首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
《Comptes Rendus Geoscience》2018,350(7):393-402
Spectral UV records of solar irradiance at stations over Europe, Canada, and Japan were used to study long-term trends at 307.5 nm for a 25-year period, from 1992 to 2016. Ground-based measurements of total ozone, as well as satellite measurements of the Aerosol Index, the Total Cloud Cover and the surface reflectivity were also used in order to attribute the estimated changes of the UV to the corresponding changes of these factors. The present study shows that over the Northern Hemisphere, the long-term changes in UV-B radiation reaching the Earth's surface vary significantly over different locations, and that the main drivers of these variations are changes in aerosols and total ozone. At high latitudes, part of the observed changes may also be attributed to changes in the surface reflectivity. Over Japan, the UV-B irradiance at 307.5 nm has increased significantly by ∼3%/decade during the past 25 years, possibly due to the corresponding significant decrease of its absorption by aerosols. It was found that the greatest part of this increase took place before the mid-2000s. The only European station, over which UV radiation increases significantly, is that of Thessaloniki, Greece. Analysis of the clear-sky irradiance for the particular station shows increasing irradiance at 307.5 nm by ∼3.5%/decade during the entire period of study, with an increasing rate of change during the last decade, possibly again due to the decreasing absorption by aerosols.  相似文献   

2.
Activities to provide energy for an expanding population are increasingly disrupting and changing the concentration of atmospheric gases that increase global temperature. Increased CO2 and temperature have a clear effect on growth and production of rice as they are key factors in photosynthesis. Rice yields could be increased with increased levels of CO2, however, the rise of CO2 may be accompanied by an increase in global temperature. The effect of doubling CO2 levels on rice production was predicted using rice crop models. They showed different effects of climate change in different countries. A simulation of the Southeast Asian region indicated that a doubling of CO2 increases yield, whereas an increase in temperature decreases yield.Enhanced UV-B radiation resulting for stratographic ozone depletion has been demonstrated to significantly reduce plant height, leaf area and dry weight of two rice cultivars under glasshouse conditions. Data are still insufficient, however, for conclusive results on the effect of UV-B radiation on rice growth under field conditions.Rice production itself has a significant effect on global warming and atmospheric chemistry through methane emission from flooded ricefields. Water regime, soil properties and the rice plant are major factors controlling the flux of methane in ricefields. Global and regional estimates of methane emission rates are still highly uncertain and tentative. Integration of mechanistic modeling of methane fluxes with geographic information systems of factors controlling these processes are required to improve estimates and predictions.  相似文献   

3.
The correspondence between atmospheric CO2 concentrations and globally averaged surface temperatures in the recent past suggests that this coupling may be of great antiquity. Here, I compare 490 published proxy records of CO2 spanning the Ordovician to Neogene with records of global cool events to evaluate the strength of CO2-temperature coupling over the Phanerozoic (last 542 my). For periods with sufficient CO2 coverage, all cool events are associated with CO2 levels below 1000 ppm. A CO2 threshold of below ∼500 ppm is suggested for the initiation of widespread, continental glaciations, although this threshold was likely higher during the Paleozoic due to a lower solar luminosity at that time. Also, based on data from the Jurassic and Cretaceous, a CO2 threshold of below ∼1000 ppm is proposed for the initiation of cool non-glacial conditions. A pervasive, tight correlation between CO2 and temperature is found both at coarse (10 my timescales) and fine resolutions up to the temporal limits of the data set (million-year timescales), indicating that CO2, operating in combination with many other factors such as solar luminosity and paleogeography, has imparted strong control over global temperatures for much of the Phanerozoic.  相似文献   

