind farms. The enhancement of turbulence intensity is associated with strong shear and turbulent kinetic energy production in that region. In the stable case, the stronger shear in the incoming flow leads to a slightly stronger and larger region of enhanced turbulence intensity, which extends between 3 and 6 rotor diameters downwind of the turbine location. Power spectra of the streamwise and vertical velocities show a strong signature of the turbine blade tip vortices at the top tip height up to a distance of about 1–2 rotor diameters. This spectral signature is stronger in the vertical velocity component. At longer downwind distances, tip vortices are not evident and the von Kármán formulation agrees well with the measured velocity spectra.  相似文献   

5.
This study evaluates the spectral scaling of a heavy rainfall event and assesses the performance of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) model in terms of the multiscale variability of rainfall in the temporal spectral domain. The event occurred over southern Malay Peninsula on 18 December 2006 and was simulated at high resolutions. 10, 5 and 1?min aggregate rainfall data from rain gauge stations in Singapore and simulated rainfall sampled at different evaluation points on 0.9, 0.3 and 0.1?km grids were utilized. The simulated and observed rain rates were compared via Fourier and wavelet analyses. A scaling regime was noted in the observed rainfall spectra in the timescales between 60?min and 2?min. The scaling exponent obtained from the observed spectra has a value of about 2, which may be indicative of the physics of turbulence and raindrop coalescence and might suggest the predominance of a characteristic raindrop size. At 0.9?km resolution, the model rainfall spectra showed similar scaling to the observed down to about 10?min, below which a fall-off in variance was noted as compared to observations. Higher spatial resolution of up to 0.1?km was crucial to improve the ability of the model to resolve the shorter timescale variability. We suggest that the evaluation of dynamical models in the spectral domain is a crucial step in the validation of quantitative precipitation forecasts and assessing the minimal grid resolution necessary to capture rainfall variability for certain short timescales may be important for hydrological predictions.  相似文献   

6.
Eddy-covariance (EC) scalar-flux measurements suffer from unavoidable biases introduced by high-frequency losses in the sampled scalar concentration fluctuations. This bias alone leads to an underestimation of scalar fluxes by as much as 20% in some cases, especially when a closed-path gas analyzer is used to sample concentration far from the inlet location. A novel method that directly corrects for these high-frequency losses using only the sampled scalar-concentration time series is proposed and tested. The sampled concentration fluctuation time series is adjusted, point-by-point, in the wavelet half-plane for each EC averaging interval (??30?min). Similarity between scalars (and temperature) is not necessary and a pre-defined theoretical shape of the cospectrum is not required, making this method attractive at meteorologically non-ideal sites. When closed-path gas analyzers are used to measure H2O concentration fluctuations, the method is shown to reproduce the dependence of the attenuation on air relative humidity. Nevertheless, the method is not able to account for excessively large spectral attenuation that occurs close to the spectral peak, as might be the case with long tubes and high relative humidity. Since the method corrects the original scalar concentration time series and not the cospectrum, other flow statistics??such as variances and integral time scales??are also adjusted. The proposed method can be used synergistically with conventional high-frequency cospectral correction methods given the differences in assumptions and approaches among these methods. When the conventional and the proposed methods agree, added confidence to the estimate of the high frequency correction is gained, and vice versa.  相似文献   

