首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The currently available empirical scaling laws for estimation of spectral amplitudes are limited to periods longer than 0–04 s. However, for design of equipment and stiff structures on multiple and distant supports, exposed to strong shaking near faults where peak accelerations can exceed 1g, specification of design ground motions at higher frequencies is required. This paper presents a method for extrapolation of pseudo-relative velocity spectral amplitudes of strong earthquake shaking to short periods (0–01 < T < 0–04 sec). The extrapolated spectra can be used as a physical basis for defining design spectral amplitudes in this higher-frequency range. The analysis in this paper implies that for typical strong motion accelerations, particularly on sedimentary sites in California, the peak ground accelerations are projected to be unaffected by frequencies higher than those recorded. Consequently, in California, the high-frequency pseudo-acceleration spectra can be approximated from the recorded absolute peak accelerations.  相似文献   

2.
本文搜集与整理了我国几十次大、中强地震,震前、震时的地倾斜异常图象,按其形态大致可分为五类:Ⅰ.震前倾斜记录曲线渐变——回复——发震(多见于远震);Ⅱ.震前倾斜记录曲线突变(阶跃)——发震(多见于近震);Ⅲ.震前倾斜记录曲线扰动或单向脉冲——正常——发震;Ⅳ.震前倾斜潮汐记录曲线畸变——发震;Ⅴ.震前倾斜记录曲线脉动(曲线加粗)——发震,其特征为:1.异常形态呈多样性;2.异常出现在震前几分钟到几十小时;3.异常幅值一般在几毫秒至十分之几角秒(10-8——10-6rad),个别达几角秒(10-5rad);4.异常倾斜方向多半与震中方位有关;5.异常有由远及近、从外到内(震中)的迁移现象。文章作者还结合模拟实验和地震模式,讨论了地震前倾斜异常的有关问题。   相似文献   

3.
The M w = 8.0 Wenchuan earthquake of May 12, 2008, caused destruction over a wide area. The earthquake cost more than 69,000 lives and the damage is reported to have left more than 5 million people homeless. It is estimated that 5.36 million buildings were destroyed and 21 million buildings were damaged in Sichuan and the nearby provinces. Economic losses due to the event are estimated to be 124 billion USD. From a field reconnaissance trip conducted in October 2008, it is evident that the combination of several factors, including mountainous landscape, strong ground shaking, extensive landslides and rock-falls, has exacerbated the human and economic consequences of this earthquake. Extensive damage occurred over a wide area due to the shear size of the earthquake rupture combined with poor quality building construction. In order to investigate the ground shaking during the earthquake, we have conducted a strong ground motion simulation study, applying a hybrid broadband frequency technique. The preliminary results show large spatial variation in the ground shaking, with the strongest ground motions along the fault plane. The simulation results have been calibrated against the recorded ground motion from several near-field stations in the area, and acceleration values of the order of 1 g are obtained, similar to what was recorded during the event. Comparison with the damage distribution observed in the field confirms that the effect of fault rupture complexity on the resulting ground motion distribution also controls to a large extent the damage distribution. The applied simulation technique provides a promising platform for predictive studies.  相似文献   

4.
The Bou Medfaa earthquake of 7 November 1959 occurred at 2 h 32 min 7 s (GMT); it is one of the most destructive seismic events that central Algeria experienced this century. The main shock, which lasted 8 s in Bou Medfaa, caused only two injuries but made at least 500 homeless; it destroyed or heavily damaged more than 80% of the houses, farms and public buildings in Bou Medfaa and its immediate surroundings. Poor-quality constructions were the main cause of the damage. The total cost of damage was estimated at 300 million French francs. The earthquake was preceded by two slight foreshocks and followed by a series of lower intensity aftershocks. It was associated with slight surface ground fissures in Bou Medfaa. Compilation and detailed study of the contemporary source documents relative to this earthquake have led to the reconstruction of its macroseismic field and thus to the re-assessment of the strength of the ground shaking. Intensities were re-evaluated anew in many sites. Maximum intensity has been re-estimated at I0 = VIII (MSK), assigned to Bou Medfaa, Hammam Righa and their close vicinities, an area about 8 km radius. The shock was felt as far as Dellys 150 km away with intensity III (MSK). From the intensity data, the macroseismic epicentre was located slightly north of Bou Medfaa at 36·41°N, 2·48°E, and an isoseismal map of the main shock has been constructed. The surface-wave magnitude has been calculated, without station corrections, at 4·90 (±0·40). The instrumental epicentre has been relocated, using the present location procedure of the ISC, at 36·38°N, 2·55°E. The analysis of destructive earthquakes provides a fundamental means for the reduction of future seismic catastrophes by suggesting new ways of improving local construction procedures, building materials, strengthening and properly repairing existing structures and implantation of new urban and rural settlements.  相似文献   

