首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Recolonization dynamics from disturbance on a Philippine mixed seagrass meadow, containing species spanning more than 10-fold in rhizome elongation rates and reproductive effort, was examined by following the recovery of a 1,200 m2 gap over 2.5 yr. The objective was to assess the contribution of contrasting species to the recovery process and to evaluate the importance of sexual versus vegetative colonization. Large, slow-growing species,Thalassia hemprichii andEnhalus acoroides, that produce large, broadly-dispersed seeds dominated sexual colonization with a total of 2,643 and 210 seedlings, respectively, recruiting to the area. Despite very rapid turnover of sexual recruits, the high frequency of seedling establishment ensured successful development of new patches in areas devoid of vegetation, leading to a scattered and evenly distributed presence of vegetation inside the gap. The small seagrass speciesCymodocea rotundata andHalodule uninervis, characterized by fast rhizome elongation rates but low reproductive output and limited seed dispersal, were the major contributors to the overall 450 m2 increase in vegetation cover through fast lateral extension (144±6 cm yr−1) from meadow edge and surviving patches, forming a compact vegetation cover in one edge of the denuded area. We conclude that contrasting recruitment strategies in the mixed-species seagrass community examined have implications for colonization potential at different spatial scales. Fast clonal growth is only an efficient mechanism for colonization of disturbances within established meadows (small gaps), whereas the large species, which combined high reproductive output with high seed dispersal capacity, may act to accelerate the colonization process in large gaps or distant from established meadows.  相似文献   

2.
Studies of seagrass meadows have shown that the production of algal epiphytes attached to seagrass blades approaches 20% of the seagrass production and that epiphytes are more important as food for associated fauna than are the more refractory seagrass blades. Since epiphytes may compete with seagrasses for light and water column nutrients, excessive epiphytic fouling could have serious consequences for seagrass growth. We summarize much of the literature on epiphytegrazer relationships in seagrass meadows within the context of seagrass growth and production. We also provide insights from mathematical modeling simulations of these relationships for a Chesapeake BayZostera marina meadow. Finally we focus on future research needs for more completely understanding the influences that epiphyte grazers have on seagrass production.  相似文献   

3.
The effects of seagrass bed geometry on wave attenuation and suspended sediment transport were investigated using a modified Nearshore Community Model (NearCoM). The model was enhanced to account for cohesive sediment erosion and deposition, sediment transport, combined wave and current shear stresses, and seagrass effects on drag. Expressions for seagrass drag as a function of seagrass shoot density and canopy height were derived from published flume studies of model vegetation. The predicted reduction of volume flux for steady flow through a bed agreed reasonably well with a separate flume study. Predicted wave attenuation qualitatively captured seasonal patterns observed in the field: wave attenuation peaked during the flowering season and decreased as shoot density and canopy height decreased. Model scenarios with idealized bathymetries demonstrated that, when wave orbital velocities and the seagrass canopy interact, increasing seagrass bed width in the direction of wave propagation results in higher wave attenuation, and increasing incoming wave height results in higher relative wave attenuation. The model also predicted lower skin friction, reduced erosion rates, and higher bottom sediment accumulation within and behind the bed. Reduced erosion rates within seagrass beds have been reported, but reductions in stress behind the bed require further studies for verification. Model results suggest that the mechanism of sediment trapping by seagrass beds is more complex than reduced erosion rates alone; it also requires suspended sediment sources outside of the bed and horizontal transport into the bed.  相似文献   

