首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most previous studies and applications of electrochemical stabilization of soils through electroosmosis have been made on clayey soils. The object of this investigation was to find out if relatively small amounts of clay (1.5%–3.5%, by weight) present in a sandy soil would be enough for stabilization and strengthening to be possible. The results indicate increases of cohesion of the order of 100–200 lb./sq.ft. X-ray analyses of treated soils indicate that sheet structures of clays are reduced and silicates destroyed upon treatment by electroosmosis. Newly-formed minerals also cement the soil. These neoformations include gibbsite, limonite, calcite, hydrohematite, hydrogoethite (hydrolepidocrocite), hisingerite, allophane, allophanoid, gypsum, hematite, magnetite, nontronite, trona and natron (Na2 CO3, 10H2O). The process seems to be irreversible.  相似文献   

2.
Iheya‐North‐Knoll is one of the small knolls covered with thick sediments in the Okinawa Trough back‐arc basin. At the east slope of Iheya‐North‐Knoll, nine hydrothermal vents with sulfide mounds are present. The Integrated Ocean Drilling Program (IODP) Expedition 331 studied Iheya‐North‐Knoll in September 2010. The expedition provided us with the opportunity to study clay minerals in deep sediments in Iheya‐North‐Knoll. To reveal characteristics of clay minerals in the deep sediments, samples from the drilling cores at three sites close to the most active hydrothermal vent were analyzed by X‐ray diffraction, scanning electron microscope and transmission electron microscope. The sediments are classified into Layer 0 (shallow), Layer 1 (deep), Layer 2 (deeper) and Layer 3 (deepest) on the basis of the assemblage of clay minerals. Layer 0 contains no clay minerals. Layer 1 contains smectite, kaolinite and illite/smectite mixed‐layer mineral. Layer 2 contains chlorite, corrensite and chlorite/smectite mixed‐layer mineral. Layer 3 is grouped into three sub‐layers, 3A, 3B and 3C; Sub‐layer 3A contains chlorite and illite/smectite mixed‐layer mineral, sub‐layer 3B contains chlorite/smectite and illite/smectite mixed‐layer minerals, and sub‐layer 3C contains chlorite and illite. Large amounts of di‐octahedral clay minerals such as smectite, kaolinite, illite and illite/smectite mixed‐layer mineral are found in Iheya‐North‐Knoll, which is rarely observed in hydrothermal fields in mid‐ocean ridges. Tri‐octahedral clay minerals such as chlorite, corrensite and chlorite/smectite mixed‐layer mineral in Iheya‐North‐Knoll have low Fe/(Fe + Mg) ratios compared with those in mid‐ocean ridges. In conclusion, the characteristics of clay minerals in Iheya‐North‐Knoll differ from those in mid‐ocean ridges; di‐octahedral clay minerals and Fe‐poor tri‐octahedral clay minerals occur in Iheya‐North‐Knoll but not in mid‐ocean ridges.  相似文献   