5.
The Bam Earthquake of 26 December 2003   总被引:3,自引:0,他引:3  
The devastating earthquake of 26 December 2003 claimed more than 26,000 lives in the city of Bam and surrounding towns and villages in Southeast Iran, and left the majority of the Bam population homeless. The reason for this tragedy was an unfortunate combination of geological, social and human circumstances. The causative fault practically traversed the city of Bam and the earthquake occurred at a shallow depth. The residential buildings were completely inappropriate for a seismic region, being extremely vulnerable to earthquake shaking, and the earthquake occurred early in the morning when most people were still sleeping. The damage pattern was nearly symmetric about a line 3 km to the west of the surface expression of the Bam fault, and the damage attenuated rapidly with distance from this line. The industrial facilities and the lifelines performed relatively well and experienced slight to moderate damage, but this might have been due to their distance from the earthquake epicentre. However, many of the qanat (traditional subterranean irrigation channels) chains that served the twin cities of Bam and Baravat collapsed. Emergency facilities (hospitals, police and fire stations), schools and the university were destroyed and/or heavily damaged during the earthquake. The geotechnical effects of the earthquake were not significant. There was little evidence that site response effects played a major role in the damage pattern in the city. There were no reports of liquefaction and only minor sliding activity took place during the event. A unique set of strong motion acceleration recordings were obtained at the Bam accelerograph station. The highest peak ground acceleration (nearly 1g) was recorded for the vertical component of the motion. However, the longitudinal component (fault-parallel motion in N–S direction) clearly had the largest energy flux, as well as the largest maximum velocity and displacement.  相似文献   

6.
The spatial relationship between areas with severely damaged (red-tagged) buildings and areas with large strains in the soil (indicated by reported breaks in the water distribution system), observed during the 1994 Northridge earthquake, is analysed. It is shown that these areas can be separated almost everywhere. Minimal overlapping is observed only in the regions with very large amplitudes of shaking (peak ground velocity exceeding about 150 cm s−1). One explanation for this remarkable separation is that the buildings on ‘soft’ soils, which experienced nonlinear strain levels, were damaged to a lesser degree, possibly because the soil absorbed a significant portion of the incident seismic wave energy. As a result, the total number of severely damaged (red-tagged) buildings in San Fernando Valley, Los Angeles and Santa Monica may have been reduced by a factor of two or more. This interpretation is consistent with the recorded peak accelerations of strong motion in the same area. It is concluded that significant reduction in the potential damage to wood frame single family dwellings may be expected in areas where the soil experiences ‘large’ strains (beyond the linear range) during strong earthquake shaking, but not significant differential motions, settlement or lateral spreading, near the surface.  相似文献   

7.
Results from analytical studies conducted on an instrumented ten-storey reinforced concrete building which experienced ground accelerations in excess of 0⋅6g during the 1987 Whittier-Narrows California earthquake and suffered only minimal damage are presented. Using the dynamic characteristics inferred from accelerations recorded in the building during the earthquake, a mathematical model was calibrated to study the response of the building and to explain its good behaviour despite the apparent severity of the motions recorded in the basement of the building. Very good correlation was obtained between the computed and recorded response of the building. Non-linear analyses were conducted to evaluate the strength and deformation capacity of the building and to estimate its response in the event of more severe earthquake ground motions. Special emphasis is given to the evaluation of the overstrength of the building. Lateral overstrengths larger than 4⋅2 and larger than 5⋅7 were computed for the longitudinal and transverse directions of the building, respectively. It is concluded that these high levels overstrength in the building played an important role in limiting the damage during the Whittier-Narrow earthquake. Since the estimation of inelastic deformations during severe earthquake ground motions depends on the actual strength of the building, it is recommended to consider explicitly probable values of this overstrength in the strength reduction factors.  相似文献   

