首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In order to derive the ellipsoidal height of a point Pt, on the physical surface of the earth, and the direction of ellipsoidal normal through Pt, we presente here an iterative procedure rapidly convergent to compute, in a topocentric Cartesian system, the coordinates of Helmert's projection of the ground point Pt onto the reference ellipsoid of revolution .We derive as well the cofactor matrix of total vector of the topocentric coordinates of the above ground point and of its Helmert's projection so that to compute the variance of ellipsoidal height.  相似文献   

2.
Assuming that the gravity anomaly and disturbing potential are given on a reference ellipsoid, the result of Sjöberg (1988, Bull Geod 62:93–101) is applied to derive the potential coefficients on the bounding sphere of the ellipsoid to order e 2 (i.e. the square of the eccentricity of the ellipsoid). By adding the potential coefficients and continuing the potential downward to the reference ellipsoid, the spherical Stokes formula and its ellipsoidal correction are obtained. The correction is presented in terms of an integral over the unit sphere with the spherical approximation of geoidal height as the argument and only three well-known kernel functions, namely those of Stokes, Vening-Meinesz and the inverse Stokes, lending the correction to practical computations. Finally, the ellipsoidal correction is presented also in terms of spherical harmonic functions. The frequently applied and sometimes questioned approximation of the constant m, a convenient abbreviation in normal gravity field representations, by e 2/2, as introduced by Moritz, is also discussed. It is concluded that this approximation does not significantly affect the ellipsoidal corrections to potential coefficients and Stokes formula. However, whether this standard approach to correct the gravity anomaly agrees with the pure ellipsoidal solution to Stokes formula is still an open question.  相似文献   

3.
Vector-based algorithms for the computation of azimuth, elevation and the ellipsoidal normal unit vector from 3D Cartesian coordinates are presented. As a by-product, the formulae for the ellipsoidal normal vector can also be used to iteratively transform rectangular Cartesian coordinates (X, Y, Z) into geodetic coordinates (φ, λ, h) for a height range from −5600 km to 108 km. Comparisons with existing methods indicate that the new transformation can compete with them.  相似文献   

4.
Optimized formulas for the gravitational field of a tesseroid   总被引:7,自引:3,他引:4  
Various tasks in geodesy, geophysics, and related geosciences require precise information on the impact of mass distributions on gravity field-related quantities, such as the gravitational potential and its partial derivatives. Using forward modeling based on Newton’s integral, mass distributions are generally decomposed into regular elementary bodies. In classical approaches, prisms or point mass approximations are mostly utilized. Considering the effect of the sphericity of the Earth, alternative mass modeling methods based on tesseroid bodies (spherical prisms) should be taken into account, particularly in regional and global applications. Expressions for the gravitational field of a point mass are relatively simple when formulated in Cartesian coordinates. In the case of integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will be shown that it is also beneficial to represent the integral kernel in terms of Cartesian coordinates. This considerably simplifies the determination of the tesseroid’s potential derivatives in comparison with previously published methodologies that make use of integral kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the gravitational potential of a homogeneous tesseroid and its derivatives up to second-order are elaborated in this paper. These new formulas do not suffer from the polar singularity of the spherical coordinate system and can, therefore, be evaluated for any position on the globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical evaluation is achieved by means of expanding the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of the integration point. As the structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented in a compact and computationally attractive form. Thus, the use of the optimized tesseroid formulas particularly benefits from a significant decrease in computation time by about 45 % compared to previously used algorithms. In order to show the computational efficiency and to validate the mathematical derivations, the new tesseroid formulas are applied to two realistic numerical experiments and are compared to previously published tesseroid methods and the conventional prism approach.  相似文献   

