首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
 The formation of base cations through mineral weathering in forest soils is one of the key parameters in calculating critical loads. Weathering rates in Finland have been estimated using a variety of methods. In the first approach, three weathering rate categories were assigned to soils according to the bedrock type. The second approach was based on an empirical relationship obtained from Swedish field studies. Changes in zirconium content through the soil profile were used to estimate element losses in soil after deglaciation. These calculated losses correlated well with the total calcium and magnesium concentrations in till C-horizons and the effective temperature sum (ETS). Comprehensive geochemical data for the parent till fine fraction (<0.06 mm) was available through the reconnaissance scale till geochemical mapping program of the Geological Survey of Finland (GSF). The equations obtained from Swedish studies were based on the use of the coarse (<2.0 mm) till fraction, and the differences in element concentrations between the fine and coarse size fractions remained a potential source of uncertainty estimating overall weathering rates. In the third approach, new geochemical data from the <2.0 mm till fraction from southern Finland were used to make new weathering rate estimates. The use of soil geochemistry instead of bedrock map classification clearly led to an improvement in the estimates of soil weathering rates in glacied terrains. The use of the fine till fraction (<0.06 mm) in the zirconium approach generally resulted in overestimations of the weathering rate. The new geochemical data for the coarse till fraction (<2 mm) are now consistent with the input requirements of the zirconium method, although the results still require further evaluation. Finnish soil profiles have a shorter weathering history than most of the Swedish ones and the uppermost layer in Finnish podsols has in some cases developed in a different till layer than the C-horizon. Received: 15 October 1995 · Accepted: 8 March 1996  相似文献   

2.
《Applied Geochemistry》1999,14(3):387-394
Mineral weathering rates for two chronosequences of soils have been calculated using an empirical method based on mineralogy, the depletion of elements relative to a conservative element and the computer model PROFILE. Weathering rates calculated by the empirical and depletion methods showed a decrease in rates with soil age whilst those calculated using the PROFILE model showed an increase with soil age. The counter intuitive PROFILE prediction is due to the use of surface area—normalised reaction rate coefficients which assume that: 1) mineral reactivity is constant with time and, 2) total mineral surface area is equivalent to reactive surface area.In Europe, mineral weathering rates in soils are an important input in determining levels of acid deposition above which ecosystem damage will occur (critical loads). As soils in Great Britain and much of NW Europe can range in age from <103 to >105 a, it is suggested that, until computer models can take account of soil age and the concomitant changes in mineral reactivity and surface area, modelled weathering rates will be subject to large uncertainties  相似文献   

3.
地壳风化速率研究综述   总被引:6,自引:1,他引:6  
地壳风化速率研究的理论基础是质量守恒原理和溶液与矿物反应动力学法则。元素在风化过程中的行为受多种因素控制,主要包括基岩风化量、大气沉降量、径流量、生物的输出数量和人为输入量(如施肥)。硅酸盐矿物化学风化过程中,矿物与溶液之间总的化学反应速率是单个反应速率之和,其中涉及到 3个关键参数,即:酸中和能力(ANC)、基本阳离子/无机铝(BC/Al无机)比值和临界负荷(CL)。风化速率的研究主要采用四种方法,即PROFILE模型、基本阳离子损耗、元素输入-输出指数和Sr同位素比值等。PROFILE模型是一个稳定态的综合土壤化学模型,矿物的分解速率、矿物的暴露表面积、土壤水饱和度和土壤层厚度决定着该矿物的风化速率,总的风化速率为各种矿物的风化速率之和。元素损耗,主要是基本阳离子(Ca、Na、K和Mg)的损耗,假设Ti、 Zr和Nb在成土过程中含量稳定并不参与风化反应,那么对于给定的土壤层,化学风化损耗的基本阳离子可以通过比较土层与成土母质之间元素组成的差异来计算。输入-输出指数的假设前提是研究的流域处于稳定状态,一般认为输入指数是大气沉降,输出指数是河流搬运溶解部分、悬浮的非岩屑成因部分和生物营养净吸收部分。Sr同位素在生物和化学作用过程中并不分馏,不同生态系统阳离子场中Sr同位素组成是大气和矿物风化来源的Sr的混合物。  相似文献   