8.
Various pre-seismic and co-seismic effects have been reported in the literature in the solid Earth, hydrosphere, atmosphere, electric/magnetic field and in the ionosphere. Some of the effects observed above the surface, particularly some of the pre-seismic effects, are still a matter of debate. Here we analyze the co-seismic effects of a relatively weak earthquake of 28 October 2008, which was a part of an earthquake swarm in the westernmost region of the Czech Republic. Special attention is paid to unique measurements of infrasonic phenomena. As far as we know, these have been the first infrasonic measurements during earthquake in the epicentre zone. Infrasonic oscillations (~1–12 Hz) in the epicentre region appear to be excited essentially by the vertical seismic oscillations. The observed oscillations are real epicentral infrasound not caused by seismic shaking of the instruments or by meteorological phenomena. Seismo-infrasonic oscillations observed 155 km apart from the epicentre were excited in situ by seismic waves. No earthquake-related infrasonic effects have been observed in the ionosphere. Necessity to make vibration tests of instruments is pointed out in order to be sure that observed effects are not effects of mechanical shaking of the instrument.  相似文献   

9.
The Algiers–Boumerdes region has been struck by a destructive magnitude 6.8 (Mw) earthquake on May 21, 2003. The study presented in this paper is based on main shock strong motions from 13 stations of the Algerian accelerograph network. A maximum 0.58g peak ground acceleration (PGA) has been recorded at 20 km from the epicenter, only about 150 m away from a PGA of 0.34g, with both a central frequency around 5 Hz, explained by a strong very localized site effect, confirmed by receiver function technique results showing peaks at 5 Hz with amplitudes changing by a factor of 2. Soil amplifications are also evidenced at stations located in the quaternary Mitidja basin, explaining the higher PGA values recorded at these stations than at stations located on firm soil at similar distances from the epicenter. A fault-related directionality effect observed on the strong motion records and confirmed by the study of the seismic movement anisotropy, in agreement with the N65 fault plan direction, explains the SW–NE orientation of the main damage zone. In the near field, strong motions present a high-frequency content starting at 3 Hz with a central frequency around 8 Hz, while in the far field their central frequency is around 3 Hz, explaining the high level of damage in the 3- to 4-story buildings in the epicentral zone. The design spectra overestimate the recorded mean response spectra, and its high corner frequency is less than the recorded one, leading to a re-examination of the seismic design code that should definitively integrate site-related coefficient, to account for the up to now neglected site amplification, as well as a re-modeling of the actual design spectra. Finally, both the proposed Algerian attenuation law and the worldwide laws usually used in Algeria underestimate the recorded accelerations of the 6.8 (Mw) Boumerdes earthquake, clearly showing that it is not possible to extrapolate the proposed Algerian law to major earthquakes.  相似文献   

10.
On October 27, 2004, a moderate size earthquake occurred in the Vrancea seismogenic region (Romania). The Vrancea seismic zone is an area of concentrated seismicity at intermediate depths beneath the bending area of the southeastern Carpathians. The 2004 M w?=?6 Vrancea subcrustal earthquake is the largest seismic event recorded in Romania since the 1990 earthquakes. With a maximum macroseismic intensity of VII Medvedev–Sponheuer–Kárník (MSK-64) scale, the seismic event was felt to a distance of 600 km from the epicentre. This earthquake caused no serious damage and human injuries. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale. After the evaluation of the macroseismic effects of this earthquake, an intensity dataset has been obtained for 475 sites in the Romanian territory. Also, the maximum horizontal accelerations recorded in the area by the K2 network are compared to the intensity values.  相似文献   

11.
A catastrophic M w9.0 earthquake and subsequent giant tsunami struck the Tōhoku and Kanto regions of Japan on 11th March 2011, causing tremendous casualties, massive damage to structures and infrastructure, and huge economic loss. This event has revealed weakness and vulnerability of urban cities and modern society in Japan, which were thought to be one of the most earthquake-prepared nations in the world. Nevertheless, recorded ground motion data from this event offer invaluable information and opportunity; their unique features include very strong short-period spectral content, long duration, and effects due to local asperities as well as direction of rupture/wave propagation. Aiming at gaining useful experience from this tragic event, Earthquake Engineering Field Investigation Team (EEFIT) organised and dispatched a team to the Tōhoku region of Japan. During the EEFIT mission, ground shaking damage surveys were conducted in Sendai, Shirakawa, and Sukagawa, where the Japan Meteorological Agency intensity of 6+ was observed and instrumentally recorded ground motion data were available. The damage survey results identify the key factors for severe shaking damage, such as insufficient lateral reinforcement and detailing in structural columns from structural capacity viewpoint and rich spectral content of ground shaking in the intermediate vibration period range from seismic demand viewpoint. Importantly, inclusion of several ground motion parameters, such as nonlinear structural response, in shaking damage surveys, can improve the correlation of observed ground motion with shaking damage and therefore enhance existing indicators of potential damage.  相似文献   