5.
Cartesian to geodetic coordinates conversion on a triaxial ellipsoid   总被引:1,自引:0,他引:1  
A new method of transforming Cartesian to geodetic (or planetographic) coordinates on a triaxial ellipsoid is presented. The method is based on simple reasoning coming from essentials of vector calculus. The reasoning results in solving a nonlinear system of equations for coordinates of the point being the projection of a point located outside or inside a triaxial ellipsoid along the normal to the ellipsoid. The presented method has been compared to a vector method of Feltens (J Geod 83:129–137, 2009) who claims that no other methods are available in the literature. Generally, our method turns out to be more accurate, faster and applicable to celestial bodies characterized by different geometric parameters. The presented method also fits to the classical problem of converting Cartesian to geodetic coordinates on the ellipsoid of revolution.  相似文献   

6.
Summary Riemann polar/normal coordinates are the constituents to generate the oblique azimuthal projection of geodesic type, here applied to the reference ellipsoid of revolution (biaxial ellipsoid).Firstly we constitute a minimal atlas of the biaxial ellipsoid built on {ellipsoidal longitude, ellipsoidal latitude} and {metalongitude, metalatitude}. TheDarboux equations of a 1-dimensional submanifold (curve) in a 2-dimensional manifold (biaxial ellipsoid) are reviewed, in particular to represent geodetic curvature, geodetic torsion and normal curvature in terms of elements of the first and second fundamental form as well as theChristoffel symbols. The notion of ageodesic anda geodesic circle is given and illustrated by two examples. The system of twosecond order ordinary differential equations of ageodesic (Lagrange portrait) is presented in contrast to the system of twothird order ordinary differential equations of ageodesic circle (Proofs are collected inAppendix A andB). A precise definition of theRiemann mapping/mapping of geodesics into the local tangent space/tangent plane has been found.Secondly we computeRiemann polar/normal coordinates for the biaxial ellipsoid, both in theLagrange portrait (Legendre series) and in theHamilton portrait (Lie series).Thirdly we have succeeded in a detailed deformation analysis/Tissot distortion analysis of theRiemann mapping. The eigenvalues — the eigenvectors of the Cauchy-Green deformation tensor by means of ageneral eigenvalue-eigenvector problem have been computed inTable 3.1 andTable 3.2 (1, 2 = 1) illustrated inFigures 3.1, 3.2 and3.3. Table 3.3 contains the representation ofmaximum angular distortion of theRiemann mapping. Fourthly an elaborate global distortion analysis with respect toconformal Gau-Krüger, parallel Soldner andgeodesic Riemann coordinates based upon theAiry total deformation (energy) measure is presented in a corollary and numerically tested inTable 4.1. In a local strip [-l E,l E] = [-2°, +2°], [b S,b N] = [-2°, +2°]Riemann normal coordinates generate the smallest distortion, next are theparallel Soldner coordinates; the largest distortion by far is met by theconformal Gau-Krüger coordinates. Thus it can be concluded that for mapping of local areas of the biaxial ellipsoid surface the oblique azimuthal projection of geodesic type/Riemann polar/normal coordinates has to be favored with respect to others.  相似文献   