3.
Microbial reduction of Fe(III) in clay minerals is an important process that affects properties of clay-rich materials and iron biogeochemical cycling in natural environments. Microbial reduction often ceases before all Fe(III) in clay minerals is exhausted. The factors causing the cessation are, however, not well understood. The objective of this study was to assess the role of biogenic Fe(II) in microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Bioreduction experiments were performed in batch systems, where lactate was used as the sole electron donor, Fe(III) in clay minerals as the sole electron acceptor, and Shewanella putrefaciens CN32 as the mediator with and without an electron shuttle (AQDS). Our results showed that bioreduction activity ceased within two weeks with variable extents of bioreduction of structural Fe(III) in clay minerals. When fresh CN32 cells were added to old cultures (6 months), bioreduction resumed, and extents increased. Thus, cessation of Fe(III) bioreduction was not necessarily due to exhaustion of bioavailable Fe(III) in the mineral structure, but changes in cell physiology or solution chemistry, such as Fe(II) production during microbial reduction, may have inhibited the extent of bioreduction. To investigate the effect of Fe(II) inhibition on CN 32 reduction activity, a typical bioreduction process (consisting of lactate, clay, cells, and AQDS in a single tube) was separated into two steps: (1) AQDS was reduced by cells in the absence of clay; (2) Fe(III) in clays was reduced by biogenic AH2DS in the absence of cells. With this method, the extent of Fe(III) reduction increased by 45-233%, depending on the clay mineral involved. Transmission electron microscopy observation revealed a thick halo surrounding cell surfaces that most likely resulted from Fe(II) sorption/precipitation. Similarly, the inhibitory effect of Fe(II) sorbed onto clay surfaces was assessed by presorbing a certain amount of Fe(II) onto clay surfaces followed by AH2DS reduction of Fe(III). The reduction extent consistently decreased with an increasing amount of presorbed Fe(II). The relative reduction extent [i.e., the reduction extent normalized to that when the amount of presorbed Fe(II) was zero] was similar for all clay minerals studied and showed a systematic decrease with an increasing clay-presorbed Fe(II) concentration. These results suggest a similar inhibitory effect of clay-sorbed Fe(II) for different clay minerals. An equilibrium thermodynamic model was constructed with independently estimated parameters to evaluate whether the observed cessation of Fe(III) reduction by AH2DS was due to exhaustion of reaction free energy. Model-calculated reduction extents were, however, over 50% higher than experimentally measured, indicating that other factors, such as blockage of the electron transfer chain and mineralogy, restricted the reduction extent. Another important result of this study was the relative reducibility of Fe(III) in different clays: nontronite > chlorite > illite. This order was qualitatively consistent with the differences in the crystal structure and layer charge of these minerals.  相似文献   

4.
Redox processes of structural Fe in clay minerals play an important role in biogeochemical cycles and for the dynamics of contaminant transformation in soils and aquifers. Reactions of Fe(II)/Fe(III) in clay minerals depend on a variety of mineralogical and environmental factors, which make the assessment of Fe redox reactivity challenging. Here, we use middle and near infrared (IR) spectroscopy to identify reactive structural Fe(II) arrangements in four smectites that differ in total Fe content, octahedral cationic composition, location of the negative excess charge, and configuration of octahedral hydroxyl groups. Additionally, we investigated the mineral properties responsible for the reversibility of structural alterations during Fe reduction and re-oxidation. For Wyoming montmorillonite (SWy-2), a smectite of low structural Fe content (2.8 wt%), we identified octahedral AlFe(II)-OH as the only reactive Fe(II) species, while high structural Fe content (>12 wt%) was prerequisite for the formation of multiple Fe(II)-entities (dioctahedral AlFe(II)-OH, MgFe(II)-OH, Fe(II)Fe(II)-OH, and trioctahedral Fe(II)Fe(II)Fe(II)-OH) in iron-rich smectites Ölberg montmorillonite, and ferruginous smectite (SWa-1), as well as in synthetic nontronite. Depending on the overall cationic composition and the location of excess charge, different reactive Fe(II) species formed during Fe reduction in iron-rich smectites, including tetrahedral Fe(II) groups in synthetic nontronite. Trioctahedral Fe(II) domains were found in tetrahedrally charged ferruginous smectite and synthetic nontronite in their reduced state while these Fe(II) entities were absent in Ölberg montmorillonite, which exhibits an octahedral layer charge. Fe(III) reduction in iron-rich smectites was accompanied by intense dehydroxylation and structural rearrangements, which were only partially reversible through re-oxidation. Re-oxidation of Wyoming montmorillonite, in contrast, restored the original mineral structure. Fe(II) oxidation experiments with nitroaromatic compounds as reactive probes were used to link our spectroscopic evidence to the apparent reactivity of structural Fe(II) in a generalized kinetic model, which takes into account the presence of Fe(II) entities of distinctly different reactivity as well as the dynamics of Fe(II) rearrangements.  相似文献   