4.
It was shown that the history of the biosphere is closely related to processes caused by low solar luminosity. Solar radiation is insufficient to maintain the Earth’s surface temperature above the freezing point of water. Positive temperatures are kept owing to the presence of greenhouse gases in the atmosphere: CO2, CH4, and others. Certain stages in the development of the biosphere and climate are related to these effects. Methane was the main carbon-bearing gas in the primordial atmosphere. It compensated the low solar luminosity. Life originated under the reduced conditions of the early Earth. Methane-producing biota was formed. Methane remained to be the main greenhouse gas in the Archean. The release of molecular oxygen into the atmosphere 2.4 Ga ago resulted in the disruption of the established mechanism of the compensation of the low solar luminosity. Methane ceased to cause a significant greenhouse effect, and the content of carbon dioxide was insufficient to play this role. A global glaciation began and had lasted for approximately 200 million years. However, the increasing CO2 content in the atmosphere reached eventually a level sufficient for the compensation for the low solar luminosity. The glaciation period came to an end. Simultaneously, a conflict arose between the role of CO2 as a gas controlling the thermal regime of the planet and as an initial material for biota production. As long as the resource of biotic carbon was inferior to that of atmospheric CO2, the uptake of atmospheric CO2 related to sporadic increases in biologic production was insufficient for a significant change in the thermal regime. This was the reason for a long-term climate stabilization for 1.5 billion years. By 0.8 Ga, the resource of oceanic biota reached the level at which variations in the uptake of atmospheric CO2 related to variations in the production of organic and carbonate carbon became comparable with the resource of atmospheric CO2. Since then, an oscillatory equilibrium has been established between the intensity of biota development and climate-controlling CO2 content in the atmosphere. Glaciation and warming periods have alternated. These changes were triggered by various geologic events: intensification or attenuation of volcanism; growth, breakup, or migration of continents; large-scale magmatism; etc. A new relation between atmospheric CO2 and biotic carbon was established in response to the emergence of terrestrial biota and the appearance of massive buffers of organic carbon on land. The interrelation of the biosphere and climate changed.  相似文献   

5.
保广裕  张静  周丹  马守存  刘玮 《冰川冻土》2017,39(3):563-571
利用西宁、刚察、格尔木、玉树和玛沁5站的1971-2014年逐日总辐射资料和青海省50个气象台站的温度、降水和日照时数等气象资料,分析了太阳辐射量与气象要素的内在关系,建立了无辐射观测资料地区的太阳辐射推算方法,并根据推算出的各气象站点太阳辐射量,分析了青海省全境太阳辐射量变化规律及分布特征。研究结果表明:青海省年太阳总辐射量在5 668~7 091 MJ·m-2之间,由西北向东南逐渐递减,全省年太阳总辐射量超过6 000 MJ·m-2的有42个站点,占全省总站点的84%。太阳总辐射量在春、夏季自东南向西北部逐渐增加,在秋季自西北向东南部逐渐减小,冬季全省各地差异较小。青海省4-8月的太阳辐射量最强,旬太阳辐射量主要集中在3月上旬-10月上旬,周太阳辐射量主要集中在第12周-第43周。青海省太阳日辐射变化趋势均呈抛物线型,早晨和傍晚辐射值较低,日出后开始呈上升趋势,北京时间13:00左右达到最高值后开始下降。日辐射持续时间从3月开始增加,9月开始减少。  相似文献   

6.
研究地下水埋深对淮北平原冬小麦耗水量的影响,对浅埋区农业水管理具有重要意义。基于2017—2020年五道沟水文水资源实验站大型称重式蒸渗仪群,模拟不同地下水埋深下冬小麦蒸散发变化过程,以蒸散量表征小麦耗水的变化,识别影响小麦耗水的关键环境因子,探索不同情景小麦耗水特征。全生育期内各地下水埋深0.5,1.0,2.0,3.0 m下小麦蒸散量依次为510.50,499.33,567.88,727.88 mm,各埋深下表层10 cm处土壤含水率与蒸散量相关系数依次为?0.42,?0.69,?0.53,?0.43;依据太阳辐射量划分3类典型日,典型日内蒸散强度为:强辐射日约0.30 mm/h、弱辐射日约0.07 mm/h、微弱辐射日约0.03 mm/h;蒸散峰历时依次为:5:00—20:00、7:00—17:00和9:00—17:00;太阳辐射强时,地下水埋深对蒸散强度峰值出现的时间影响较小,而太阳辐射过弱时,地下水埋深大会阻滞能量传输,蒸散强度峰值滞后;表层土壤水是蒸散发的主要来源,尤其在1.0,2.0 m埋深下表层土壤水对蒸散发贡献率更高;太阳辐射、净辐射和土壤热通量正向驱动小麦耗水,表层土壤水分、平均气温和空气湿度反向驱动。  相似文献   