7.
A new theory for high-resolution regional geoid computation without applying Stokess formula is presented. Operationally, it uses various types of gravity functionals, namely data of type gravity potential (gravimetric leveling), vertical derivatives of the gravity potential (modulus of gravity intensity from gravimetric surveys), horizontal derivatives of the gravity potential (vertical deflections from astrogeodetic observations) or higher-order derivatives such as gravity gradients. Its algorithmic version can be described as follows: (1) Remove the effect of a very high degree/order potential reference field at the point of measurement (POM), in particular GPS positioned, either on the Earths surface or in its external space. (2) Remove the centrifugal potential and its higher-order derivatives at the POM. (3) Remove the gravitational field of topographic masses (terrain effect) in a zone of influence of radius r. A proper choice of such a radius of influence is 2r=4×104 km/n, where n is the highest degree of the harmonic expansion. (cf. Nyquist frequency). This third remove step aims at generating a harmonic gravitational field outside a reference ellipsoid, which is an equipotential surface of a reference potential field. (4) The residual gravitational functionals are downward continued to the reference ellipsoid by means of the inverse solution of the ellipsoidal Dirichlet boundary-value problem based upon the ellipsoidal Abel–Poisson kernel. As a discretized integral equation of the first kind, downward continuation is Phillips–Tikhonov regularized by an optimal choice of the regularization factor. (5) Restore the effect of a very high degree/order potential reference field at the corresponding point to the POM on the reference ellipsoid. (6) Restore the centrifugal potential and its higher-order derivatives at the ellipsoidal corresponding point to the POM. (7) Restore the gravitational field of topographic masses ( terrain effect) at the ellipsoidal corresponding point to the POM. (8) Convert the gravitational potential on the reference ellipsoid to geoidal undulations by means of the ellipsoidal Bruns formula. A large-scale application of the new concept of geoid computation is made for the Iran geoid. According to the numerical investigations based on the applied methodology, a new geoid solution for Iran with an accuracy of a few centimeters is achieved.Acknowledgments. The project of high-resolution geoid computation of Iran has been support by National Cartographic Center (NCC) of Iran. The University of Tehran, via grant number 621/3/602, supported the computation of a global geoid solution for Iran. Their support is gratefully acknowledged. A. Ardalan would like to thank Mr. Y. Hatam, and Mr. K. Ghazavi from NCC and Mr. M. Sharifi, Mr. A. Safari, and Mr. M. Motagh from the University of Tehran for their support in data gathering and computations. The authors would like to thank the comments and corrections made by the four reviewers and the editor of the paper, Professor Will Featherstone. Their comments helped us to correct the mistakes and improve the paper.  相似文献   

8.
Based upon a data set of 25 points of the Baltic Sea Level Project, second campaign 1993.4, which are close to mareographic stations, described by (1) GPS derived Cartesian coordinates in the World Geodetic Reference System 1984 and (2) orthometric heights in the Finnish Height Datum N60, epoch 1993.4, we have computed the primary geodetic parameter W 0(1993.4) for the epoch 1993.4 according to the following model. The Cartesian coordinates of the GPS stations have been converted into spheroidal coordinates. The gravity potential as the additive decomposition of the gravitational potential and the centrifugal potential has been computed for any GPS station in spheroidal coordinates, namely for a global spheroidal model of the gravitational potential field. For a global set of spheroidal harmonic coefficients a transformation of spherical harmonic coefficients into spheroidal harmonic coefficients has been implemented and applied to the global spherical model OSU 91A up to degree/order 360/360. The gravity potential with respect to a global spheroidal model of degree/order 360/360 has been finally transformed by means of the orthometric heights of the GPS stations with respect to the Finnish Height Datum N60, epoch 1993.4, in terms of the spheroidal “free-air” potential reduction in order to produce the spheroidal W 0(1993.4) value. As a mean of those 25 W 0(1993.4) data as well as a root mean square error estimation we computed W 0(1993.4)=(6 263 685.58 ± 0.36) kgal × m. Finally a comparison of different W 0 data with respect to a spherical harmonic global model and spheroidal harmonic global model of Somigliana-Pizetti type (level ellipsoid as a reference, degree/order 2/0) according to The Geodesist's Handbook 1992 has been made. Received: 7 November 1996 / Accepted: 27 March 1997  相似文献   

