首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report introduces improved values for the pole and rotation rate of Pluto, Charon, and Phoebe, the pole of Jupiter, the sizes and shapes of Saturn satellites and Charon, and the poles, rotation rates, and sizes of some minor planets and comets. A high precision realization for the pole and rotation rate of the Moon is provided. The expression for the Sun’s rotation has been changed to be consistent with the planets and to account for light travel time  相似文献   

2.
This report continues the practice where the IAU Working Group on Cartographic Coordinates and Rotational Elements revises recommendations regarding those topics for the planets, satellites, minor planets, and comets approximately every 3 years. The Working Group has now become a “functional working group” of the IAU, and its membership is open to anyone interested in participating. We describe the procedure for submitting questions about the recommendations given here or the application of these recommendations for creating a new or updated coordinate system for a given body. Regarding body orientation, the following bodies have been updated: Mercury, based on MESSENGER results; Mars, along with a refined longitude definition; Phobos; Deimos; (1) Ceres; (52) Europa; (243) Ida; (2867) ?teins; Neptune; (134340) Pluto and its satellite Charon; comets 9P/Tempel 1, 19P/Borrelly, 67P/Churyumov–Gerasimenko, and 103P/Hartley 2, noting that such information is valid only between specific epochs. The special challenges related to mapping 67P/Churyumov–Gerasimenko are also discussed. Approximate expressions for the Earth have been removed in order to avoid confusion, and the low precision series expression for the Moon’s orientation has been removed. The previously online only recommended orientation model for (4) Vesta is repeated with an explanation of how it was updated. Regarding body shape, text has been included to explain the expected uses of such information, and the relevance of the cited uncertainty information. The size of the Sun has been updated, and notation added that the size and the ellipsoidal axes for the Earth and Jupiter have been recommended by an IAU Resolution. The distinction of a reference radius for a body (here, the Moon and Titan) is made between cartographic uses, and for orthoprojection and geophysical uses. The recommended radius for Mercury has been updated based on MESSENGER results. The recommended radius for Titan is returned to its previous value. Size information has been updated for 13 other Saturnian satellites and added for Aegaeon. The sizes of Pluto and Charon have been updated. Size information has been updated for (1) Ceres and given for (16) Psyche and (52) Europa. The size of (25143) Itokawa has been corrected. In addition, the discussion of terminology for the poles (hemispheres) of small bodies has been modified and a discussion on cardinal directions added. Although they continue to be used for planets and their satellites, it is assumed that the planetographic and planetocentric coordinate system definitions do not apply to small bodies. However, planetocentric and planetodetic latitudes and longitudes may be used on such bodies, following the right-hand rule. We repeat our previous recommendations that planning and efforts be made to make controlled cartographic products; newly recommend that common formulations should be used for orientation and size; continue to recommend that a community consensus be developed for the orientation models of Jupiter and Saturn; newly recommend that historical summaries of the coordinate systems for given bodies should be developed, and point out that for planets and satellites planetographic systems have generally been historically preferred over planetocentric systems, and that in cases when planetographic coordinates have been widely used in the past, there is no obvious advantage to switching to the use of planetocentric coordinates. The Working Group also requests community input on the question submitting process, posting of updates to the Working Group website, and on whether recommendations should be made regarding exoplanet coordinate systems.  相似文献   

3.
Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. This report introduces a system of cartographic coordinates for asteroids and comets. A topographic reference surface for Mars is recommended. Tables for the rotational elements of the planets and satellites and size and shape of the planets and satellites are not included, since there were no changes to the values. They are available in the previous report (Celest. Mech. Dyn. Astron., 82, 83–110, 2002), a version of which is also available on a web site.  相似文献   

4.
Every three years the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. Also presented are revised tables giving their sizes and shapes. Changes since the previous report are summarized in the Appendix.Merton Davies, The original chairman of this Working Group, died on April 17, 2001.  相似文献   

5.
Every three years the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets and satellites. Also presented are revised tables giving their sizes and shapes.  相似文献   

6.
Every three years the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Stallites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. Also presented are revised tables giving their sizes and shapes.  相似文献   