7.
Fluid infiltration into retrograde granulites of the Southern Marginal Zone(Limpopo high grade terrain)is exemplified by hydration reactions.shear zone hosted metasomatism,and lode gold mineralisation.Hydration reactions include the breakdown of cordierite and orthopyroxene to gedrite kyanite,and anthophyllite,respectively.Metamorphic petrology,fluid inclusions,and field data indicate that a low H_2O-activity carbon-saturated CO_2-rich and a saline aqueous fluid infiltrated the Southern Marginal Zone during exhumation.The formation of anthophyllite after orthopyroxene eslablished a regional retrograde anthophyllite-in isograd and occurred at P-T conditions of- 6 kbar and 610 C,which fixes the minimum mole fraction of II.0 in the CO_2-rich fluid phase at- 0.1.The maximum H_2O mole fraction is hxed by the lower temperature limit(~800℃) for partial melting at ~0.3.C-O-H fluid calculations show that the CO_2-rich fluid had an oxygen fugacity that was 0.6 log10 units higher than that of the fayalite-magnetitequartz buffer and that the CO_2/(CO_2+CH_4) mole ratio of this fluid was 1.The presence of dominantly relatively low density CO_2-rich fluid inclusions in the hydrated granulites indicates that the fluid pressure was less than the lithostatic pressure.This can be explained by strike slip faulting and/or an increase of the rock permeability caused by hydration reactions.  相似文献   

8.
Reported herein are the results of eight soil CO2 efflux surveys performed from 2006 to 2011 at Timanfaya Volcanic Field (TVF), Lanzarote Island with the aim of evaluating the long- and short-term temporal variations of the diffuse CO2 emission. Soil CO2 efflux values ranged from non-detectable up to 34.2 g m−2 d−1, with the highest values measured in September 2008. Conditional sequential Gaussian simulations (sGs) were applied to construct soil CO2 efflux distribution maps and to estimate the total CO2 output from the studied area at the TVF. Soil CO2 efflux maps showed a high spatial and temporal variability. Total CO2 emission rates ranged between 41 and 518 t d−1, February 2011 (winter) being the season when maximum diffuse CO2 emission rates were observed. To investigate the influence of external variables on the soil CO2 efflux, a geochemical station (LZT01) was installed at TVF to measure continuously the soil CO2 efflux between July 2010 and March 2012 Since external factors such as barometric pressure, rainfall, soil water content, soil and air temperatures, and wind speed influence strongly the observed soil CO2 effluxes, multiple regression analysis was applied to the time series recorded by the automatic geochemical station LZT01 to remove the contribution of these external factors. The influence of meteorological variables on soil CO2 efflux oscillations accounts for 13% of total variance, with barometric pressure, rainfall and/or soil water content having the most influence in the control of the soil CO2 efflux. These observations along with the results from the eight soil gas surveys performed at TVF indicate that the short and long-term trends in the diffuse CO2 degassing are mainly controlled by environmental factors.  相似文献   

9.
An increase in the transmission of solar radiation in the UV-B region (specifically, 290–320 nm) is expected to occur as a result of anthropogenic degradation of stratospheric ozone. The potential impact of increased levels of UV-B radiation upon the biosphere is of ecological concern. In a previous study a community of estuarine organisms received a daily exposure to a simulated solar spectrum enhanced in UV-B radiation for a period of six weeks. A dominant species of diatom growing at the surface of these communities was isolated and identified to beMelosira nummuloides. Short chains of this diatom were irradiated for a four-hour period on each of three consecutive days. Fluorescent sunlamps filtered by a 290 nm cut-off filter (0.13–0.50 mm cellulose acetate) or a 315 nm cut-off filter (0.13mm Mylar ‘S’) provided a range of fluence which closely approximated natural fluence levels. A least squares regression analysis of the number of cell divisions on the biologically weighted fluence indicated a significant depression in the growth of this species by radiation in the 290–320 nm waveband.  相似文献   