7.
The intermittent structure of turbulence within the canopy sublayer (CSL) is sensitive to the presence of foliage and to the atmospheric stability regime. How much of this intermittency originates from amplitude variability or clustering properties remains a vexing research problem for CSL flows. Using a five-level set of measurements collected within a dense hardwood canopy, the clustering properties of CSL turbulence and their dependence on atmospheric stability are explored using the telegraphic approximation (TA). The binary structure of the TA removes any amplitude variability from turbulent excursions but retains their zero-crossing behaviour, and thereby isolating the role of clustering in intermittency. A relationship between the spectral exponents of the actual and the TA series is derived across a wide range of atmospheric stability regimes and for several flow variables. This relationship is shown to be consistent with a relationship derived for long-memory and monofractal processes such as fractional Brownian motion (fBm). Moreover, it is demonstrated that for the longitudinal and vertical velocity components, the vegetation does not appreciably alter fine-scale clustering but atmospheric stability does. Stable atmospheric stability conditions is characterized by more fine scale clustering when compared to other atmospheric stability regimes. For scalars, fine-scale clustering above the canopy is similar to its velocity counterpart but is significantly increased inside the canopy, especially under stable stratification. Using simplified scaling analysis, it is demonstrated that clustering is much more connected to space than to time within the CSL. When comparing intermittency for flow variables and their TA series, it is shown that for velocity, amplitude variations modulate intermittency for all stability regimes. However, amplitude variations play only a minor role in scalar intermittency. Within the crown region of the canopy, a ‘double regime’ emerges in the inter-pulse duration probability distributions not observed in classical turbulence studies away from boundaries. The double regime is characterized by a power-law distribution for shorter inter-pulse periods and a log-normal distribution for large inter-pulse periods. The co-existence of these two regimes is shown to be consistent with near-field/far-field scaling arguments. In the near-field, short inter-pulse periods are controlled by the source strength, while in the far-field long inter-pulse periods are less affected by the precise source strength details and more affected by the transport properties of the background turbulence.  相似文献   

8.
This paper reports power spectra and cospectra of windspeed and several scalars measured at two heights nearthe base of an advective inversion. The inversion hadformed over a paddy field downwind of an extensive dryregion. Winds over the paddy field were variable instrength and direction, as a result of convectivemotions in the atmospheric boundary layer passing overfrom the dry region upwind. Fetch over the rice waslarge enough that advective effects on the transportprocesses were small at the upper level and negligibleat the lower level. Results from the lower level areinterpreted in terms of a horizontally homogeneous,but disturbed, surface layer.Power spectra of longitudinal and lateral velocitywere substantially enhanced at low frequencies. Theresulting vertical motions added only a small amountto the spectrum of vertical velocity but this stronglyaffected scalar power spectra and cospectra. Thesewere all substantially enhanced over a range of lowfrequencies. We also found that differences in lowerboundary conditions cause differences among scalarspectra at low frequencies.Our analysis shows that the spectra and cospectra havethree components, characterized by different scalingregimes. We call these the ILS (inner-layer scaling),OLS (outer-layer scaling) and CS (combined scaling)components. Of these, the CS component had notpreviously been identified. We identify CS componentsof spectra by their independence of height andfrequency. Spectra with these characteristics had beenpredicted by Kader and Yaglom for a layer of theatmosphere where spectral matching between ILS and OLSwas proposed. However, we find that the velocity andscalar scales used by Kader and Yaglom do not fit ourresults and that their concept of a matching layer isincompatible with our application. An alternativebasis for this behaviour and alternative scales areproposed.We compare our decomposition of spectra into ILS, CSand OLS components with an extended form of Townsend'shypothesis, in which wind and scalar fluctuations aredivided into active and inactive components. Wefind the schemes are compatible if we identify all OLSspectral components as inactive, and all CS and ILScomponents as active.By extending the implications of our results toordinary unstable daytime conditions,we predict that classical Monin–Obukhovsimilarity theory should be modified. We find that theheight of the convective boundary layer is animportant parameter when describing transportprocesses near the ground, and that the scalar scalein the ILS part of the spectrum, which includes theinertial subrange, is proportional to observationheight times the local mean scalar gradient, and notthe Monin–Obukhov scalar scale parameter. The formerdepends on two stability parameters: the Monin–Obukhovstability parameter and the ratio of the inner-layerand outer-layer velocity scales. The outer-layer scalecan reflect disturbances by topographically-inducededdying as well as by convective motions.  相似文献   