12.
The South Iceland Lowland is an active seismic zone. In May 2008 a magnitude 6.3 (Mw) earthquake struck the area. The 370-m-long base-isolated Oseyrar Bridge situated close to the epicentre was hit by strong ground motion. Concrete stoppers at the top of all piers were badly smashed and all four wing walls of the abutments were severely damaged. The study showed that it is possible with numerical models to back-calculate the observed damage based on recorded ground motion in the area. The recorded loads were larger than prescribed by Eurocode 8 for the site even though the magnitude and location of the earthquake was as expected. The main reason was a near-fault pulse which is not covered in the code. The pulse dominated the bridge response and is therefore important to consider. Finally, an improved design is presented that could have prevented the damage.  相似文献   

13.
The 1985 Michoacan earthquake (M=8·1) caused very severe damage to mid-rise buildings in the lakebed zone of Mexico City, which is approximately 400 km from the epicentre in the Pacific Ocean. In the present study, we perform a three-dimensional (3-D) non-linear soil–building interaction analysis for several types of low- to high-rise buildings during the hypothetical Guerrero earthquake, and try to understand the real cause of heavy damage to mid-rise buildings in the lakebed zone during the 1985 Michoacan earthquake. We make a reasonable estimation of the input earthquake motions and the local site effects. The non-linear soil-building interaction analysis explains the damage pattern observed during the 1985 earthquake, although other analyses do not. We realize that all the factors from the earthquake source to the building superstructure must be taken into account adequately. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
The Emilia, May–July 2012, earthquake hit a highly industrialized area, where some tens thousands industrial buldings, mainly single storey precast structures, are located. Due to the likelihood of strong after shocks and the high vulnerability of these structures, the authorities first asked for a generalized seismic retrofit after the strong shakings of May 20th. In order to accelerate community recovery, this requirement was later loosened, leaving out the buildings which had undergone a strong enough shaking without any damage; the strong enough shaking was defined with reference to the ultimate limit state design earthquake. To the authors’ knowledge, it is the first time that the information on the earthquake intensity and structural damage is used for such a large scale post earthquake simplified safety assessment. In short, the earthquake was used as large experimental test. This paper shows the details of the models and computations made to identify the industrial buildings which have been considered earthquake tested and therefore not compelled to mandatory seismic retrofit. Since earthquake indirect (e.g. due to economic halt) costs may be as large the direct ones, or even larger, it is believed that this method may considerably lower the earthquake total costs and speed up the social and economic recovery of a community.  相似文献   

15.
山丹地电阻率台站距离2003年甘肃民乐-山丹Ms6.1地震震中仅43km,在震前1年尺度一短期阶段前兆性变化突出,属于在强地震孕震晚期阶段震源区及附近的典型前兆性变化。应用“异常一震源地点一活动断层一发震机制”之间的特定关系,分析震前山丹地电未检测到明显临震信息的原因,可能是由本次地震的发震应力场分布和山丹地电相对于本次地震的位置决定的。  相似文献   

16.
The eastern region of the northern part of Japanese mainland has been known historically as an area of mines producing gold and silver. When the extraordinarily strong earthquake rocked the eastern part of the Japanese mainland on March 11, 2011, there were more than 20 old and new dams retaining tailings from many mines.Out of these, three dams suffered breach due to liquefaction of tailings materials and released a large amount of slime, bringing about damage to farmlands and houses downstream. Of particular interest was Kayakari dam at Ohya mine that failed and Takasega-mori dam in its vicinity that did not, although they were equally subjected to strong shaking.In this paper features of these two dams in the design and construction, and damage or non-damage during the earthquake will be described, together with the geotechnical investigations and some analyses that were conducted after the earthquake.  相似文献   