10.
Evidence from laboratory experiments indicates that fractionation against the heavy stable isotope of carbon (Δ13C) by bryophytes (liverworts and mosses) is strongly dependent on atmospheric CO2. This physiological response may therefore provide the basis for developing a new terrestrial CO2 proxy [Fletcher, B.J., Beerling, D.J., Brentnall, S.J., Royer, D.L., 2005. Fossil bryophytes as recorders of ancient CO2 levels: experimental evidence and a Cretaceous case study. Global Biogeochem. Cycles19, GB3012]. Here, we establish a theoretical basis for the proxy by developing an extended model of bryophyte carbon isotope fractionation (BRYOCARB) that integrates the biochemical theory of photosynthetic CO2 assimilation with controls on CO2 supply by diffusion from the atmosphere. The BRYOCARB model is evaluated against measurements of the response of liverwort photosynthesis and Δ13C to variations in atmospheric O2, temperature and irradiance at different CO2 concentrations. We show that the bryophyte proxy is at least as sensitive to variations in atmosphere CO2 as the two other leading carbon isotope-based approaches to estimating palaeo-CO2 levels (δ13C of phytoplankton and of paleosols). Mathematical inversion of BRYOCARB provides a mechanistic means of estimating atmospheric CO2 levels from fossil bryophyte carbon that can explicitly account for the effects of past differences in O2 and climate.  相似文献   

11.
Over the past 10–15 years, solar ultraviolet B (UV-B, 290–320 nm) levels have increased significantly at mid-latitude areas of the Northern and Southern Hemispheres. These increases in UV-B are linked to reductions of stratospheric ozone. Although the variables that affect UV-B penetration into water columns are still under active investigation, there are typically strong correlations between dissolved organic carbon (DOC), chlorophylla (chla), and UV attenuation. This is particularly significant in the context of possible UV-B impacts on marine coastal systems, since DOC and chla are usually much more highly concentrated in these waters than in the open ocean. Observations indicate that the early life stages of crustacean zooplankton and ichthyoplankton present in the first meter of coastal water columns (like only a small percentage of the total population) are susceptible to UV-B radiation. Variability in cloud cover, water transparency (and the variables that affect it), and vertical distribution and displacement of organisms within the mixed layer have a greater effect on the flux of UV-B radiation to which plankton are exposed than will ozone layer depletion. Although exposure to UV-B can negatively affect planktonic organisms, such directs effects are likely minimal in coastal zones, and within the context of all the other environmental factors that produce the very high levels of mortality typically observed in their early life stages. Indirect effects (e.g., UV-B-induced reduction in the nutritional quality of the food base) have not as yet been adequately evaluated.  相似文献   

12.
Monitoring soil CO2 respiration with chamber measurements and identifying controlling factors such as the diversity of vegetation species, moisture and temperature can help guide desert scrubland management. Soil CO2 respiration and potential controlling factors at four sites in desert scrubland were examined along the Sangong River Basin (SRB) in northwestern China in 2004. Soil CO2 respiration descended along the SRB as did the diversity of vegetation species, air temperature and air humidity. The two sites of the field station (FS) and the north desert (ND) and the low reaches of the SRB among these locations were monitored to analyze the effects of pH value, soil organic carbon (SOC), total nitrogen (TN) and calcium carbonate (CaCO3) on soil CO2 respiration during the growing season in 2005. The ND site was located at the southern edge of the Gurbantunggut Desert; the FS site was in the border area of the SRB Alluvial Fan. One-way ANOVA was performed. The result showed that air humidity and CaCO3 content had a strong influence on soil CO2 respiration; SOC content was a limitation to soil CO2 respiration in the arid-desert zone. Effective management activities can attenuate soil CO2 respiration and keep carbon balance trends at a desirabe level in desert scrublands.  相似文献   