4.
《Applied Geochemistry》1993,8(3):273-283
A new model for base cation release due to chemical weathering of soil minerals has been developed based on transition state theory, and included in the integrated soil chemistry model PROFILE. The data required for model application can be operationally determined on soil samples, making the model generally applicable and independent of any type of calibration. The model considers the contribution to the weathering rate from 12 groups of the most common primary and secondary minerals of soils, reacting in separate reactions with H+-ion, H2O, CO2 and organic acids expressed as dissolved organic carbon (DOC). The weathering rate sub-model couples the effects of dissolved Al and base cations on the reaction mechanisms. The model takes into account changes in soil temperature, different chemical conditions, the effect of vegetation interactions with the soil and N transformations. The kinetic coefficients and reaction orders are based on a complete re-evaluation of weathering data available in the literature, and additional kinetic data determined by the authors.Data from 23 different independent determinations of the field weathering rate from 15 sites in Scandinavia, Central Europe and North America were compiled and used to verify the model. The model is capable of estimating the release rate of base cations due to chemical weathering from information on soil mineralogy, texture and geochemical properties of the order of ±20% of the rate determined by independent methods. The results indicate that small amounts of dark minerals like epidote and hornblende, and the plagioclase content, largely determine the field weathering rate.  相似文献   

5.
Quantifying long-term rates of chemical weathering and physical erosion is important for understanding the long-term evolution of soils, landscapes, and Earth's climate. Here we describe how long-term chemical weathering rates can be measured for actively eroding landscapes using cosmogenic nuclides together with a geochemical mass balance of weathered soil and parent rock. We tested this approach in the Rio Icacos watershed, Puerto Rico, where independent studies have estimated weathering rates over both short and long timescales. Results from the cosmogenic/mass balance method are consistent with three independent sets of weathering rate estimates, thus confirming that this approach yields realistic measurements of long-term weathering rates. This approach can separately quantify weathering rates from saprolite and from overlying soil as components of the total. At Rio Icacos, nearly 50% of Si weathering occurs as rock is converted to saprolite; in contrast, nearly 100% of Al weathering occurs in the soil. Physical erosion rates are measured as part of our mass balance approach, making it particularly useful for studying interrelationships between chemical weathering and physical erosion. Our data show that chemical weathering rates are tightly coupled with physical erosion rates, such that the relationship between climate and chemical weathering rates may be obscured by site-to-site differences in the rate that minerals are supplied to soil by physical erosion of rock. One can normalize for variations in physical erosion rates using the “chemical depletion fraction,” which measures the fraction of total denudation that is accounted for by chemical weathering. This measure of chemical weathering intensity increases with increasing average temperature and precipitation in data from climatically diverse granitic sites, including tropical Rio Icacos and six temperate sites in the Sierra Nevada, California. Hence, across a wide range of climate regimes, analysis of chemical depletion fractions appears to effectively account for site-to-site differences in physical erosion rates, which would otherwise obscure climatic effects on chemical weathering rates. Our results show that by quantifying rates of physical erosion and chemical weathering together, our mass balance approach can be used to determine the relative importance of climatic and nonclimatic factors in regulating long-term chemical weathering rates.  相似文献   

6.
Anthropogenic and natural climate change affect processes in the atmosphere, biosphere, hydrosphere, and pedosphere. The impact of climate on soil evolution has not been well-explored, largely due to slow rates and the complexity of coupled processes that must be observed and simulated. The rates of mineral weathering in loess deposited 23 kyr ago and experiencing soil formation for 13 kyr are explored here using the WITCH model for weathering and the GENESIS model for climate simulation. The WITCH model, which uses rigorous kinetic parameters and laws with provision for the effect on rates of deviation from equilibrium, can successfully simulate the depletion profiles in the soil for dolomite and albite if soil CO2 is assumed to rise over the last 10 kyr up to about 30-40× the present atmospheric pressure, and if the solubility product of the Ca-smectite is assumed equal to that of an Fe(III)-rich Ca-montmorillonite. Such simulations document that dissolution behavior for silicates and carbonates are strongly coupled through pH, and for Ca-smectite and feldspars through dissolved silica. Such coupling is not incorporated in simple geometric and analytical models describing mineral dissolution, and therefore probably contributes to the long-standing observation of discrepancies among laboratory and field mineral dissolution rates.  相似文献   