9.
An algorithm for the determination of the spherical harmonic coefficients of the terrestrial gravitational field representation from the analysis of a kinematic orbit solution of a low earth orbiting GPS-tracked satellite is presented and examined. A gain in accuracy is expected since the kinematic orbit of a LEO satellite can nowadays be determined with very high precision, in the range of a few centimeters. In particular, advantage is taken of Newton's Law of Motion, which balances the acceleration vector with respect to an inertial frame of reference (IRF) and the gradient of the gravitational potential. By means of triple differences, and in particular higher-order differences (seven-point scheme, nine-point scheme), based upon Newton's interpolation formula, the local acceleration vector is estimated from relative GPS position time series. The gradient of the gravitational potential is conventionally given in a body-fixed frame of reference (BRF) where it is nearly time independent or stationary. Accordingly, the gradient of the gravitational potential has to be transformed from spherical BRF to Cartesian IRF. Such a transformation is possible by differentiating the gravitational potential, given as a spherical harmonics series expansion, with respect to Cartesian coordinates by means of the chain rule, and expressing zero- and first-order Ferrer's associated Legendre functions in terms of Cartesian coordinates. Subsequently, the BRF Cartesian coordinates are transformed into IRF Cartesian coordinates by means of the polar motion matrix, the precession–nutation matrices and the Greenwich sidereal time angle (GAST). In such a way a spherical harmonic representation of the terrestrial gravitational field intensity with respect to an IRF is achieved. Numerical tests of a resulting Gauss–Markov model document not only the quality and the high resolution of such a space gravity spectroscopy, but also the problems resulting from noise amplification in the acceleration determination process.  相似文献   

10.
B. Heck  K. Seitz 《Journal of Geodesy》2003,77(3-4):182-192
The geodetic boundary value problem (GBVP) was originally formulated for the topographic surface of the Earth. It degenerates to an ellipsoidal problem, for example when topographic and downward continuation reductions have been applied. Although these ellipsoidal GBVPs possess a simpler structure than the original ones, they cannot be solved analytically, since the boundary condition still contains disturbing terms due to anisotropy, ellipticity and centrifugal components in the reference potential. Solutions of the so-called scalar-free version of the GBVP, upon which most recent practical calculations of geoidal and quasigeoidal heights are based, are considered. Starting at the linearized boundary condition and presupposing a normal field of Somigliana–Pizzetti type, the boundary condition described in spherical coordinates is expanded into a series with respect to the flattening f of the Earth. This series is truncated after the linear terms in f, and first-order solutions of the corresponding GBVP are developed in closed form on the basis of spherical integral formulae, modified by suitable reduction terms. Three alternative representations of the solution are discussed, implying corrections by adding a first-order non-spherical term to the solution, by reducing the boundary data, or by modifying the integration kernel. A numerically efficient procedure for the evaluation of ellipsoidal effects, in the case of the linearized scalar-free version of the GBVP, involving first-order ellipsoidal terms in the boundary condition, is derived, utilizing geopotential models such as EGM96.  相似文献   

11.
Summary The standard Mollweide projection of the sphere S R 2 which is of type pseudocylindrical — equiareal is generalized to the biaxial ellipsoid E A,B 2 .Within the class of pseudocylindrical mapping equations (1.8) of E A,B 2 (semimajor axis A, semiminor axis B) it is shown by solving the general eigenvalue problem (Tissot analysis) that only equiareal mappings, no conformal mappings exist. The mapping equations (2.1) which generalize those from S R 2 to E A,B 2 lead under the equiareal postulate to a generalized Kepler equation (2.21) which is solved by Newton iteration, for instance (Table 1). Two variants of the ellipsoidal Mollweide projection in particular (2.16), (2.17) versus (2.19), (2.20) are presented which guarantee that parallel circles (coordinate lines of constant ellipsoidal latitude) are mapped onto straight lines in the plane while meridians (coordinate lines of constant ellipsoidal longitude) are mapped onto ellipses of variable axes. The theorem collects the basic results. Six computer graphical examples illustrate the first pseudocylindrical map projection of E A,B 2 of generalized Mollweide type.  相似文献   

12.
Green's function for the boundary-value problem of Stokes's type with ellipsoidal corrections in the boundary condition for anomalous gravity is constructed in a closed form. The `spherical-ellipsoidal' Stokes function describing the effect of two ellipsoidal correcting terms occurring in the boundary condition for anomalous gravity is expressed in O(e 2 0)-approximation as a finite sum of elementary functions analytically representing the behaviour of the integration kernel at the singular point ψ=0. We show that the `spherical-ellipsoidal' Stokes function has only a logarithmic singularity in the vicinity of its singular point. The constructed Green function enables us to avoid applying an iterative approach to solve Stokes's boundary-value problem with ellipsoidal correction terms involved in the boundary condition for anomalous gravity. A new Green-function approach is more convenient from the numerical point of view since the solution of the boundary-value problem is determined in one step by computing a Stokes-type integral. The question of the convergence of an iterative scheme recommended so far to solve this boundary-value problem is thus irrelevant. Received: 5 June 1997 / Accepted: 20 February 1998  相似文献   