4.
We evaluate if the distribution and abundance ofThalassia testudinum, Syringodium filiforme, andHalodule wrightii within Biscayne Bay, Florida, are influenced by salinity regimes using, a combination of field surveys, salinity exposure experiments, and a seagrass simulation model. Surveys conducted in June 2001 revealed that whileT. testudinum is found throughout Biscayne Bay (84% of sites surveyed),S. filiforme andH wrightii have distributions limited mainly to the Key Biscayne area.H. wrightii can also be found in areas influenced by canal discharge. The exposure of seagrasses to short-term salinity pulses (14 d, 5–45‰) within microcosms showed species-specific susceptibility to the salinity treatments. Maximum growth rates forT testudinum were observed near oceanic salinity values (30–40‰) and lowest growth rates at extreme values (5‰ and 45‰).S. filiforme was the most susceptible seagrass species; maximum growth rates for this species were observed at 25‰ and dropped dramatically at higher and lower salinity.H. wrightii was the most tolerant, growing well at all salinity levels. Establishing the relationship between seagrass abundance and distribution and salinity is especially relevant in South Florida where freshwater deliveries into coastal bays are influenced by water management practices. The seagrass model developed by Fong and Harwell (1994) and modified here to include a shortterm salinity response function suggests that freshwater inputs and associated decreases in salinity in nearshore areas influence the distribution and growth of single species as well as modify competitive interactions so that species replacements may occur. Our simulations indicate that although growth rates ofT. testudinum decrease when salinity is lowered, this species can still be a dominant component of nearshore communities as confirmed by our surveys. Only when mean salinity values are drastically lowered in a hypothetical restoration scenario isH. wrightii able to outcompeteT. testudinum.  相似文献   

5.
In many areas of the North American mid-Atlantic coast, seagrass beds are either in decline or have disappeared due, in part, to high turbidity that reduces the light reaching the plant surface. Because of this reduction in the areal extent of seagrass beds there has been a concomitant diminishment in dampening of water movement (waves and currents) and sediment stabilization. Due to ongoing declines in stocks of suspension-feeding eastern oysters (Crassostrea virginica) in the same region, their feeding activity, which normally serves to improve water clarity, has been sharply reduced. We developed and parameterized a simple model to calculate how changes in the balance between sediment sources (wave-induced resuspension) and sinks (bivalve filtration, sedimentation within seagrass beds) regulate turbidity. Changes in turbidity were used to predict the light available for seagrass photosynthesis and the amount of carbon available for shoot growth. We parameterized this model using published observations and data collected specifically for this purpose. The model predicted that when sediments were resuspended, the presence of even quite modest levels of eastern oysters (25 g dry tissue weight m?2) distributed uniformly throughout the modeled domain, reduced suspended sediment concentrations by nearly an order of magnitude. This increased water clarity, the depth to which seagrasses were predicted to grow. Because hard clams (Mercenaria mercenaria) had a much lower weight-specific filtration rate than eastern oysters; their influence on reducing turbidity was much less than oysters. Seagrasses, once established with sufficiently high densities (>1,000 shoots m?2), damped waves, thereby reducing sediment resuspension and improving light conditions. This stabilizing effect was minor compared to the influence of uniformly distributed eastern oysters on water clarity. Our model predicted that restoration of eastern oysters has the potential to reduce turbidity in shallow estuaries, such as Chesapeake Bay, and facilitate ongoing efforts to restore seagrasses. This model included several simplifiying assumptions, including that oysters were uniformly distributed rather than aggregated into offshore reefs and that oyster feces were not resuspended.  相似文献   

6.
The capacity of seagrass canopies to directly retain sestonic particles was tested by quantifying the rate at which suspended fluorescent tracer particles were retained within a tropical Philippine seagrass meadow and by examining whether the test particles lost from the water column were later bound to seagrass leaves or inside epibionts. The particle loss rates in the presence of seagrass canopies were up to 4 times higher than those in unvegetated and plankton controls. The seagrass canopies trapped particles with a maximum rate of 0.73 (±0.24) h?1. As much as 5% of the particles trapped by the seagrass leaves were physically adhered to the leaf surfaces following rinsing. Particles were also observed to be ingested by protozoa (ciliates and amoeba-like organisms), residing on the surface of the leaves, and may be the dominant particle trapping mechanism by seagrass leaves. These processes should provide an efficient mechanism for the transfer of planktonic production to the benthos, adding to the high organic carbon input maintained by the high production of the seagrass themselves.  相似文献   