7.
Urs Eggenberger  Daniel Kurz   《Chemical Geology》2000,170(1-4):243-257
The steady-state soil chemistry model PROFILE was used to calculate the chemical status of forest soils under present deposition loads for two areas with dissimilar ecosystem properties. Two regions in Switzerland, with contrasting bedrock geology were selected to be investigated in detail: 88 locations in the Jura Mountains, representative for carbonate bedrock and 91 locations in the Ticino Area dominated by metamorphic crystalline host rocks. Weathering rates calculated for the key regions cover the tremendous range between 0.013 and 25 keq ha−1 yr−1. In the Ticino Area, the effect of increased abundance of relatively fast weathering silicates (epidote, hornblende and plagioclase) on the weathering rate is apparently masked by the total effects of the physical conditions applied and by the variation in the deposition load. In the Jura Mountains, generally high weathering rates occur with about 50% of the sites yielding rates above 1 keq ha−1 yr−1. In many of the sites investigated, however, carbonates have already been dissolved completely in the soil horizons of interest resulting in very low weathering rates. The critical load of actual acidity was calculated according to: CLAcidity=RWeathering−ANCLeaching, where alkalinity leaching is estimated by keeping the base cation to aluminum molar ratio at the critical limit of 1 at steady-state. The minimum critical load calculated was 0.2 keq ha−1 yr−1 and the maximum was 6.2 keq ha−1 yr−1. Comparing the cumulative frequency distributions of critical loads of actual acidity for forest soils in the individual areas it can be seen that the differences between the key regions are less substantial than with the weathering rates. Critical loads of acidity for the Ticino Area range from 1 to 3.9 keq ha−1 yr−1. Sites yielding the lowest critical loads of acidity are observed in the Jura Mountains. Among these apparent sensitive soils are soils with intermediate or high weathering rates, although it has depleted topsoil layers. Within the context of this model application, it becomes apparent that the sensitivity of these soils with respect to acidification is also governed by the alkalinity leaching term and not only by the susceptibility of its minerals to weathering.  相似文献   

8.
The main scope of this study is to investigate parameters controlling chemical weathering rates for a large river system submitted to subarctic climate. More than 110 river water samples from the Mackenzie River system (northern Canada) have been sampled and analyzed for major and trace elements and Sr isotopic ratios in the dissolved phase. The three main morphological units are reflected in water chemistry. Rivers from the Canadian Shield are very dilute, dominated by silicate weathering (Millot et al., 2002), whereas the rivers of the Rocky and Mackenzie Mountains as well as the rivers of the sedimentary Interior Platform are dominated by carbonate weathering and are SO4 rich. Compared to the rivers of the Mackenzie and Rocky Mountains, the rivers of the interior plains are organic, silica, and Na rich and constitute the dominant input term to the Mackenzie River mainstream. Rivers of the Canadian Shield area do not significantly contribute to the Mackenzie River system. Using elemental ratios and Sr isotopic ratios, a mathematical inversion procedure is presented that distinguishes between solutes derived from silicate weathering and solutes derived from carbonate weathering. Carbonate weathering rates are mostly controlled by runoff, which is higher in the mountainous part of the Mackenzie basin. These rates are comparable to the carbonate weathering rates of warmer areas of the world. It is possible that part of the carbonate weathering is controlled by sulfide oxidative weathering, but its extent remains difficult to assess. Conversely to what was stated by Edmond and Huh (1997), overall silicate weathering rates in the Mackenzie basin are low, ranging from 0.13 to 4.3 tons/km2/yr (Na + K + Ca + Mg), and confirm the negative action of temperature on silicate weathering rates for river basins in cold climates. In contrast to what has been observed in other large river systems such as the Amazon and Ganges Rivers, silicate weathering rates appear 3 to 4 times more elevated in the plains than in the mountainous headwaters. This contradicts the “Raymo hypothesis” (Raymo and Ruddiman, 1992). Isotopic characterization of suspended material clearly shows that the higher weathering rates reported for the plains are not due to the weathering of fine sediments produced in the mountains (e.g., by glaciers) and deposited in the plains. Rather, the relatively high chemical denudation rates in the plains are attributed to lithology (uncompacted shales), high mechanical denudation, and the abundance of soil organic matter derived from incomplete degradation and promoting crystal lattice degradation by element complexation. The three- to fourfold factor of chemical weathering enhancement between the plains and mountains is similar to the fourfold factor of enhancement found by Moulton et al. (2000) between unvegetated and vegetated watershed. This study confirms the negative action of temperature on silicate weathering for cold climate but shows that additional factors, such as organic matter, associated with northern watersheds are able to counteract the effect of temperature. This acceleration by a factor of 4 in the plains is equivalent to a 6°C increase in temperature.  相似文献   