5.
The presence of allophane minerals imparts special engineering features to the volcanic ash soils. This study examines the reasons for the allophanic soils exhibiting unusual shear strength properties in comparison to sedimentary clays. The theories of residual shear strength developed for natural soils and artificial soil mixtures and the unusual surface charge properties of the allophane particle are invoked to explain the high shear strength values of these residual soils. The lack of any reasonable correlation between ′ (effective stress-strength parameter) and plasticity index values for allophanic soils is explained on the basis of the unusual structure of the allophane particle. The reasons as to why natural soil slopes in allophanic soil areas (example, Dominica, West Indies) are stable at much steeper angles than natural slopes in sedimentary clay deposits (London clay areas) are explained in light of the hypothesis developed in this study.  相似文献   

6.
Iron-rich clay minerals are abundant in the natural environment and are an important source of iron for microbial metabolism. The objective of this study was to understand the mechanism(s) of enhanced reduction of Fe(III) in iron-rich 2:1 clay minerals under sulfate-reducing conditions. In particular, biogenic reduction of structural Fe(III) in nontronite NAu-2, an Fe-rich smectite-group mineral, was studied using a Desulfovibrio spp. strain G-11 with or without amended sulfate. The microbial production of Fe(II) from NAu-2 is about 10% of total structural Fe(III) (30 mM) when Fe(III) is available as the sole electron acceptor. The measured production of Fe(II), however, can reach 29% of the total structural Fe(III) during sulfate reduction by G-11 when sulfate (50 mM) is concurrently added with NAu-2. In contrast, abiotic production of Fe(II) from the reaction of NAu-2 with Na2S (50 mM) is only ca. 7.5% of the total structural Fe(III). The enhanced reduction of structural Fe(III) by G-11, particularly in the presence of sulfate, is closely related to the growth rate and metabolic activities of the bacteria. Analyses by X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy reveal significant changes in the structure and composition of NAu-2 during its alteration by bacterial sulfate reduction. G-11 can also derive nutrients from NAu-2 to support its growth in the absence of amended minerals and vitamins. Results of this study suggest that sulfate-reducing bacteria may play a more significant role than previously recognized in the cycling of Fe, S, and other elements during alteration of Fe-rich 2:1 clay minerals and other silicate minerals.  相似文献   

7.
东太平洋海盆内多金属结核中的铁矿物萧绪琦郭立鹤(中国地质科学院矿床地质研究所,北京100037)1前言早在五十年代人们就已注意到,大洋多金属结核含铁量较高,由于结核中矿物颗粒细小,结晶程度低,使得铁矿物的确定很困难,通常称之为铁的氧化物和氢氧化物。在...  相似文献   

8.
《Applied Geochemistry》1999,14(6):707-718
Poorly crystalline Al components of the clay fraction are often neglected in soil mineralogical studies. In this study 7 B horizons from podzolised soils in Sweden were analysed using a combination of infrared (IR) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and selective extractions. It was found that most Bhs and Bs horizons contained allophane, imogolite and more or less hydroxy-interlayered vermiculite. Some Bhs and Bs horizons also contained small amounts of kaolinite and/or gibbsite. In one acid Bh horizon organically complexed Al was the only reactive Al fraction of importance. The vertical patterns of vermiculite and allophane/imogolite suggested that both had formed during the podzolisation process, but due to different mechanisms. The pattern of kaolinite and gibbsite occurrences indicated that these minerals were mostly inherited from the parent material. Oxalate and pyrophosphate extractions suggested that allophane and imogolite constituted the most important reactive inorganic Al fraction in the soils. This shows that allophane and imogolite seem to be the typical, rather than the occasional, reactive inorganic Al phases that form in the B horizon as a result of podzolisation.  相似文献   

9.
The low-temperature synthesis of clay minerals is possible through the aging of freshly prepared hydroxide—silica precipitates. The rapid synthesis of nontronite is only possible at surface temperatures under reducing conditions. Under oxidizing conditions, pure Fe(III)- or pure Al-smectite minerals could not be synthesized at low temperatures. It is only from Fe(II)-containing solutions that nontronite and lembergite, the di-[Fe(III)] and tri-[Fe(II)] octahedral three-layer silicates, are built up in several days at low temperatures. The presence of Fe(II) enables an octahedral layer of the brucite—gibbsite type to be formed. These are necessary for the bidimensional orientation of SiO4 tetrahedrons, leading to clay-mineral formation. The Fe2+ and/or Mg2+ ions are necessary for the formation of the Al3+- and Fe3+-containing three-layer silicate minerals.Under reducing diagenetic conditions, the Fe contents in recent sediments are sufficient to build up Al-rich three-layer minerals under both fresh-water and salt-water conditions.  相似文献   