7.
We investigated the effects of differing spatial scales of seagrass habitat architecture on the composition and abundance of settling bivalves in a sub-tropical seagrass community. The density of newly settled bivalves was generally greater atThalassia testudinum grass bed edge (<1 m) compared to interior portions of the bed (>10 m). Deviation from this generalized pattern occurred when high densities of newly settled tulip mussels (Modiolus americanus) were recorded from the interior of the meadow, associated with aggregations of adult mussels. Bivalve settling densities appear to reflect settlement shadows of passively delivered larvae, bedload transport of newly settled individuals from unvegetated regions, as well as gregarious settlement among adult conspecifics. We also investigated the impact of seagrass patch shape and size on settlement by using artificial seagrass units (ASU) in separate short-term and long-term experiments. We found a positive relationship between ASU perimeter and bivalve abundance, suggesting that larval encounter rates with seagrass habitat may determine initial settlement patterns. Using ASUs we also investigated the relative role seagrass epiphytes play in determining the density of settling bivalves. Results showed greater settling densities where epiphytic secondary structure was elevated compared to controls, and bivalve density was significantly greater when ASUs were fouled with a natural community of epiphytes, suggesting that both microstructure and biofilms positively influenced bivalve settlement. We conclude that structural components of seagrass habitats increase bivalve settlement at multiple spatial scales, including epiphytic micro-structure, small-scale patch shape and size, and large-scale within habitat differences.  相似文献   

8.
We established trophic guilds of macroinvertebrate and fish taxa using correspondence analysis and a hierarchical clustering strategy for a seagrass food web in winter in the northeastern Gulf of Mexico. To create the diet matrix, we characterized the trophic linkages of macroinvertebrate and fish taxa present inHalodule wrightii seagrass habitat areas within the St. Marks National Wildlife Refuge (Florida) using binary data, combining dietary links obtained from relevant literature for macroinvertebrates with stomach analysis of common fishes collected during January and February of 1994. Heirarchical average-linkage cluster analysis of the 73 taxa of fishes and macroinvertebrates in the diet matrix yielded 14 clusters with diet similarity ≥ 0.60. We then used correspondence analysis with three factors to jointly plot the coordinates of the consumers (identified by cluster membership) and of the 33 food sources. Correspondence analysis served as a visualization tool for assigning each taxon to one of eight trophic guilds: herbivores, detritivores, suspension feeders, omnivores, molluscivores, meiobenthos consumers, macrobenthos consumers and piscivores. These trophic groups, corss-classified with major taxonomic groups, were further used to develop consumer compartments in a network analysis model of carbon flow in this seagrass ecosystem. The method presented here should greatly improve the development of future network models of food webs by providing an objective procedure for aggregating trophic groups.  相似文献   

9.
The power of equations predicting seagrass depth limit (Zc) from light extinction (K z) was tested on data on seagrass depth limits collected from the literature. The test data set comprised 424 reports of seagrass colonization depth and water transparency, including data for 10 seagrass species. This data set confirmed the strong negative relationship betweenZ c andK z. The regression equation in Duarte (1991) overestimated the realized seagrass colonization depths at colonization depths < 5 m, while there was no prediction bias above this threshold. These results indicated that seagrass colonizing turbid waters (K z 0.27 m-1) have higher apparent light requirements than those growing in clearer waters. The relationship between seagrass colonization depth and light attenuation shifts at a threshold of light attenuation of 0.27 m-1, requiring separate equations to predictZ c for seagrass growing in more turbid waters and clearer waters, and to set targets for seagrass restoration and conservation efforts.  相似文献   

10.
Spatial and temporal patterns of distribution and abundance were examined for postsettlement sciaenids collected from seagrass meadows in the Aransas Estuary, Texas. Overall, 5443 sciaenid larvae and early juveniles were identified from biweekly epibenthic sled collections taken from August 1994 to August 1995. Eight species were present in seagrass meadows, with five accounting for over 99.9% of sciaenids collected: silver perch (Bairdiella chrysoura), spotted seatrout (Cynoscion nebulosus), spot (Leiostomus xanthurus), Atlantic croaker (Micropogonias undulatus), and red drum (Sciaenops ocellatus). Settlement to seagrass meadows was partitioned temporally with little overlap among the five species. Postsettlers from inshore spawners (B. chrysoura, C. nebulosus, S. ocellatus) inhabited seagrass meadows during the spring and summer, while individuals from offshore spawners (L. xanthurus, M. undulatus) were present in the late fall and winter. Densities ofB. chrysoura, C. nebulosus, S. ocellatus were highest for small individuals (4–8 mm SL) and these taxa remained in seagrass sites through the early juvenile stage. Conversely,L. xanthurus andM. undulatus maintained longer pelagic periods and generally entered seagrass meadows at larger sizes (10–14 mm SL). Moreover, these taxa were only temporary residents of selected seagrass meadows, apparently migrating to alternative habitats shortly after arrival. During peak settlement, mean and maximum densities among species ranged from 0.1 m?2 to 0.8 m?2 and 0.7 m?2 to 23.8 m?2, respectively. Density and mean size of possettlement sciaenids differed significantly between seagrass species (Halodule wrightii, Thalassia testudinum) and among sites within the estuary.  相似文献   