7.
This paper is the entire report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites, including three annexes. Tables give the recemmended values for the directions of the north poles of rotation and the prime meridians of the planets and satellites. Reference surfaces for mapping these bodies are described. The annexes discuss the guiding principles, given in the body of the report, present explanatory notes, and provide a bibliography of the rotational elements and reference surfaces of the planets and satellites, definitions, and algebraic expressions of relevant parameters.  相似文献   

8.
The resonance theory is discussed with respect to the Solar System with a view to show that every triad of successive planets in the Solar System follows Laplace's resonance relation. With rings now known to exist around three of the four major planets, scientists have begun to speculate about the possible existence of ring structure and one or two small planets going around the Sun itself. It is also believed that the ring systems may exist around the planets Neptune and Mars. In this paper an attempt is made to provide a basis to these beliefs using Laplace's resonance relation. The triads of successive innermost objects (rings and/or satellites) in the satellite — systems of Jupiter, Saturn and Uranus are also shown to follow Laplace's resonance relation.  相似文献   

9.
This paper contains the report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites as presented at the XVIIIGeneral Assembly held at Patras, Greece, 1982. Tables give the recommended values for the direction of the north poles of rotation and the prime meridians of the planets and satellites referred to both the B1950 and J2000 standard coordinate systems. Reference surfaces for mapping these bodies are described. An appendix discusses the principal changes to the tables since 1979.  相似文献   

10.
John Caldwell 《Icarus》1977,32(2):190-209
Ultraviolet photometric and spectrophotometric observations of Mars and Saturn obtained by two Earth-orbiting satellites are combined in this report. High-resolution data from the S59 experiment aboard TD1A reveal no definite absorption features in the spectra of either planet. The absence of a prominent absorption in the Mars data near 2150 Å can be reconciled with the preliminary Viking measurement of NO only if that gas is preferentially concentrated at high Martian altitudes. Broadband photometry from OAO-2 shows that atmospheric dust on Mars during the great dust storm of 1971–1972 reduced the ultraviolet geometric albedo by a factor of ?3 at the height of the storm. This atmospheric energy deposition is probably an important mechanism in the storm dynamics. Diurnal variation in the ultraviolet brightness of Mars appears to be marginally detectable during the dust storm. A real brightness variation during a clear season is observed. The combined Saturn data from the two satellites strongly suggest that NH3 does not influence the ultraviolet spectrum of Saturn, but that some other absorber does. A candidate for such an absorber, H2S, is investigated. OAO-2 broadband photometry of Jupiter and of Saturn demonstrate that these planets have very similar albedos from 2100 to 2500 Å. This implies a common ultraviolet absorber on both planets, other than NH3.  相似文献   

11.
《Planetary and Space Science》2007,55(9):1135-1189
During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies.At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-rays have been detected from Saturn's disk, but no convincing evidence of an X-ray aurora has been observed. The first soft (0.1–2 keV) X-ray observation of Earth's aurora by Chandra shows that it is highly variable. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, those from the disk of Mars, Venus, and Moon, and from the rings of Saturn, are mainly produced by scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, the heliosphere, the geocorona, and the Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. X-rays from the Galilean satellites and the IPT are mostly driven by impact of Jovian magnetospheric particles.This paper reviews studies of the soft X-ray emission from the solar system bodies, excluding the Sun. Processes of production of solar system X-rays are discussed and an overview is provided of the main source mechanisms of X-ray production at each object. A brief account on recent development in the area of laboratory studies of X-ray production is also provided.  相似文献   

12.
Isotopic and chemical compositions of meteorites, coupled with dynamical simulations, suggest that the main belt of asteroids between Mars and Jupiter contains objects formed in situ as well as a population of interlopers. These interlopers are predicted to include the building blocks of the terrestrial planets as well as objects that formed beyond Neptune ( [Bottke et al., 2006] , [Levison et al., 2009] and [Walsh et al., 2011] ). Here we report that the main belt asteroid (21) Lutetia – encountered by the Rosetta spacecraft in July 2010 – has spectral (from 0.3 to 25 μm) and physical (albedo, density) properties quantitatively similar to the class of meteorites known as enstatite chondrites. The chemical and isotopic compositions of these chondrites indicate that they were an important component of the formation of Earth and other terrestrial planets. This meteoritic association implies that Lutetia is a member of a small population of planetesimals that formed in the terrestrial planet region and that has been scattered in the main belt by emerging protoplanets (Bottke et al. 2006) and/or by the migration of Jupiter (Walsh et al. 2011) early in its history. Lutetia, along with a few other main-belt asteroids, may contains part of the long-sought precursor material (or closely related materials) from which the terrestrial planets accreted.  相似文献   