17.
Second‐generation performance‐based earthquake engineering (PBEE‐2) requires a library of component fragility functions to estimate probabilistic damage to a wide variety of building components. The present work draws on a large body of (mostly) post‐earthquake reconnaissance and (some) post‐earthquake survey observations of traction elevators to create fragility functions useful in PBEE‐2. Two surveys provide detailed observations of 115 representative elevators at 12 hospitals shaken in the 1989 Loma Prieta and 1994 Northridge earthquakes and selected without regard to or foreknowledge of damage. Of these, 55 failed and 60 did not. Approximately half were installed after an important code change of 1972, so one can distinguish the performance of pre‐1973 and post‐1973 elevator construction. They experienced a range of strong motion: 22 with peak ground acceleration (PGA) < 0.25 g, 93 with 0.25 g < PGA < 0.85 g. The hospitals had elevator failure rates as low as 0% and as high as 100%. A third survey describes damage qualitatively for six sites with PGA ≤ 0.25 and per‐site failure rates of 0% to perhaps 30%. Fragility functions are offered where the damage state is the loss of functionality of the elevator. The elevators in these surveys exhibit a median capacity of PGA ≈ 0.35 g with a logarithmic standard deviation of 0.40. Capacity is modestly sensitive to whether the elevator was installed before or after 1973. Using building‐specific intensity measures such as Sa(T1) does not improve the fragility functions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The 2001 Mw 7.6 earthquake sourced in the Kachchh rift of northwest India led to extensive damage in the city of Bhuj, located ~70 km southwest of its epicenter. The building stock of this densely populated city was a mix of modern, single, and multistoried structures as well as traditional and non-engineered abodes, most of which were not designed to withstand severe shaking effects. Although there was extensive liquefaction and ground failure in the meizoseismal area, they were not observed in Bhuj, but the damage was severe here. In this study, we apply horizontal to vertical spectral ratio method to ambient vibrations (HVSR-AV) to obtain fundamental resonance frequency (f0) and H/V peak amplitude (A0) to examine if site response had any significant role in the observed damage. The patterns of H/V curves as well as spatial distributions of f0 (0.6–1.4 Hz) and A0 (1.5–4.4) suggest absence of any strong impedance contrast within the subsurface. Similar results obtained for ambient vibrations and earthquake signals suggest the efficacy of the HVSR-AV method as most useful for regions of low-level seismicity. The weathered sandstone that is generally exposed in the city represents the resonating layer whose thickness is approximately estimated as ~66–155 m, based on 1D assumption. The current set of available data precludes any quantitative modeling, but our preliminary inference is that site effects were not significant during the 2001 earthquake damage observed in Bhuj.  相似文献   

19.
In July 1998, an M w = 6.2 earthquake struck the islands of Faial, Pico and San Jorge (in the Azores Archipelago), registering VIII on the Modified Mercalli Intensity scale and causing major destruction in the northeastern part of Faial. The main shock was located offshore, 8 km North East of the island, and it triggered a seismic sequence that lasted for several weeks. The existing data for this earthquake include both the general tectonic environment of the region and the teleseismic information. This is accompanied by one strong-motion record obtained 15 km from the epicentre, the epicentre location of aftershocks, and a large collection of the damage inflicted to the building stock (as poor rubble masonry, of 2–3 storeys). The present study was carried out in two steps: first, with a finite-fault stochastic simulation method of ground motion at sites throughout the affected islands, for two possible locations of the rupturing fault and for a large number of combinations of rupture mechanisms (as a parametric analysis); secondly, the damage to buildings was modelled using a well-known macroseismic method that considers the building typologies and their associated vulnerabilities. The main intent was to integrate different data (geological, seismological and building features) to produce a scenario model to reproduce and justify the level of damage generated during the Faial earthquake. Finally, through validation of the results provided by these different approaches, we obtained a complete procedure for the parameters of a first model for the production of seismic damage scenarios for the Azores Islands region.  相似文献   

20.
The 1994 Northridge earthquake occurred underneath a densely populated metropolitan area, and was recorded by over 200 strong motion stations in the metropolitan area and vicinity. This rare coincidence made it an ideal case to study, in statistical sense, the correlation of damage to structures with the level of strong shaking, in particular with respect to (1) instrumental characteristics of shaking and (2) the reported site intensity scale. In this paper, statistics for the incidence of red-tagged building in 1 × 1 km2 blocks in San Fernando Valley and Los Angeles is presented and analyzed, as function of the observed peak ground velocity or the local intensity of shaking. The ‘observed’ peak velocity is estimated from contour maps based on the recorded strong motion. The intensity of shaking is estimated from the published intensity map and from our modification of this map to make it more consistent with observed high damage to buildings in some localized areas. Finally, empirical scaling equations are derived which predict the average density of red-tagged buildings (per km2) as a function of peak ground velocity or site intensity of shaking. These scaling equations are specific to the region studied, and apply to Wooden Frame Construction, typical of post World War II period, which is the prevailing building type in the sample studied. These can be used to predict the density of red-tagged buildings per km2 in San Fernando Valley and in Los Angeles for a scenario earthquake or for an ensemble of earthquakes during specified exposure, within the framework of probabilistic seismic hazard analysis. Such predictions will be useful to government officials for emergency planning, to the insurance industry for realistic assessment of insured losses, and to structural engineers for assessment of the overall performance of this type of buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号