11.
Studies of fish assemblages between natural and newly recolonized (<4 yr) seagrass meadows have shown no significant differences in community composition between meadow types. However, comparison of natural and well-established (31 yr) recolonized seagrass meadows in the Indian River Lagoon, Florida, showed that, although patterns in fish assemblages are complex and not always consistent, differences were evident. Species richness was higher in natural meadows during spring and autumn while density and species richness were higher in recolonized meadows during summer. Juveniles of all but the five most abundant species were more common in one or the other meadow type. Additionally, species composition was distinctly different between recolonized and natural seagrass meadows, as indicated by UPGMA cluster analysis based on the Morisita-Horn similarity index, Spearman'sr s (r s>0.05 in all but one case), and a maximum of only 58.5% species in common. There were also significant differences in the length-frequency distribution for six of seven abundant species. Our results suggest that a well-established recolonized seagrass meadow has the potential to maintain species complements distinct from nearby natural meadows. Reasons for our differing results may include differences in seagrass morphology and collecting techniques between our study and the former studies. Additionally, species may have a longer time to establish specific habitat-use patterns in well-established compared to newly-formed recolonized meadows. Recolonized seagrass meadows appear to be as suitable a habitat as natural meadows for juvenile and small adult fishes.  相似文献   

12.
An index of structural habitat complexity was devised: the average inter-structural space size within a habitat/the width of the prey organism of concern (Sp/Py). Prey survivorship should be low at Sp/Py<1 as the prey will be effectively excluded from using the habitat as refuge (they cannot maneuver through the spaces). At Sp/Py near to 1, survivorship should be high, as the spaces within the habitat are ideal for the prey and their predators are excluded (assuming they are larger than the prey). As Sp/Py increases, prey survivorship should drop rapidly until reaching a lower plateau where no predators are excluded by the structure. Sp/Py is dimensionless, and is potentially applicable across different scales and habitat types. Some of the predictions of this model were tested using artificial seagrass plots deployed in a seagrass bed in the York River, Virginia. The plots had 5 different structural treatments: control (a base with no ribbon), low, medium and high densities, as well as a heterogeneous treatment (composed of 1/3 low, medium and high density in a single treatment). The abundance of 2 mobile fauna size classes (<3.5 mm width and 3.5 to 9.5 mm width) and total species richness were compared among the different density treatments. The abundance of the smaller fauna increased with increasing density, and this response was proportional to the total surface area of the plots. The small fauna apparently did not respond to the smaller, ideal space sizes associated with the higher density plots. The larger fauna responded to the treatments as well, with the highest abundances occurring in the heterogeneous and high density treatments. The larger fauna did not respond to the structure proportional to the surface area within the plots, and its is possible that they responded to the inter-structural space sizes appropriate to their body sizes, although the results do not clearly support this conclusion. The different treatments did not affect species richness when the effect of total abundance on richness was controlled.  相似文献   

13.
We explain a new method of quantifying seagrass cover and describing seagrass species composition during fisheries-independent monitoring. This new method is similar to a point-intercept method developed to estimate arboreal crown cover, but it uses an aquascope designed for shallow water. The method does not require a diver. Seagrass cover (cover ratio) distinguished different percentage cover categories in 0.25-m2 seagrass plots. Estimates of species composition determined by using the new method were most similar to those obtained by using estimates of aboveground biomass. Within each 141-m2 area sampled with a 21.3-m fish seine, we accurately estimated seagrass cover ratio and species composition with six observations that typically required less than 6 total minutes. Within such areas, 42 trials were conducted to evaluate the precision with which different observers estimated seagrass cover ratio and species composition. In 98% of the trials, observers attained statistically similar estimates of cover ratio, and in 100% of the trials in areas with multiple seagrass species, observers attained statistically similar estimates of species composition. We conclude that the new method provided efficient and reasonably accurate means to quantify seagrass cover and species composition.  相似文献   