13.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

14.
The distribution of ejecta from impact craters significantly affects the surface characters of satellites and asteroids. In order to understand better the distinctive features seen on Phobos, Deimos, and Amalthea, we study the dynamics of nearby debris but include several factors — planetary tides plus satellite rotation and nonspherical shape-that complicate the problem. We have taken several different approaches to investigate the behavior of ejecta from satellites near planets. For example, we have calculated numerically the usual pseudoenergy (Jacobi) integral. This is done in the framework of a restricted three-body problem where we model the satellites as triaxial ellipsoids rather than point masses as in past work. Iso-contours of this integral show that Deimos and Amalthea are entirely enclosed by their Roche lobes, and the surfaces of their model ellipsoids lie nearly along equipotentials. Presumably this was once also the case for Phobos, before tidal evolution brought it so close to Mars. Presently the surface of Phobos overflows its Roche lobe, except for the regions within a few kilometers of the sub- and anti-Mars points. Thus most surface material on Phobos is not energetically bound: nevertheless it is retained by the satellite because local gravity has an inward component everywhere. Similar situations probably prevail for the newly discovered satellite of Jupiter (J14) and for the several objects found just outside Saturn's rings. We have also examined the fate of crater ejecta from the satellites of Mars by numerical integration of trajectories for particles leaving their surfaces in the equatorial plane. The ejecta behavior depends dramatically on the longitude of the primary impact, as well as on the speed and direction of ejection. Material thrown farther than a few degrees of longitude remains in flight for an appreciable time. Over intervals of an hour or more, the satellites travel through substantial arcs of their orbits, so that the Coriolis effect then becomes important. For this reason the limit of debris deposition is elongated toward the west while debris thrown to the east escapes at lower ejection velocities. We display some typical trajectories, which include many interesting special effects, such as loops, cusps, “folded” ejecta blankets, and even a temporary satellite of Deimos. Besides being important for understanding the formation of surface features on satellites, our work is perhaps pertinent to regolith development on small satellites and asteroids, and also to the budgets of dust belts around planets.  相似文献   

15.
Modern models of the formation of the regular satellites of giant planets, constructed with consideration for their structure and composition suggest that this process lasted for a considerable period of time (0.1–1 Myr) and developed in gas-dust circumplanetary disks at the final stage of giant planet formation. The parameters of protosatellite disks (e.g., the radial distribution of surface density and temperature) serve as important initial conditions for such models. Therefore, the development of protosatellite disk models that take into account currently known cosmochemical and physical restrictions remains a pressing problem. It is this problem that is solved in the paper. New models of the accretion disks of Jupiter and Saturn were constructed with consideration for the disk heating by viscous dissipation of turbulent motions, by accretion of material from the surrounding region of the solar nebula, and by radiation from the central planets. The influence of a set of input model parameters (the total rate of mass infall onto the disk, the turbulent viscosity and opacity of disk material, and the centrifugal radius of the disk) on thermal conditions in the accretion disks was studied. The dependence of opacity on temperature and the abundance and size of solid particles present in the disk was taken into account. Those constructed models that satisfy the existing constraints limit the probable values of input parameters (primarily rates of mass infall onto the disks of Jupiter and Saturn at the stage of regular satellite formation and, to a lesser extent, the disk opacities). Constraints on the location of the regions of formation of the major satellites of Jupiter and Saturn are suggested based on the constructed models and simple analytical estimates concerning the formation of satellites in the accretion disks. It is shown that Callisto and Titan could hardly be formed at significantly greater distances from their planets.  相似文献   