9.
Historical data on the temperature and precipitation data for London has been combined with output from the Hadley Model to estimate the climate of London for the period 1100–2100 CE. This has been converted to other parameters such as freeze–thaw frequency and snowfall relevant to the weathering of stone facades. The pollutant concentrations have been estimated for the same period, with the historical values taken from single box modelling and future values from changes likely given current policy within the metropolis. These values are used in the Lipfert model to show that the recession from karst weathering dominates across the period, while the contributions of sulphur deposition seem notable only across a shorter period 1700–2000 CE. Observations of the late seventeenth century suggest London architects witnessed a notable increase in the recession rate and attributed “fretting quality” to “smoaks of the sea-coal”. The recession rates measured in the late twentieth century lend some support to the estimates from the Lipfert model. The recession looks to increase only slightly, and frost shattering will decrease while salt weathering is likely to increase.  相似文献   

10.
Biotic enhancement of weathering (BEW) has been proposed to substantially alter the geologic C cycle but the large scale impact of small scale biotic processes remains elusive, especially when compared to large scale drivers of weathering such as climate and crustal uplift. A global land surface model was used to estimate the potential strength of BEW for two contrasting types of weathering regimes that are either limited by the supply of fresh parent material by uplift or controlled by the climatic and eco-hydrological conditions. The biospheric effect on soil CO2 in the model was then removed in order to determine the reduction of weathering rates and thereby to infer BEW. It was found that only those areas that are not supply limited are susceptible to biotic enhancement. This indicates that the potential for BEW depends directly on the supply of fresh material and thus on crustal uplift.  相似文献   

11.
《Applied Geochemistry》1994,9(5):583-595
A steady-state geochemical model has been developed to study water-rock interactions controlling metal release from waste rock heaps at the Aitik Cu mine in northern Sweden. The Cu release in drainage waters from the site is of environmental concern. The waste rock heaps are treated as single completely mixed flow-through reactors. The geochemical model includes kinetices of sulphide and primary silicate mineral weathering, heterogeneous equilibrium with secondary mineral phases and speciation equilibrium. Field monitoring of drainage water composition provides a basis for evaluation of model performance.The relative rate of oxidative weathering of sulphides and dissolution of primary silicate minerals, using published kinetic data, are consistent with net proton and base cation fluxes at the site. The overall rate of Fe2+ oxidation within the heap is three orders of magnitude faster than that which could be explained by surface-catalysed reaction kinetics. This suggests significant activity of iron-oxidizing bacteria. The absolute weathering rates of sulphides and silicate minerals, normalized to a measured BET surface area, are approximately two orders of magnitude lower at field scale than published rates from laboratory experiments. Because of the relative absence of carbonate minerals, the weathering of biotite and plagioclase feldspar are important sources of alkalinity.  相似文献   

12.
The study of soil weathering processes College of Resources and Environment, rates and the associated influencing factors is crucial for understanding of the feedbacks between soil and environment, which will provide a basis for predicting soil behavior and evolution trend in the ecosystem under natural and anthropogenic forcings. This is also important for the effective management of soil resources. This article reviewed the methods for measuring soil weathering rates (including simulating leaching experiment, model calculation, isotope technique, element depletion and geochemical mass balance) and the influencing factors (including climate, organism, parent material, relief, time and human activities). In view of the serious degradation of soil resources, we proposed the challenge and opportunity of the research of soil weathering. The future study should focus on the critical processes, rates and the associated environmental thresholds of soil weathering under varying natural conditions and intensive human perturbations, including the establishment of the quantitative relationship between the weathering rates calculated by different methods, the analysis and interpretation of synergistic effects among multiple influencing factors, and the modeling and prediction of changing tendency of weathering rates under the impacts of both climatic changes and human activities, in order to guide the sustainable management of soil resource and mitigation of global change.  相似文献   

13.
The spatial variability of long-term chemical weathering in a small watershed was examined to determine the effect of landscape position and vegetation. We sampled soils from forty-five soil pits within an 11.8-hectare watershed at the Hubbard Brook Experimental Forest, New Hampshire. The soil parent material is a relatively homogeneous glacial till deposited ∼14,000 years ago and is derived predominantly from granodiorite and pelitic schist. Conifers are abundant in the upper third of the watershed while the remaining portion is dominated by hardwoods. The average long-term chemical weathering rate in the watershed, calculated by the loss of base cations integrated over the soil profile, is 35 meq m−2 yr−1—similar to rates in other ∼10 to 15 ka old soils developed on granitic till in temperate climates. The present-day loss of base cations from the watershed, calculated by watershed mass balance, exceeds the long-term weathering rate, suggesting that the pool of exchangeable base cations in the soil is being diminished. Despite the homogeneity of the soil parent material in the watershed, long-term weathering rates decrease by a factor of two over a 260 m decrease in elevation. Estimated weathering rates of plagioclase, potassium feldspar and apatite are greater in the upper part of the watershed where conifers are abundant and glacial till is thin. The intra-watershed variability across this small area demonstrates the need for extensive sampling to obtain accurate watershed-wide estimates of long-term weathering rates.  相似文献   