14.
The nutritional ecology of macroherbivores in seagrass meadows and the roles of grazing by urchins, fishes and green turtles in tropical systems and waterfowl in temperate systems are discussed in this review. Only a few species of animals graze on living seagrasses, and apparently only a small portion of the energy and nutrients in seagrasses is usually channeled through these herbivores. The general paucity of direct seagrass grazers may be a function of several factors in the composition of seagrasses, including availability of nitrogen compounds, presence of relatively high amounts of structural cell walls, and presence of toxic or inhibitory substances. The macroherbivores, however, can have a profound effect on the seagrass plants, on other grazers and fauna associated with the meadow, and on chemical and decompositional processes occurring within the meadow. Grazing can alter the nutrient content and digestibility of the plant, as well as its productivity. Removal of leaf material can influence interrelations among permanent and transient faunal residents. Grazing also interrupts the detritus cycle. Possible consequences of this disruption, either through acceleration or through decreased source input, and the enhancement of intersystem coupling by increased export and offsite fecal production, are discussed. The extent and magnitude of these effects and their ecological significance in the overall functioning of seagrass meadows only can be speculated, and probably are not uniform or of similar importance in both tropical and temperate seagrass systems. However, areas grazed by large herbivores provide natural experiments in which to test hypotheses on many functional relations in seagrass meadows.  相似文献   

15.
Seagrass both disappeared and recovered within 4 yr in one region of northern Indian River Lagoon (IRL). For the specific area referred to as Turnbull Bay, a relatively pristine area of the IRL, over 100 ha of seagrass completely disappeared from 1996 to 1997 and then recovered by 2000. Based on lagoon-wide mapping from aerial photographs taken every 2–3 years since 1986, coverage of seagrass in Turnbull Bay declined from 124 ha in 1989 to 34 ha by 1999 and increased to 58 ha in 2003. Bi-annual monitoring of fixed seagrass transects tells a more detailed story. Species composition along the Turnbull transect shifted fromHalodule wrightii toRuppia maritima beginning in 1995, and macroalgal abundance increased. By the summer of 1997, seagrass completely disappeared along the transect, as well as in most of the surrounding areas in Turnbull Bay; macroalgae covered much of the sediment surface. No significant water quality changes were detected. Light attenuation and suspended solid values did increase after the seagrass disappeared. Porewater sulfide concentrations, taken after all the grass was gone in 1997, were high (2,000 μM), but did improve by 1998 (1,200 μM). Seagrass recovery was rapid and occurred in the reverse sequence of species loss. Seedlings ofR. maritima were the first colonizers, then patches ofH. wrightii appeared. In 2000,Halophila engelmannii returned in the deeper water (>0.6m). By the summer of 2000, the beds had completely recovered. We conclude that this demise was a natural event caused by a long-term buildup of seagrass biomass and a thick (10–15 cm) layer of organic detritus and ooze. We surmise that such a crash and subsequent recovery may be a natural cycle of decline and recovery within this semirestricted, poorly-flushed area. The frequency of this cycle remains uncertain.  相似文献   

16.
We investigated the relationship between distance from the ocean and the recruitment of ocean-spawned juvenile fish to seagrass shallows within marine dominated Lake Macquarie, a coastal barrier lagoon in Southeast Australia. Samples were taken by seine net every 6 wk between June 1986 and June 1987, at 20 sites established at various distances from the entrance channel. The fish fauna was diverse: 80 species from 39 families were caught, with the Gobiidae, Monacanthidae, Syngnathidae, Tetraodontidae, Mugilidae, Atherinidae, Clupeidae, Mullidae, Sparidae, and Blenniidae being well represented. Ambassis jacksoniensis, Atherinomorus ogilbyi, and Gerres subfasciatus accounted for 46% of all individuals. Thirty-two species were classified as ocean spawners, 38 as lagoon spawners, and 10 as unknown in terms of spawning area. Newly settled juveniles of ocean spawners were concentrated near the lagoon's entrance, where most recruited in spring. This pattern occurred in the absence of a salinity gradient: distance from the ocean coupled with weak internal water circulation appears to limit larval distribution and hence juvenile recruitment. Small juveniles of Rhabdosargus sarba were sufficiently abundant for their subsequent dispersal to be directly traced. On the basis of results for this species, and indirect evidence of dispersal for several others, it is suggested that ocean-spawned juveniles, after settling near the entrance, gradually disperse as they grow and change their habitat. Thus, further from the entrance, their recruitment to seagrass shallows is later, at larger sizes, and in smaller numbers. Newly settled juveniles of lagoon spawners, however, were widely distributed within the lagoon. The optimal recruitment of ocean-spawned juveniles to similar coastal lagoons may depend on suitable habitat being available near the entrance. *** DIRECT SUPPORT *** A01BY081 00003  相似文献   