10.
Four Fe-rich deposits, two occurring at springs, one on boulders in a stream and the fourth in a stream bed on andesitic volcanoes in the North Island, New Zealand, have been investigated by mineralogical techniques. They have poorly-ordered structure with compositions intermediate between those of ferrihydrite and hisingerite. Electron microscopy revealed solid spheres of 30 Å dia which formed 0.1-0.5 μm aggregates. Surface areas, as measured by ethylene glycol monoethyl ether, were close to 600 m2/g.X-ray diffraction gave weak patterns similar to both ferrihydrite and hisingerite. Infrared absorption showed a shift in the Si-O stretching band from 965 to 1020 cm?1 with decreasing amounts of Fe and increasing amounts of Si. These frequencies imply the presence of Fe-O-Si bonds in these materials. Desilication, by treatment with KOH in the laboratory, resulted in a conversion of these intermediates towards ferrihydrite.  相似文献   

11.
湘西震旦—寒武系页岩中粘土矿物和层状变质矿物的研究   总被引:1,自引:0,他引:1  
黄文楷 《湖南地质》1989,8(1):54-59
湘西震旦—寒武系页岩与沉积改造型铀矿床有关。页岩中的粘土矿物主要为水云母,次为高岭石、多水高岭石、蒙脱石,少量水铝英石。层状变质矿物为绢云母、绿泥石、斜绿泥石、滑石。采用多种方法对这些矿物作了分析,认为水云母是赋铀的重要载体矿物。  相似文献   

12.
Undisturbed core samples of Recent sediments from the Wash tidal flats, East Anglia, England, obtained using a Delft corer, were studied with special reference to the diagenesis and geochemical behaviour of iron. The Mössbauer effect in 57Fe was used to monitor the distribution of Fe between different phases as a function of depth, together with the magnetic mineralogy and palaeomagnetic properties.The cores consist of, successively downwards: 0.36 m brown clay; 1.5 m finely laminated silts and fine sands, and 7.14 m homogeneous fine sands. The dominant minerals are quartz, feldspar, calcite and clay minerals, and chemical analysis for Al, Si, Mg, Mn, Ca, Fe, Na, K showed variations closely linked to lithological changes. Illite is the most abundant clay mineral (mean 48%), followed by mixed layer illite-montmorillonite and montmorillonite, kaolinite and chlorite. Chlorite is the major iron-bearing clay mineral and represents 4 to 10% of the <2 μm fraction throughout the core. Sulphide minerals are present throughout the core, including framboidal pyrite.Computer fit analysis of the Mössbauer spectra of best quality showed contributions from Fe2+ and Fe3+ in clay minerals (essentially chlorite), low-spin Fe2+ in pyrite, and magnetically ordered iron in greigite (Fe3S4). Systematic variations, as a function of sample depth, indicate a relative increase in the amount of Fe in pyrite at the expense of the clay minerals.Magnetite and titanium-bearing magnetite are the carriers of natural magnetic remanence in these sediments.The direction and intensity of natural remanence in the samples compare well with the known secular variation of the Earth's magnetic field derived from the historic-archaeomagnetic record and this enables the samples to be dated and sedimentation rates to be determined (1.5 mm yr?1 for the upper 2 m and ~7.7 mm yr?1 for the lower 7 m).  相似文献   