13.
http://www.sciencedirect.com/science/article/pii/S1674987112000898   总被引:5,自引:2,他引:3  
In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturbations, when extensive glaciations occurred, together with alternating warm periods which were accompanied by atmospheric oxygenation. The younger of these two episodes of climatic oscillation preceded the Cambrian “explosion” of metazoan life forms, but similar extreme climatic conditions existed between about 2.4 and 2.2 Ga. Over long time periods, changing solar luminosity and mantle temperatures have played important roles in regulating Earth's climate but both periods of climatic upheaval are associated with supercontinents. Enhanced weathering on the orogenically and thermally buoyed supercontinents would have stripped CO2 from the atmosphere, initiating a cooling trend that resulted in continental glaciation. Ice cover prevented weathering so that CO2 built up once more, causing collapse of the ice sheets and ushering in a warm climatic episode. This negative feedback loop provides a plausible explanation for multiple glaciations of the Early and Late Proterozoic, and their intimate association with sedimentary rocks formed in warm climates. Between each glacial cycle nutrients were flushed into world oceans, stimulating photosynthetic activity and causing oxygenation of the atmosphere. Accommodation for many ancient glacial deposits was provided by rifting but escape from the climatic cycle was predicated on break-up of the supercontinent, when flooded continental margins had a moderating influence on weathering. The geochemistry of Neoproterozoic cap carbonates carries a strong hydrothermal signal, suggesting that they precipitated from deep sea waters, overturned and spilled onto continental shelves at the termination of glaciations. Paleoproterozoic (Huronian) carbonates of the Espanola Formation were probably formed as a result of ponding and evaporation in a hydrothermally influenced, restricted rift setting. Why did metazoan evolution not take off after the Great Oxidation Event of the Paleoproterozoic? The answer may lie in the huge scar left by the ~2023 Ma Vredefort impact in South Africa, and in the worldwide organic carbon-rich deposits of the Shunga Event, attesting to the near-extirpation of life and possible radical alteration of the course of Earth history.  相似文献   

14.
To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth, we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 °C and 500 bars. During the experiments, the total carbonic acid concentration (ΣCO2) in the fluid decreased from approximately 65 to 9 mmol/kg. Carbonate minerals, magnesite, and subordinate amount of dolomite were formed via the water-rock interaction. The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h, which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature. As seen in previous hydrothermal experiments using komatiite, ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration. Considering carbonate mineralogy over the temperature range of natural hydrothermal fields, H2 generation is likely suppressed at temperatures below approximately 300 °C due to the formation of the Mg-bearing carbonates. Nevertheless, H2 concentration in fluid at 300 °C could be still high due to the temperature dependency of magnetite stability in ultramafic systems. Moreover, the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth. Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle. This process may have reduced the huge initial amount of CO2 on the surface of the early Earth. Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle, even in hot subduction zones.  相似文献   

15.
Xihu desert wetland is an important and unusual environment in China or even in the world. However, until now, little research has been focused on the microclimate and CO2 flux characteristics in this area. This paper reports the characteristics of daily variations of microclimate and CO2 flux in the Dunhuang Xihu desert wetland, based on data observed in the desert wetland during a period of continuous fine weather in summer 2012. Results indicate that the characteristics of the micrometeorology were significantly affected by the land–lake breeze during the study period, and updrafts were prevalent in this region. The friction wind speed and the vertical velocity were much greater than those in the Maqu grasslands. The energy budget was strongly imbalanced: the latent heat flux was significantly higher than the sensible flux. The daily mean values of total solar radiation and net radiation were larger than those in Maqu grasslands and Jinta oasis. There was a temperature inversion and inverse humidity gradient in the atmospheric surface layer at night. The desert wetland ecosystem was a carbon sink during the whole of the observation period, and the maximum rate of carbon absorption usually occurred at about 11:00 hr each day in this region.  相似文献   

16.
To account for the annual intensity of wildland fires, a theory has been formerly proposed : it is based on the effect of UV-B radiation on the sensitiveness of plants to fire ignition and propagation. It accounts very satisfactorily for the statistics of annual burned area in the French Mediterranean region. The paper is more particularly devoted to daily variation of the total ozone content of the atmosphere and its possible large daily drop : in the French Mediterranean region, large fires occur in general at the end of such drops, simultaneously in different parts of this region. The UV-B sensitiveness theory based on annual data may predict such large fire occurrence. So, taking into account the daily variation of ozone and solar flux helps to make short-term forecasts of the possibility of large fires in a determined region.  相似文献   