17.
Beam trawls are a practical method for sampling vagile fauna from deep seagrass beds. The catches of fish and macroinvertebrates associated with Posidonia australis from two beam trawl designs were compared with the catch from a new design of beam trawl. Greater numbers of species and individuals of fish and macroinvertebrates were caught by the new trawl. Its catch also included almost the full range of species taken by the other two trawls. The new trawl was then trialed in the day and at night to compare differences in the catch of species between these times. Trawling at night yielded significantly more species and individuals of macroinvertebrates. In general, more fish were caught at night than during the day, but this was not the case at all sites, nor for all species. We emphasize the need for testing of sampling methods, and consideration of diel behavior patterns, when estimating abundance and species richness of macrofaunal seagrass communities.  相似文献   

18.
19.
Many studies compare utilization of different marine habitats by fish and decapod crustaceans; few compare multiple vegetated habitats, especially using the same sampling equipment. Fish and invertebrates in seagrass, mangrove, saltmarsh, and nonvegetated habitats were sampled during May–August (Austral winter) and December–January (Austral summer) in the Barker Inlet-Port River estuary, South Australia. Sampling was undertaken using pop nets in all habitats and seine nets in seagrass and nonvegetated areas. A total of 7,895 fish and invertebrates spanning 3 classes, 9 orders, and at least 23 families were collected. Only one fish species,Atherinosoma microstoma, was collected in all 4 habitats, 11 species were found in 3 habitats (mangroves, seagrass, and nonvegetated), and 13 species were only caught in seagrass and nonvegetated habitats. Seagrass generally supported the highest numbers of fish and invertebrates and had the greatest species richness. Saltmarsh was at the other extreme with 29 individuals caught from two species. Mangroves and nonvegetated habitats generally had more fish, invertebrates, and species than saltmarsh, but less than seagrass. Analyses of abundances of individual species generally showed an interaction between habitat and month indicating that the same patterns were not found through time in all habitats. All habitats supported distinct assemlages although seagrass and nonvegetated assemblages were similar in some months. The generality of these patterns requires further investigation at other estuaries. Loss of vegetated habitats, particularly seagrass, could result in loss of species richness and abundance, especially for organisms that were not found in other habitats. Although low abundances were found in saltmarsh and mangroves, species may use these habitats for varying reasons, such as spawning, and such use should not be ignored.  相似文献   

20.
The effects of light reduction on community metabolism and sediment sulfate reduction rates (SRR) were assessed experimentally in a shallow (<2.0 m) seagrass (Thalassia testudinum) meadow along Florida's north-central Gulf coast. Nine experimental plots (1.5 m×1.5 m) were shaded differentially to achieve a 0–90% gradient in light reduction within the seagrass meadow. Gross primary production and net community production (NCP), estimated with in situ benthic chamber incubations, decreased with increasing light reduction. The compensation irradiance for community metabolism, i.e., the shading level at which NCP shifted from net autotrophic to net heterotrophic, was determined to be 52.5% of the incoming irradiance at canopy height in the seagrass bed (308.7 μE m−2 s−1 PAR at noon). Sediment SRR, determined with the use of a35S−SO4 2− radiotracer technique, increased quickly (within 5 d) and markedly with increased shade, i.e., simulated light reduction. SRR increased 50-fold when shading exceeded the light compensation point for the seagrass community, rendering the community net heterotrophic. Five days after restoring ambient light conditions, SRR had decreased sharply for all shading treatments. The observed decrease in NCP, coincident with the increase in the SRR with light reduction, suggests that light reduction has an indirect influence on sediment SRR mediated through its effect on seagrass metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号