13.
We present a spectroscopic study of the iron \(\hbox{M}_{2/3}\)-edge for several minerals and compounds to reveal information about the oxidation state and the local coordination of iron. We describe a novel approach to probe the iron \(\hbox{M}_{2/3}\)-edge bulk sensitively using X-ray Raman scattering. Significant changes in the onset and shape of the Fe \(\hbox{M}_{2/3}\)-edge were observed on ferrous and ferric model compounds with Fe in octahedral and tetrahedral coordination. Simulation of the spectra is possible using an atomic multiplet code, which potentially allows determination of, e.g., crystal-field parameters in a quantitative manner. A protocol is discussed for determination of the Fe oxidation state in compounds by linear combination of spectra of ferric and ferrous end members. The presented results demonstrate the capabilities of Fe \(\hbox{M}_{2/3}\)-edge spectroscopy by X-ray Raman scattering to extract information on the ratio of trivalent to total iron \(\hbox{Fe}^{3+}/\sum \hbox{Fe}\) and local coordination. As X-ray Raman scattering is performed with hard X-rays, this approach is suitable for in situ experiments at high pressure and temperature. It thus may provide indispensable information on oxidation state, electronic structure and local structure of materials that are important for physical and chemical processes of the deep Earth.  相似文献   

14.
This paper presents an overview of the modification of clay minerals by propping apart the clay layers with an inorganic complex. This expanded material is converted into a permanent two-dimensional structure, known as pillared clay or shortly PILC, by thermal treatment. The resulting material exhibits a two-dimensional porous structure with acidic properties comparable to that of zeolites. Synthetic as well as natural smectites serve as precursors for the synthesis of Al, Zr, Ti, Fe, Cr, Ga, V, Si and other pillared clays as well as mixed Fe/Al, Ga/Al, Si/Al, Zr/Al and other mixed metal pillared clays. Biofuels form an interesting renewable energy source, where these porous, catalytically active materials can play an important role in the conversion of vegetable oils, such as canola oil, into biodiesel. Transesterification of vegetable oil is currently the method of choice for conversion to biofuel. The second part of this review focuses on the catalysts and cracking reaction conditions used for the production of biofuel. A distinction has been made in three different vegetable oils as starting materials: canola oil, palm oil and sunflower oil.  相似文献   

15.
王随继 《沉积学报》1998,16(2):109-112
本文主要讨论了柴达木盆地第三系粘土矿物的穆斯堡尔效应,分析了有关粘土矿物的响应特征及铁离子的赋存状态,测定了Fe2+/Fe3+值,并依据该比值对研究区的沉积环境和沉积相作了判别。表明含油气盆地中粘土矿物的铁穆斯堡尔效应不但可用来鉴别含铁的粘土矿物类型,而且在沉积环境和沉积相的判别中具有重要的应用价值。  相似文献   

16.
辽河盆地西部凹陷粘土矿物的成岩作用研究   总被引:4,自引:0,他引:4  
对辽河盆地西部凹陷兴隆台、马圈子、欢喜岭和曙光等地沙河街组不同深度的层位,高升地区(属弱碱性和弱氧化-弱还原环境的沙四段分别采样,经X-光衍射、电子显微镜、化学分析和差热、红外等项目的分析鉴定,研究区内的粘土矿物有: 蒙脱石 在全区较浅的地层(如欢喜岭地区小于1000米,兴隆台地区小于1500米)中均有分布。其主要成份为二八面体的钙蒙脱石。 皂石 为黑色橄榄-辉石玄武岩的次生产物。  相似文献   

17.
Copper speciation in a collection of Japanese geochemical reference materials (JSO‐1, JLk‐1, JSd‐1, ‐2, ‐3 and ‐4, JMs‐1 and JMs‐2) was achieved by sequential extraction and characterised using X‐ray absorption near‐edge structure spectroscopy. In the first step of the extraction, referred to as the acid fraction, between 1% and 20% total Cu within the reference materials was extracted. Such a result is typically accounted for by absorption of Cu onto clay minerals. However, the presence of Cu sulfate (an oxidation product of chalcopyrite) was observed in some of the stream sediments affected by mining activity (JSd‐2 and JSd‐3) instead. Copper was extracted in the reducible fraction (targeting Fe hydroxide and Mn oxide) (2–49% total Cu). Between 2% and 51% Cu was extracted in the oxidised fraction (targeting sulfides and organic matter). X‐ray absorption near‐edge structure spectroscopy clarified that the reducible fraction consisted of Cu bound to Fe hydroxide, whereas the oxidised fraction was a mixture of Cu bound to humic acid (HA) and Cu sulfide. In the oxidisable fraction, chalcopyrite was the predominant species identified in JSd‐2, and Cu bound to HA was the major species identified in JSO‐1 (a soil sample).  相似文献   