13.
The upward-downward continuation of a harmonic function like the gravitational potential is conventionally based on the direct-inverse Abel-Poisson integral with respect to a sphere of reference. Here we aim at an error estimation of the “planar approximation” of the Abel-Poisson kernel, which is often used due to its convolution form. Such a convolution form is a prerequisite to applying fast Fourier transformation techniques. By means of an oblique azimuthal map projection / projection onto the local tangent plane at an evaluation point of the reference sphere of type “equiareal” we arrive at a rigorous transformation of the Abel-Poisson kernel/Abel-Poisson integral in a convolution form. As soon as we expand the “equiareal” Abel-Poisson kernel/Abel-Poisson integral we gain the “planar approximation”. The differences between the exact Abel-Poisson kernel of type “equiareal” and the “planar approximation” are plotted and tabulated. Six configurations are studied in detail in order to document the error budget, which varies from 0.1% for points at a spherical height H=10km above the terrestrial reference sphere up to 98% for points at a spherical height H = 6.3×106km. Received: 18 March 1997 / Accepted: 19 January 1998  相似文献   

14.
 This paper generalizes the Stokes formula from the spherical boundary surface to the ellipsoidal boundary surface. The resulting solution (ellipsoidal geoidal height), consisting of two parts, i.e. the spherical geoidal height N 0 evaluated from Stokes's formula and the ellipsoidal correction N 1, makes the relative geoidal height error decrease from O(e 2) to O(e 4), which can be neglected for most practical purposes. The ellipsoidal correction N 1 is expressed as a sum of an integral about the spherical geoidal height N 0 and a simple analytical function of N 0 and the first three geopotential coefficients. The kernel function in the integral has the same degree of singularity at the origin as the original Stokes function. A brief comparison among this and other solutions shows that this solution is more effective than the solutions of Molodensky et al. and Moritz and, when the evaluation of the ellipsoidal correction N 1 is done in an area where the spherical geoidal height N 0 has already been evaluated, it is also more effective than the solution of Martinec and Grafarend. Received: 27 January 1999 / Accepted: 4 October 1999  相似文献   

15.
张传定  陆仲连 《测绘学报》1997,26(2):176-183
本文结合椭球域的特点导出了三类椭球域边值问题的准格林函数解。这些解的主项分别是椭球域泊松积分,纽曼积分和司托克斯积分;次项是O(e^2)量级的非谐和级数改正项,可由位系数模型按相应的公式算得。  相似文献   

16.
On computing ellipsoidal harmonics using Jekeli’s renormalization   总被引:2,自引:1,他引:1  
Gravity data observed on or reduced to the ellipsoid are preferably represented using ellipsoidal harmonics instead of spherical harmonics. Ellipsoidal harmonics, however, are difficult to use in practice because the computation of the associated Legendre functions of the second kind that occur in the ellipsoidal harmonic expansions is not straightforward. Jekeli’s renormalization simplifies the computation of the associated Legendre functions. We extended the direct computation of these functions—as well as that of their ratio—up to the second derivatives and minimized the number of required recurrences by a suitable hypergeometric transformation. Compared with the original Jekeli’s renormalization the associated Legendre differential equation is fulfilled up to much higher degrees and orders for our optimized recurrences. The derived functions were tested by comparing functionals of the gravitational potential computed with both ellipsoidal and spherical harmonic syntheses. As an input, the high resolution global gravity field model EGM2008 was used. The relative agreement we found between the results of ellipsoidal and spherical syntheses is 10?14, 10?12 and 10?8 for the potential and its first and second derivatives, respectively. Using the original renormalization, this agreement is 10?12, 10?8 and 10?5, respectively. In addition, our optimized recurrences require less computation time as the number of required terms for the hypergeometric functions is less.  相似文献   