9.
A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval’s identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy–Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.  相似文献   

10.
Turbulence Structure in the Wake Region of a Meteorological Tower   总被引:2,自引:0,他引:2  
A meteorological tower significantly modifies the air flow, the mean windspeed and wind direction as well as the turbulencestructure of the air. Suchchanges can be noticed in particular in the wake region of the tower.Measurementson the 200 m tower ofForschungszentrum Karlsruhewere carried outusing Solent sonic anemometers in the lee of the towerand cup anemometers on both sides.In the wake region, spectral energydensity is increased in the high-frequency range. Superposition of this disturbance spectrum on the undisturbedspectrum yields a `knee' in the resulting spectrum. In the case of low turbulence intensity with stable stratification,a plateau with a constant energy content is observed in front of the knee.This effect is caused by the new production of turbulence energy from the mean flow as well as by an energy transfer fromlarger to smaller vortices. Power spectra in strongly stable conditionsshow a more rapid decrease of intensity in the region where the inertialsubrange is expected.The relevant scales of wake turbulence are derived from the maximum of the disturbance spectrum.Locations of the high-frequency peak do not depend on atmospheric stability,but are controlled mainly by mean wind speed.Apart from the reduction of the mean wind speed, the spectra and cospectra exhibit a strong anisotropy for such cases.The results demonstrate the significant influence of a tower on turbulence spectra in the wake region.  相似文献   

11.
We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters ( $D$ D ) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately $2D$ 2 D directly south of a wind turbine; the other lidar was moved approximately $3D$ 3 D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43–117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines.  相似文献   

12.
Numerical simulations of scalar transport in neutral flow over forested ridges are performed using both a 1.5-order mixing-length closure scheme and a large-eddy simulation. Such scalar transport (particularly of CO2) has been a significant motivation for dynamical studies of forest canopy–atmosphere interactions. Results from the 1.5-order mixing-length simulations show that hills for which there is significant mean flow into and out of the canopy are more efficient at transporting scalars from the canopy to the boundary layer above. For the case with a source in the canopy this leads to lower mean concentrations of tracer within the canopy, although they can be very large horizontal variations over the hill. These variations are closed linked to flow separation and recirculation in the canopy and can lead to maximum concentrations near the separation point that exceed those over flat ground. Simple scaling arguments building on the analytical model of Finnigan and Belcher (Q J Roy Meteorol Soc 130:1–29, 2004) successfully predict the variations in scalar concentration near the canopy top over a range of hills. Interestingly this analysis suggests that variations in the components of the turbulent transport term, rather than advection, give rise to the leading order variations in scalar concentration. The scaling arguments provide a quantitative measure of the role of advection, and suggest that for smaller/steeper hills and deeper/sparser canopies advection will be more important. This agrees well with results from the numerical simulations. A large-eddy simulation is used to support the results from the mixing-length closure model and to allow more detailed investigation of the turbulent transport of scalars within and above the canopy. Scalar concentration profiles are very similar in both models, despite the fact that there are significant differences in the turbulent transport, highlighted by the strong variations in the turbulent Schmidt number both in the vertical and across the hill in the large-eddy simulation that are not represented in the mixing-length model.  相似文献   

13.
Scalar Concentration Profiles in the Canopy and Roughness Sublayer   总被引:2,自引:1,他引:1  
The mean flow and scalar concentration profiles within and above a tall canopy are well known to violate the standard boundary-layer flux-gradient relationships. We present a theory for the scalar concentration profile that is comprised of a canopy exchange model coupled to a modified surface-layer model. The coupling between the two components and the modifications to the surface-layer profiles are formulated through the mixing-layer analogy for the flow at canopy top. This analogy provides an additional length scale—the vorticity thickness—upon which the profiles depend and a set of criteria that allows a reduction in the empiricism associated with earlier forms in the literature. Predictions of the mean scalar concentration profiles are shown to match observations over a wide range of diabatic stabilities for both potential temperature and water vapour.  相似文献   