18.
目前对于粘土层中伊蒙混层矿物的堆垛结构、单元层含量与岩浆母质及环境条件关系的了解等,仍然十分匮乏.一定沉积环境下火山灰层中粘土矿物组合、以及伊蒙混层堆垛方式精细结构特征,可能记录了沉积(包括成岩作用) 环境对火山物质蚀变产物的影响.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、元素地球化学分析、氧同位素分析方法等方法,对贵州新民深海相二叠系-三叠系(P-T) 界线附近蚀变火山灰层的地球化学特征、粘土矿物精细结构特征等进行了深入研究.结果表明,4个火山灰粘土层均含有2种具有R3结构、不同混层比的伊蒙混层矿物相,且均出现粘土矿物集合体取代原先的火山碎屑颗粒或在颗粒表面生长的现象,粘土矿物形成于沉积-成岩阶段因而其泥质结构被保留;样品XM-5-1和XM-5-2的Fe3+原子数分别为0.16和0.17个且具有明显Eu负异常和较低的K2O含量,而XM-5-3和XM-5-4的Fe3+原子数均为0.14个,说明相对于前2个粘土层,后2个的岩浆母质更加偏向酸性而表现为成岩蚀变程度更强.粘土矿物的氧同位素组成为17.3‰~18.1‰,与常温下蒙脱石与海水的平衡数值相近,表明粘土矿物化学组成与海底成岩蚀变环境有关,而不同火山灰层的粘土矿物学特征则主要取决于岩浆岩母质以及成岩蚀变强度.   相似文献   

19.
Reduction of octahedral Fe in the crystalline structure of smectites influences, possibly controls, surface-sensitive physical and chemical properties. The purpose of this study was to investigate if reduction of structural Fe by Na-dithionite or bacteria affects the chemical environment of constituent cations in montmorillonite, employing solid state multinuclear (29Si and 27Al) magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Reduction of structural Fe resulted in a positive (down field) chemical shift of the main Si Q3 (Q3(0Al)) site which was strongly correlated with Fe(II) content and inferred that distortions in Si-OT (T=Si, Al) bond angles and Si-O bond lengths occur with increasing layer charge. The line width (W) of the 29Si Q3 signal also increased with increasing levels of reduction. No change occurred in the position of the peak maximum for the octahedral Al (27AlVI) signal; however, an increased W was observed for this peak with increasing Fe(II) content. These results are attributed to decreases in Si-O-T bond angles and Si-O bond distances, corresponding to a better fit between the tetrahedral and octahedral sheets brought about by the presence of Fe(II) in the clay structure. The increased 27AlVI signal width (W) may also be due to a lessening of the paramagnetic influence of Fe(III) nuclei and enhancement of 27AlVI signals with different quadrupole coupling constants (QCC). Multinuclear MAS NMR analyses of dithioniteand microbially-reduced montmorillonite indicate that reduction of structural Fe caused reversible changes in the smectite structure, at least as far as this method could discern.  相似文献   

20.
鄂尔多斯盆地杭锦旗地区上古生界砂岩储层中普遍发育粘土矿物,根据岩心薄片观察,自然γ能谱测井交会图识别出的粘土矿物类型有高岭石、伊利石、蒙脱石、绿泥石。薄片分析按粘土矿物形成方式划出沉积粘土和成岩粘土(蚀变、转变及化学成因粘土),以及按其产出状态尚划出构造(骨架)粘土和结构(填隙)粘土,并定量分析出构造粘土和结构粘土含量在多数层段分别为20%以上与10%~18%。依据自然γ能谱测井分析采用多元线性逐步回归分析法,查明各粘土矿物含量同T h,U,K质量分数之间的相关系数都大于0.85,建立了粘土矿物定量计算模型X=a-b×T h c×U d×T h/K还对储层中粘土矿物进行预测及粘土矿物的纵向分布特征分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号