首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
针对传统的阿伦方差等评价手段无法实现对星载原子钟进行动态性能评估的缺陷,将动态阿伦方差引入到BDS星载原子钟的监测和评估中。采用BDS多星定轨卫星钟差产品,基于动态阿伦方差算法对BDS原子钟在轨性能进行了研究,并利用BDS星地双向无线电时间比对钟差数据对其结果进行了对比和验证。实验结果表明,动态阿伦方差算法可以实现对BDS星载原子钟动态特性的有效评估,BDS原子钟的万秒稳定度的量级基本为在10-14,但是随着时间有一定的变化。  相似文献   

2.
星载原子钟作为全球导航卫星系统(global navigation satellite system, GNSS)的核心载荷,其在轨性能指标决定着GNSS的PNT服务水平。由于太空电磁环境复杂,原子钟实际工作指标不稳定,对星载原子钟开展长期持续性能评估就显得尤为重要。本文综述了目前星载原子钟评估技术现状,对相位、频率、频率漂移率、拟合精度、拟合残差、频率稳定度等性能评估指标进行了分析总结,归纳了基于精密钟差产品进行星载原子钟评估的数据处理方法和流程,统计了现阶段GNSS星载原子钟类型和指标水平,并采集一年的精密卫星钟差数据对GNSS星载原子钟进行了综合评估与对比分析。最后,对现阶段GNSS星载原子钟性能评估技术现状和问题进行了总结及展望。  相似文献   

3.
卫星导航系统中星载原子钟作为系统的星上时间基准,其性能直接决定着导航定位的精度。北斗卫星导航系统(BeiDou navigation satellite system,BDS)目前处于全面建设阶段,对系统星载原子钟的性能进行评估非常重要。结合评价星载铷原子钟稳定性的哈达玛(Hadamard)方差、重叠哈达玛方差和哈达玛总方差,分别基于5 min和15 min采样间隔的北斗精密钟差数据,综合三种方差的计算结果对北斗卫星导航系统星载原子钟频率稳定性进行较为全面的评估,得到了一些有益的结论。  相似文献   

4.
BDS星载原子钟长期性能分析   总被引:2,自引:2,他引:0  
王宇谱  吕志平  王宁 《测绘学报》2017,46(2):157-169
北斗卫星导航系统(BDS)于2012年底开始提供区域服务,进行BDS星载原子钟的长期性能分析,对于系统性能的评估、卫星钟差的确定与预报等具有重要的作用。本文基于3年的多星定轨联合解算的BDS精密卫星钟数据,利用改进的中位数方法进行数据预处理,分析了卫星钟差数据的特点,使用卫星钟差二次多项式拟合模型分析了卫星钟的相位、频率、频漂及钟差模型噪声的长期变化特性,根据频谱分析的方法分析了卫星钟差的周期特性,采用重叠哈达玛方差计算并讨论了卫星钟的频率稳定性。综合上述方法及其试验结果较为全面地分析和评估了BDS星载原子钟的长期性能,得到结论:在噪声特性和钟漂特性方面,MEO卫星钟的性能最好,其次是IGSO卫星钟,最差的是GEO卫星钟,所有卫星钟噪声水平和频漂的均值分别为0.677ns和1.922×10~(-18);多星定轨条件下的北斗卫星钟差存在显著的周期项,其主周期分别近似为对应卫星轨道周期的1/2倍或1倍;BDS星载原子钟频率稳定度的平均值为1.484×10~(-13)。  相似文献   

5.
目前,国际主要卫星导航系统搭载的原子钟包含铷钟、氢钟、铯钟3大类。新型国产星载铷原子钟、氢原子钟的应用是BDS-3相对于BDS-2的重要改变之一。BDS-3正式开通运行以来,已经积累了丰富的在轨数据,本文采用2 a的精密钟差数据评估了新型国产原子钟的在轨性能,并与国际主流星载原子钟的性能进行对比,分析了国产原子钟在轨长期演化规律。结果表明,北斗氢钟具有较低的在轨漂移率和较高的稳定度,与Galileo系统星载氢钟为同一精度水平,北斗铷钟在轨性能稳步提高,跻身世界先进行列。  相似文献   

6.
星载原子钟作为导航卫星上维持时间尺度的关键载荷,其性能会对用户进行导航、定位与授时的精度带来影响。介绍了原子钟评估常用的三个指标(频率准确度、飘移率和稳定度)的定义及计算方法,利用事后卫星精密钟差数据,开展了全球卫星导航系统(global navigation satellite system,GNSS)星载原子钟性能评估,分析了GNSS星载原子钟特性。结果表明,GPS(global position system)BLOCKIIF星载铷钟与Galileo星载氢钟综合性能最优;北斗系统中地球轨道卫星与倾斜同步轨道卫星星载原子钟天稳定度达到2~4×10-14量级,与BLOCK IIR卫星精度相当;频率准确度达到1~4×10-11量级;频率漂移率达到10-14量级。  相似文献   