17.
The spacetime gravitational field of a deformable body   总被引:3,自引:0,他引:3  
The high-resolution analysis of orbit perturbations of terrestrial artificial satellites has documented that the eigengravitation of a massive body like the Earth changes in time, namely with periodic and aperiodic constituents. For the space-time variation of the gravitational field the action of internal and external volume as well as surface forces on a deformable massive body are responsible. Free of any assumption on the symmetry of the constitution of the deformable body we review the incremental spatial (“Eulerian”) and material (“Lagrangean”) gravitational field equations, in particular the source terms (two constituents: the divergence of the displacement field as well as the projection of the displacement field onto the gradient of the reference mass density function) and the `jump conditions' at the boundary surface of the body as well as at internal interfaces both in linear approximation. A spherical harmonic expansion in terms of multipoles of the incremental Eulerian gravitational potential is presented. Three types of spherical multipoles are identified, namely the dilatation multipoles, the transport displacement multipoles and those multipoles which are generated by mass condensation onto the boundary reference surface or internal interfaces. The degree-one term has been identified as non-zero, thus as a “dipole moment” being responsible for the varying position of the deformable body's mass centre. Finally, for those deformable bodies which enjoy a spherically symmetric constitution, emphasis is on the functional relation between Green functions, namely between Fourier-/ Laplace-transformed volume versus surface Love-Shida functions (h(r),l(r) versus h (r),l (r)) and Love functions k(r) versus k (r). The functional relation is numerically tested for an active tidal force/potential and an active loading force/potential, proving an excellent agreement with experimental results. Received: December 1995 / Accepted: 1 February 1997  相似文献   

18.
The classical Hammer projection of the sphere, which is azimuthal transverse rescaled equiareal, is generalized to the ellipsoid of revolution. Its first constituent, the azimuthal transverse equiareal projection of the biaxial ellipsoid, is derived giving equations for an equiareal transverse azimuthal projection. The second constituent, the equiareal mapping of the biaxial ellipsoid with respect to a transverse frame of reference and a change of scale, is then considered; results give collections of the general mapping equations generating the ellipsoidal Hammer projection, which lead to a world map. Received: 14 May 1996 / Accepted: 21 February 1997  相似文献   

19.
The differential equations which generate a general conformal mapping of a two-dimensional Riemann manifold found by Korn and Lichtenstein are reviewed. The Korn–Lichtenstein equations subject to the integrability conditions of type vectorial Laplace–Beltrami equations are solved for the geometry of an ellipsoid of revolution (International Reference Ellipsoid), specifically in the function space of bivariate polynomials in terms of surface normal ellipsoidal longitude and ellipsoidal latitude. The related coefficient constraints are collected in two corollaries. We present the constraints to the general solution of the Korn–Lichtenstein equations which directly generates Gau?–Krüger conformal coordinates as well as the Universal Transverse Mercator Projection (UTM) avoiding any intermediate isometric coordinate representation. Namely, the equidistant mapping of a meridian of reference generates the constraints in question. Finally, the detailed computation of the solution is given in terms of bivariate polynomials up to degree five with coefficients listed in closed form. Received: 3 June 1997 / Accepted: 17 November 1997  相似文献   

20.
In this paper we study the following mixed boundary value problem
where is the reference ellipsoid, and T the disturbing potential. With the help of the variational principles of partial differential equations and the expression of ellipsoidal harmonic series, we give a linear system related to the coefficients of the ellipsoidal harmonic series. Hence the solution of the problem can be obtained in the form of ellipsoidal harmonic series, which supplies us an important theoretical basis for making use of data given by satellite altimetry measurements more efficiently. Received: 16 January 1996; Accepted: 22 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号