14.
《Chemical Geology》2007,236(3-4):247-265
A knowledge of the processes involved in streamflow generation are critical to an understanding of solute transport and weathering rates in upland catchments. The determination of specific flow pathways and the formulation of process-based models have proved difficult in such terrains, largely due to the heterogeneous nature of catchments and the necessary limitations of bulked parameter models. Natural geochemical tracers have proved invaluable in developing conceptual models of catchment functioning and for constraining weathering processes and geochemical cycling. Strontium isotopes have been used as a natural tracer to calculate weathering rates for Sr and Ca, and to constrain the dominant flow pathways in two upland forested sub-catchments (Afon Hafren and Afon Hore) of the River Severn at Plynlimon in Central Wales. The dominant source of Sr in the catchments is considered to be from the weathering of silicate minerals. Weathering rates for Sr and Ca in the Afon Hafren, calculated using Sr isotopes, were similar to those derived from mass balance studies. The rates for the Afon Hore were similar for Ca, but significantly different for Sr. The reason for the difference is unclear, but may be due to additional sources (calcite) in the catchment. Strontium isotope ratios for different input sources and compartments within the catchment were characterised and helped to identify potential flow pathways. The data suggest an important role for groundwater inputs in contrast to previous models which indicated a dominant role for soil waters.  相似文献   

15.
Flash floods are one of the most significant natural hazards of today. Due to the complexity of flash flood triggering factors, to prevent or mitigate flood triggered losses, numeric model based flood forecasting models are capable tools to predict stream water levels. The main goal of the current research was to reproduce two flow peaks with the HEC-HMS rainfall-runoff model and test the model sensitivity for various input parameters. To obtain sufficient input data, we monitored soil depth, maximum infiltration rate, soil moisture content, rainfall, time of concentration and flow. To obtain input data, parameters were calculated, measured in the Sás Valley experimental watershed (SW Hungary) or optimized with the built in function of the HEC-HMS. Soil moisture was monitored in the 1.7 km2 pilot catchment over the period between September 2008 and September 2009. HEC-HMS had a good performance reproducing the two events, however simulated flow time series are highly influenced by the antecedent soil moisture, infiltration rate and canopy storage. Outflow modeled data were verified for two flood events (June 4, 2008 and July 9, 2009). The HEC-HMS was over-sensitive for input soil moisture and with increasing input rainfall and increasing outflow, larger simulation errors were observed.  相似文献   

16.
The Lesser Antilles have very high chemical weathering rates, with values that can reach 1290 t/km2/a. The tropical environment induces high precipitation rates, high temperature, dense vegetation, with sharp relief and thick soils. Because of volcanic activity, frequent pyroclastic flows produce very erodible and porous materials. In addition, agriculture induces important land use changes which replace existing native forest cover with banana and sugar cane plantations. Their surface can cover as much as 40% of the total area of a river basin. The aim of this study is to identify key parameters, either natural or anthropogenic, that control chemical weathering rates. Among the combined impact of all parameters (climate, runoff, slopes, vegetation etc.), basin age seems to be the control parameter: the younger the basin, the higher the weathering rate. A correlation between the chemical weathering rate and the basin age suggests that young volcanic rocks are more easily weathered than old ones: young fresh material is easily mobilized by erosion, while for older rocks with thick soil covers, chemical rates are much lower. A combined effect between the higher erodibility and a higher climate erosivity of the younger relief could be observed. Moreover, a correlation between banana plantations and the chemical weathering rates that can be explained by an increase of infiltration, due to stem flow processes is shown here. Banana plantations also have a correlation with the basin age, older basins being more favorable terrains for cultivation.  相似文献   