7.
针对北斗在轨卫星Rb原子钟2013年的实测数据,采用二次多项式拟合得到BDS卫星钟差模型,采用哈达玛总方差公式计算了北斗卫星钟的短期频率稳定度指标,进而分析了北斗在轨卫星钟特性指标的变化规律。通过实例计算,揭示了BDS不同在轨卫星钟的相位、频率、频漂及残差指标的变化规律;计算得出BDS卫星钟万秒频率稳定度维持在10-13量级左右,其中GEO卫星钟的稳定度相对较差,4号和8号卫星在运行期间出现跳变,跳变之后稳定性得到提高,其他在轨卫星钟稳定度变化趋势则相对平稳。  相似文献   

8.
北斗卫星导航系统(BDS)星载原子钟由于受到空间环境的影响和各种不确定因素的干扰,导致获取的卫星钟差数据中经常会出现异常扰动,从而降低了卫星钟性能分析的可靠性、破坏了钟差建模和预报的有效性、影响导航定位结果的精准度,需要对BDS卫星钟差数据中存在的异常值进行探测和处理。基于求和自回归移动平均模型建立BDS卫星钟差异常值探测的方差膨胀模型;运用似然比方法对BDS卫星钟差时间序列中的异常值进行探测;推导了Score检验统计量,运用最小二乘法对异常扰动的大小进行估计。试验结果表明,似然比方法能够准确探测BDS卫星钟差数据中异常值的位置,精确估计异常扰动的大小。  相似文献   

9.
针对精密定轨与时间同步(ODTS)系统噪声难以准确计算的问题,该文选取了多台外接高精度主动型氢原子频标的监测站,通过对不同监测站钟差作差的方法对系统噪声进行了测试与分析。分别对国际GNSS服务(IGS)和德国地学中心分析中心(GFZ)提供的精密钟差产品进行ODTS系统噪声分析,分别采用IGS钟差产品和GFZ钟差产品进行了实验。结果表明,用阿兰方差表征ODTS系统噪声对在轨原子钟性能评估的影响,系统噪声的万秒和天稳定度均优于卫星钟设计稳定度,使用IGS与GFZ提供的精密钟差产品可以有效对星载原子钟在轨性能进行评估。  相似文献   

10.
艾青松  徐天河  孙大伟  任磊 《测绘学报》2016,45(Z2):132-138
根据北斗卫星导航系统星载原子钟自身的物理特性,采用武汉大学IGS数据中心发布的2016年1月1日至2016年11月1日共306天的事后钟差产品进行谱分析。分析结果表明:北斗卫星导航系统的3类卫星钟都存在一定的周期特性;其中GEO和IGSO卫星钟的主周期相对较为明显;GEO卫星钟的主周期依次为12、24、8和6h;IGSO的主周期为24、12、8和6h;而MEO的3个主周期为12.9、6.4和24h。依据各类原子钟的周期特性,同时对各天之间钟差的起始点偏差进行修正,并利用修正模型对北斗卫星钟差进行预报和精度分析。试验结果表明,改进的预报模型能显著提升北斗卫星的钟差预报精度,北斗卫星钟差24h、12h、6h的平均预报精度分别能达到6.55ns、3.17ns和1.76ns。  相似文献   

11.
针对北斗卫星导航系统的卫星姿态模型、天线相位中心改正及卫星定轨数据处理策略未统一的现状,该文对比分析了武汉大学和德国地学研究中心提供的北斗事后精密轨道和钟差产品的差异及精度,结合实测数据,通过分析精密单点定位的定位精度来比较两中心精密轨道和钟差的差异。实验结果表明:北斗卫星的精密轨道精度与轨道类型有关,地球静止轨道(GEO)卫星的轨道精度为米级,倾斜地球同步轨道(IGSO)卫星的轨道精度为分米级,中地球轨道(MEO)卫星切向、法向和径向的精度分别为10.81、5.41和3.37cm;GEO卫星钟差精度优于0.38ns,IGSO卫星钟差优于0.25ns,MEO卫星钟差优于0.15ns;两家分析中心产品的北斗静态精密单点定位的平面精度相当;北斗静态精密单点定位的RMS统计值平面精度优于3cm,三维精度优于7cm。  相似文献   

12.
为了对多个全球导航卫星系统(global navigation satellite system, GNSS)当前的广播星历精度进行一个全面的分析,对比了2014—2018年共5 a的GNSS广播星历与精密星历,并对全球定位系统(global positioning system, GPS)、格洛纳斯卫星导航系统(global navigation satellite system, GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system, Galileo)、北斗卫星导航系统(BeiDou navigation satellite system, BDS)、准天顶卫星系统(quasi-zenith satellite system, QZSS)等5个系统的广播星历长期精度变化进行了分析。结果表明:5 a中GPS的广播星历轨道及钟差精度最稳定;GLONASS的广播星历轨道精度稳定性较好,但其钟差精度存在较大的离散度;Galileo得益于具备全面运行能力(full operational capability, FOC)卫星的大量发射及运行,其广播星历轨道、钟差精度大幅度变好,切向轨道、法向轨道与钟差精度已赶超GPS;BDS的广播星历轨道精度离散度较大,钟差精度出现不稳定现象;QZSS的广播星历轨道与钟差精度的稳定性与离散度相对最差。以2018年1 a的广播星历与精密星历为例分析了各个系统当前的广播星历精度,结果表明,当前GPS、GLONASS、Galileo、BDS、QZSS的考虑轨道误差与钟差误差贡献的空间信号测距误差(signal-in-space ranging error,SISRE)分别为0.806 m、2.704 m、0.320 m、1.457 m、1.645 m,表明Galileo广播星历整体精度最高,GPS次之,其次分别是BDS、QZSS和GLONASS。只考虑轨道误差贡献的SISRE分别为0.167 m、0.541 m、0.229 m、0.804 m、0.675 m,表明GPS广播星历轨道精度最高,其次分别是Galileo、GLONASS、QZSS和BDS。GPS卫星广播星历中新型号卫星的钟差精度总体要优于旧型号卫星。  相似文献   