16.
It is shown by linear stability analysis that a preplanetary (presatellite) disk of dust and gas with Keplerian velocity field can become unstable due to the collective self-gravity of the disk. The radial distribution of rings, which may result from this instability, is derived. These rings later on can be the formation sites for planets around the Sun and for satellites around the planets. The derived orbits are shown to be in good agreement with that of the planets and the satellites (of Jupiter, Saturn, and Uranus). Predictions and conclusions seem to be possible for the existence of three yet unknown Uranian satellites, the origin of the early Moon and the possible radial extension of the planetary system.  相似文献   

17.
A new method of initial orbit determination   总被引:2,自引:0,他引:2  
Up to now we have been dealing with the construction of entirely analytical planetary theories such as VSOP82 (Bretagnon, 1982) and TOP82 (Simon, 1983). These theories take into account the whole of the Newtonian perturbations of nine point masses: the Sun, the Earth-Moon barycentre, the planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus and Neptune. They also take into account perturbations due to some minor planets, to the action of the Moon and the relativistic effects. The perturbations of these last three types are in a very simple way under analytical form but they considerably increase the computations when introduced in the numerical integration programs.In the present paper we thus study a solution in which the Newtonian perturbations for the ten point masses are treated through numerical integration, the other perturbations being analytically added.  相似文献   

18.
Infrared spectral observations of Mars, Jupiter, and Saturn were made from 100 to 470 cm?1 using NASA's G. P. Kuiper Airborne Observatory. Taking Mars as a calibration source, we determined brightness temperatures of Jupiter and Saturn with approximately 5 cm?1 resolution. The data are used to determine the internal luminosities of the giant planets, for which more than 75% of the thermally emitted power is estimated to be in the measured bandpass: for Jupiter LJ = (8.0 ± 2.0) × 10?10L and for Saturn LS = (3.6 ± 0.9) × 10?10. The ratio R of thermally emitted power to solar power absorbed was estimated to be RJ = 1.6 ± 0.2, and RS = 2.7 ± 0.8 from the observations when both planets were near perihelion. The Jupiter spectrum clearly shows the presence of the rotational ammonia transitions which strongly influence the opacity at frequencies ?250 cm?1. Comparison of the data with spectra predicted from current models of Jupiter and Saturn permits inferences regarding the structure of the planetary atmospheres below the temperature inversion. In particular, an opacity source in addition to gaseous hydrogen and ammonia, such as ammonia ice crystals as suggested by Orton, may be necessary to explain the observed Jupiter spectrum in the vicinity of 250 cm?1.  相似文献   

19.
For a given planet there is a critical distance from the Sun when the planet is first or last seen. This is called Jian-Fu-Du (JFD) by ancient Chinese astronomers. TABLE 1 lists the values of JFD for the five planets as given in 33 Chinese calendars between −103 and +1368. The data show that 1) in order of decreasing brightness, we have Venus, Jupiter, Saturn and Mars, while the brightness of Mercury is the same as the last two; 2) the JFD of Jupiter is decreasing in time; and 3) the JFDs of the other four planets are increasing in time. Perhaps changes in the transparency of the Earth's atmosphere and in the brightness of the Sun cause a general increase in JFD. Then the decreasing JFD of Jupiter means that Jupiter is getting brighter in time. A rough estimate for the rate of brightening is 0.003 mag per thousand years.  相似文献   

20.
We present and discuss the results of the astrometry project during which we observed the satellites of Mars, Jupiter, Saturn, Uranus, and Neptune at the Abastumani Astrophysical Observatory (Georgia) between 1983 and 1994. Observations at the Abastumani Observatory were performed with the double Zeiss astrograph (DZA: D/F = 400/3024 mm) and AZT-11 telescope (F = 16 m). We processed a large array of observations and determined exact coordinates of the planets and their satellites in a system of reference stars of modern catalogues as well as relative coordinates of the satellites. The results were compared with modern ephemerides using the MULTI-SAT software. The comparison enabled us to estimate the accuracy of observations (their random and systematic uncertainties) and the accuracy of modern theories of the motion of planets and their satellites. Random uncertainties of observations are estimated to be 0.10??C0.40?? for various objects and observational conditions. Observational results obtained for Uranus, Neptune and the satellites Titania and Oberon were shown to deviate appreciably and systematically from theories of their motion. The results of observations are presented in the Pulkovo database for Solar System bodies that is available at the website http://www.puldb.ru.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号