17.
Crushed rock from two caprock samples, a carbonate-rich shale and a clay-rich shale, were reacted with a mixture of brine and supercritical CO2 (CO2–brine) in a laboratory batch reactor, at different temperature and pressure conditions. The samples were cored from a proposed underground CO2 storage site near the town of Longyearbyen in Svalbard. The reacting fluid was a mixture of 1 M NaCl solution and CO2 (110 bar) and the water/rock ratio was 20:1. Carbon dioxide was injected into the reactors after the solution had been bubbled with N2, in order to mimic O2-depleted natural storage conditions. A control reaction was also run on the clay-rich shale sample, where the crushed rock was reacted with brine (CO2-free brine) at the same experimental conditions. A total of 8 batch reaction experiments were run at temperatures ranging from 80 to 250 °C and total pressures of 110 bar (∼40 bar for the control experiment). The experiments lasted 1–5 weeks.Fluid analysis showed that the aqueous concentration of major elements (i.e. Ca, Mg, Fe, K, Al) and SiO2 increased in all experiments. Release rates of Fe and SiO2 were more pronounced in solutions reacted with CO2–brine as compared to those reacted with CO2-free brine. For samples reacted with the CO2–brine, lower temperature reactions (80 °C) released much more Fe and SiO2 than higher temperature reactions (150–250 °C). Analysis by SEM and XRD of reacted solids also revealed changes in mineralogical compositions. The carbonate-rich shale was more reactive at 250 °C, as revealed by the dissolution of plagioclase and clay minerals (illite and chlorite), dissolution and re-precipitation of carbonates, and the formation of smectite. Carbon dioxide was also permanently sequestered as calcite in the same sample. The clay-rich shale reacted with CO2–brine did not show major mineralogical alteration. However, a significant amount of analcime was formed in the clay-rich shale reacted with CO2-free brine; while no trace of analcime was observed in either of the samples reacted with CO2–brine.  相似文献   

18.
This study was performed to identify the individual and combined effects of the most important parameters that control mercury (Hg) emissions from soil surfaces: temperature, UV-B exposure, and soil water content. Both soil temperature and UV-B exposure positively affected Hg emissions; however, the increment in Hg emissions was significantly different between wet and dry soils. Mercury emissions from wet soil were more sensitive to an increase in soil temperature than dry soil; however, at constant temperature dry soil emissions were more sensitive than wet soil to changes in UV-B exposure. It was also observed that even after the relative humidity in the soil pores (RHsp) dropped to nearly 0, the Hg emissions were still higher for initially wet soil than for dry soil, suggesting that initially high water content continued to promote Hg reduction mechanisms for an extended period. These results show the interacting effects of soil moisture with other important parameters. At constant water content, Hg emissions increased the most when the soil was exposed to UV-B radiation, followed by UV-A radiation. With UV-C exposure, atmospheric Hg deposition and O3 destruction were simultaneously observed.  相似文献   

19.
This paper is devoted to experimental investigations of the hydro-mechanical–chemical coupling behaviour of sandstone in the context of CO2 storage in aquifers. We focused on the evolution of creep strain, the transport properties and the elastic modulus of sandstone under the effect of CO2–brine or CO2 alone. A summary of previous laboratory results is first presented, including mechanical, poromechanical and hydro-mechanical–chemical coupling properties. Tests were then performed to investigate the evolution of the creep strain and permeability during the injection of CO2–brine or CO2 alone. After the injection of CO2–brine or CO2 alone, an instantaneous volumetric dilatancy was observed due to the decrease in the effective confining stress. However, CO2 alone had a significant influence on the creep strain and permeability compared to the small influence of CO2–brine. This phenomenon can be attributed to the acceleration of the CO2–brine–rock reaction by the generation of carbonic acid induced by the dissolution of CO2 into the brine. The original indentation tests on samples after the CO2–brine–rock reaction were also performed and indicated that the elastic modulus decreased with an increasing reaction time. The present laboratory results can advance our knowledge of the hydro-mechanical–chemical coupling behaviour of sandstone in CO2 storage in aquifers.  相似文献   

20.
The photosynthetic fractionation of carbon isotopes by blue-green algae in laboratory culture is dependent in a non-linear fashion on the CO2 concentration in the feed gas. For the three species tested, the minimum fractionation occurred at a CO2 concentration of 0.2% in air and was approximately zero for the two marine species tested. Enrichment of C12 in the reduced carbon is not an inevitable result of photosynthetic carbon fixation. Temperature and pH had no detectable effect on fractionation. The maximum fractionation observed in the laboratory cultures or in recent blue-green algal mats was 18‰. Differences in the isotope ratio of coexisting oxidized and reduced carbon in Precambrian stromatolites are as great as 31‰. Present carbon isotopic evidence is not consistent with the idea that blue-green algae were major contributors to the organic matter in Precambrian sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号