14.
An ensemble of random-phase internal gravity waves is considered in the dynamical framework of the Euler–Boussinesq equations. For flows with zero mean potential vorticity, a kinetic equation for the mean spectral energy density of the waves is obtained under hypothesis of Gaussian statistics with zero correlation length. Stationary scaling solutions of this equation are found for almost vertically propagating waves. The resulting spectra are anisotropic in vertical and horizontal wave numbers. For flows with small but non-zero mean potential vorticity, under the same statistical hypothesis applied to the wave part of the flow, it is shown that the vortex part and the wave part decouple. The vortex part obeys a limiting slow dynamics equation exhibiting vertical collapse and layering which may contaminate the wave-part spectra. Relation of these results to the in situ atmospheric measurements and previous work on oceanic gravity waves is discussed.  相似文献   

15.
To investigate how velocity variances and spectra are modified by the simultaneous action of topography and canopy, two flume experiments were carried out on a train of gentle cosine hills differing in surface cover. The first experiment was conducted above a bare surface while the second experiment was conducted within and above a densely arrayed rod canopy. The velocity variances and spectra from these two experiments were compared in the middle, inner, and near-surface layers. In the middle layer, and for the canopy surface, longitudinal and vertical velocity variances () were in phase with the hill-induced spatial mean velocity perturbation (Δu) around the so-called background state (taken here as the longitudinal mean at a given height) as predicted by rapid distortion theory (RDT). However, for the bare surface case, and remained out of phase with Δu by about L/2, where L is the hill half-length. In the canopy layer, wake production was a significant source of turbulent energy for , and its action was to re-align velocity variances with Δu in those layers, a mechanism completely absent for the bare surface case. Such a lower ‘boundary condition’ resulted in longitudinal variations of to be nearly in phase with Δu above the canopy surface. In the inner and middle layers, the spectral distortions by the hill remained significant for the background state of the bare surface case but not for the canopy surface case. In particular, in the inner and middle layers of the bare surface case, the effective exponents derived from the locally measured power spectra diverged from their expected  − 5/3 value for inertial subrange scales. These departures spatially correlated with the hill surface. However, for the canopy surface case, the spectral exponents were near  − 5/3 above the canopy though the minor differences from  − 5/3 were also correlated with the hill surface. Inside the canopy, wake production and energy short-circuiting resulted in significant departures from  − 5/3. These departures from  − 5/3 also appeared correlated with the hill surface through the wake production contribution and its alignment with Δu. Moreover, scales commensurate with Von Karman street vorticies well described wake production scales inside the canopy, confirming the important role of the mean flow in producing wakes. The spectra inside the canopy on the lee side of the hill, where a negative mean flow delineated a recirculation zone, suggested that the wake production scales there were ‘broader’ when compared to their counterpart outside the recirculation zone. Inside the recirculation zone, there was significantly more energy at higher frequencies when compared to regions outside the recirculation zone.  相似文献   

16.
Turbulence spectra and integral statistics measured in unstable conditions over a suburban surface are presented. The stability dependence of the integral statistics is shown to be consistent with surface layer scaling, with adiabatic limits near those over much smoother surfaces. The spectra are computed over a wider range of non-dimensional frequency than previously reported for this type of surface, and show clearly the low-frequency roll-off. The horizontal components show three distinct spectral regions as elucidated by Kaimal (1978). Due to large uncertainties in the spectral amplitudes, very little systematic dependence on the Monin-Obukhov stability parameter could be detected over a wide range of unstable conditions.  相似文献   