13.
北斗三号卫星导航系统(BeiDou-3 navigation satellite system,BDS-3)全球组网工作全面建成,标志着BDS-3迈入全球定位、导航和授时服务的新时代。为了全面比较BDS-3系统与其余全球导航卫星系统(global navigation satellite system,GNSS)非组合精密单点定位(precise point positioning,PPP)性能,重点分析不同分析中心BDS-3精密轨道和钟差产品的一致性、BDS-3/GNSS卫星可用性、BDS-3/GNSS单系统及多系统融合PPP定位性能。结果表明,基于5个分析中心的精密轨道和钟差产品,BDS-3静态PPP三维均方根误差约为2.31~4.00 cm,其单系统收敛时间明显慢于其余GNSS系统,GPS系统的加入对BDS-3/GNSS双系统融合PPP改善效果最为明显,且四系统融合能够有效地缩短收敛时间,并提高动态PPP定位精度。随着BDS-3系统的发展以及轨道和钟差产品的进一步完善,BDS-3同样具备其余GNSS系统提供优质导航定位服务的潜力。  相似文献   

14.
多星定轨条件下北斗卫星钟差的周期性变化   总被引:1,自引:1,他引:0  
周佩元  杜兰  路余  方善传  张中凯  杨力 《测绘学报》2015,44(12):1299-1306
基于地面监测网的多星精密定轨可以同时解算出北斗卫星轨道和卫星钟差。由于轨道和钟差的耦合影响,卫星钟差时序难免会出现周期性波动。此外,受限于目前并不完善的北斗全球监测网络分布、系统导航文件缺失以及定轨后处理软件的设置问题,3类卫星的钟差均存在大量数据间断问题。本文利用适用于间断数据的谱分析方法,对多星定轨条件下的北斗卫星钟差数据进行了周期项提取,并利用周期项改进后的钟差预报模型评估了24h以内的预报精度。基于近一年的数据分析表明,北斗GEO卫星钟差3个主周期依次为12、24和8h,IGSO卫星钟差的3个主周期依次为24、12和8h,而MEO卫星钟差的3个主周期依次为12.91、6.44和24h。与改进前相比,周期项改进后的钟差预报模型将北斗卫星钟差在24h以内的预报精度提高了20%~40%。  相似文献   

15.
分析了 目前广播星历精度评估中存在的问题,详细论述了广播星历精度评估过程中对精密星历进行天线相位中心改正的取值方法,提出了利用单颗星单日钟差均值作二次差对广播星历钟差的系统性偏差进行改正的方法.选取2019-09-01-2019-11-01 共计62天的多模 GNSS 实验(multi-GNSS experiment,...  相似文献   

16.
导航卫星天线相位中心误差标定方法研究现状及发展趋势   总被引:1,自引:0,他引:1  
卫星天线相位中心误差是影响GNSS高精度定位定轨的重要误差源,实用中需要对其精确标定。随着北斗卫星导航系统的建设发展,如何对卫星天线相位中心误差进行更为精确的标定应引起人们的重视。为此,本文首先简要介绍了各卫星导航系统的卫星天线情况,而后系统总结了导航卫星天线相位中心误差标定方法的发展历程和研究现状,指出了未来卫星天线相位中心误差标定方法的发展趋势,相关研究成果对我国北斗卫星天线相位中心误差的标定方法研究具有参考意义。  相似文献   

17.
在GNSS高精度数据处理中,卫星钟差往往是决定结果精度的核心因素之一。采用20 Hz的双频观测数据对GNSS星载原子钟0.05~100 s平滑时间下的短期稳定性进行分析,通过星间单差的方法消除接收机钟差,采用无电离层组合及夜间观测避免电离层高阶项短期变化的影响,同时采用经验模型和映射函数来进行对流层延迟改正。通过Lag 1自相关函数分析了影响GNSS卫星钟稳定性的主要噪声类型,并使用阿伦方差计算分析GPS、GLONASS及BDS各自系统内不同卫星组合之间的钟差。结果表明,GPS、GLONASS及BDS系统钟差稳定性0.05秒稳均可达到10-10量级,秒稳可达10-11量级。可以认定,GPS、GLONASS及BDS在短期内的稳定性量级相当,从而验证了基于星间单差的BDS掩星数据处理方案的可行性。  相似文献   

18.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号