17.
The higher-order scalar concentration fluctuation properties are examined in the context of Monin–Obukhov similarity theory for a variety of greenhouse gases that have distinct and separate source/sink locations along an otherwise ideal micrometeorological field site. Air temperature and concentrations of water vapour, carbon dioxide and methane were measured at high frequency (10 Hz) above a flat and extensive peat-land soil in the San Joaquin–Sacramento Delta (California, USA) area, subjected to year-round grazing by beef cattle. Because of the heterogeneous distribution of the sources and sinks of CO2 and especially CH4 emitted by cattle, the scaling behaviour of the higher-order statistical properties diverged from predictions based on a balance between their production and dissipation rate terms, which can obtained for temperature and H2O during stationary conditions. We identify and label these departures as ‘exogenous’ because they depend on heterogeneities and non-stationarities induced by boundary conditions on the flow. Spectral analysis revealed that the exogenous effects show their signatures in regions with frequencies lower than those associated with scalar vertical transport by turbulence, though the two regions may partially overlap in some cases. Cospectra of vertical fluxes appear less influenced by these exogenous effects because of the modulating role of the vertical velocity at low frequencies. Finally, under certain conditions, the presence of such exogenous factors in higher-order scalar fluctuation statistics may be ‘fingerprinted’ by a large storage term in the mean scalar budget.  相似文献   

18.
We analyse cross-wind-integrated statistics of theconcentration field of a conserved scalar for pointand line sources in grid turbulence. In particular,using wind-tunnel measurements we calculate thecross-wind integrated probability density function(pdf) for the scalar concentration. We then use thatquantity in the exact evolution equation for the pdfto calculate the cross-wind integrated mean of therate of dissipation of scalar variance, conditional onthe scalar concentration. Much of the variation ofthese statistics with distance downstream is accountedfor by scaling with concentration, length and timescales based on the development of the mean plume.This scaling thus suggests some simple practicalparameterisations of these statistics in terms ofmean-field quantities. One of the motivations for thiswork is to find a simple parameterisation for thescalar dissipation that can be used for modellingchemical reactions in plumes.We also consider the cross-wind integral of the firstfew moments of the concentration field and show thatthe integration greatly simplifies the budgets forthese moments. Thus the first moment is just thedownstream flux of the scalar, which is constant. Thesecond moment budget provides a check on the meandissipation estimated directly from the pdf evolutionequation.  相似文献   

19.
Plume meandering and averaging time effects were measured directly using a high spatial resolution, high frequency, linescan laser-induced fluorescence (LIF) technique for measuring scalar concentrations in a plume dispersing in a water channel. Post-processing of the collected data removed time dependent background dye levels and corrected for attenuation across the laser beam to produce accurate measurements over long sample times in both a rough surface boundary-layer shear flow and shear free grid-generated turbulent flow. The data were used to verify the applicability of a meandering plume model for predicting the properties of mean and fluctuating concentrations. The centroid position of the crosswind concentration profile was found to have a Gaussian probability density function and the instantaneous plume spread about the centroid fluctuated log-normally. A modified travel-time power law model for averaging time adjustment was developed and compared to the widely used, but much less accurate, 0.2 power-law model.  相似文献   

20.
Using synchronous multi-level high frequency velocity measurements, the turbulence spectra within the trunk space of an alpine hardwood forest were analysed. The spectral short-circuiting of the energy cascade for each velocity component was well reproduced by a simplified spectral model that retained return-to-isotropy and component-wise work done by turbulence against the drag and wake production. However, the use of an anisotropic drag coefficient was necessary to reproduce these measured component-wise spectra. The degree of anisotropy in the vertical drag was shown to vary with the element Reynolds number. The wake production frequency in the measured spectra was shown to be consistent with the vortex shedding frequency at constant Strouhal number given by f vs = 0.21ū/d, where d can be related to the stem diameter at breast height (dbh) and ū is the local mean velocity. The energetic scales, determined from the inflection point instability at the canopy–atmosphere interface, appear to persist into the trunk space when , where C du is the longitudinal drag coefficient, a cr is the crown-layer leaf area density, h c is the canopy height, and β is the dimensionless momentum absorption at the canopy top.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号