17.
An evaluation of the response of an Andosol and a Cambisol to acid deposition and weathering rates was studied by using a controlled laboratory leaching experiment. Both soils where derived from mafic parent material, a Histic Andosol from Western Iceland and a Cambisol from North East Scotland. De-ionized water and water acidified with H2SO4 (pH 3) was leached through reconstructed soil columns to simulate 34 years of precipitation.Acidic input increased cation leaching and weathering rates in both soil types and reduced pH levels. The Andosol proved generally to have higher weathering rates, leaching potential, ion exchange and acid-buffering capacity as well as maintaining a relatively steady pH despite intense acidic input. This was due to differences in parent material and mineral composition. The Andosol was developed from basaltic volcanic tephra, which had higher dissolution rates due to its amorphous mineral structures. The Cambisol was developed from gabbro with more stable mineral structures.  相似文献   

18.
《Applied Geochemistry》2001,16(7-8):931-937
Weathering in an upland catchment on granitic parent material has been studied by chemical and mineralogical analyses of soils. Long-term weathering rates for base cations, calculated from chemical analyses of the mineral horizons from soil profiles using Zr as an internal, immobile, index element, are among the smallest recorded for Scottish soils (1.7–3.1 meq m−2 a−1), indicating that these soils are susceptible to acid deposition. Sodium is the base cation lost to the greatest extent from the soils, due to weathering of plagioclase feldspar, mainly in the coarse size-fractions. Calcium is lost not only from plagioclase feldspar, but also from hornblende, grains of which show dissolution etch pits and denticulate surface features when examined by scanning electron microscopy. Weathering of hornblende, present in basic inclusions in the granite, is a significant weathering process in these soils. A range of values for 87Sr/86Sr ratios in stream-waters confirms the spatial variability of the material supplying Ca to the streams. The current weathering rate, calculated from input–output budgets to be 28.9 meq m−2 a−1, is much greater than the long-term weathering rate, but small compared to other catchments on similar parent material.  相似文献   

19.
Chemical weathering of silicate minerals consumes atmospheric CO2 and is a fundamental component of geochemical cycles and of the climate system on long timescales. Artificial acceleration of such weathering (“enhanced weathering”) has recently been proposed as a method of mitigating anthropogenic climate change, by adding fine-grained silicate materials to continental surfaces. The efficacy of such intervention in the carbon cycle strongly depends on the mineral dissolution rates that occur, but these rates remain uncertain. Dissolution rates determined from catchment scale investigations are generally several orders of magnitude slower than those predicted from kinetic information derived from laboratory studies. Here we present results from laboratory flow-through dissolution experiments which seek to bridge this observational discrepancy by using columns of soil returned to the laboratory from a field site. We constrain the dissolution rate of olivine added to the top of one of these columns, while maintaining much of the complexity inherent in the soil environment. Continual addition of water to the top of the soil columns, and analysis of elemental composition of waters exiting at the base was conducted for a period of five months, and the solid and leachable composition of the soils was also assessed before and after the experiments. Chemical results indicate clear release of Mg2+ from the dissolution of olivine and, by comparison with a control case, allow the rate of olivine dissolution to be estimated between 10−16.4 and 10−15.5 moles(Mg) cm−2 s−1. Measurements also allow secondary mineral formation in the soil to be assessed, and suggest that no significant secondary uptake of Mg2+ has occurred. The olivine dissolution rates are intermediate between those of pure laboratory and field studies and provide a useful constraint on weathering processes in natural environments, such as during soil profile deepening or the addition of mineral dust or volcanic ash to soils surfaces. The dissolution rates also provide critical information for the assessment of enhanced weathering including the expected surface-area and energy requirements.  相似文献   

20.
Silicate weathering of soil-mantled slopes in an active Alpine landscape   总被引:1,自引:0,他引:1  
Despite being located on high, steep, actively uplifting, and formerly glaciated slopes of the Swiss Central Alps, soils in the upper Rhone Valley are depleted by up to 50% in cations relative to their parent bedrock. This depletion was determined by a mass loss balance based on Zr as a refractory element. Both Holocene weathering rates and physical erosion rates of these slopes are unexpectedly low, as measured by cosmogenic 10Be-derived denudation rates. Chemical depletion fractions, CDF, range from 0.12 to 0.48, while the average soil chemical weathering rate is 33 ± 15 t km−2 yr−1. Both the cosmogenic nuclide-derived denudation rates and model calculations suggest that these soils have reached a weathering steady-state since deglaciation 15 ky ago. The weathering signal varies with elevation and hillslope morphology. In addition, the chemical weathering rates decrease with elevation indicating that temperature may be a dominant controlling factor on weathering in these high Alpine basins. Model calculations suggest that chemical weathering rates are limited by reaction kinetics and not the supply rate of fresh material. We compare hillslope and catchment-wide weathering fluxes with modern stream cation flux, and show that high relief, bare-rock slopes exhibit much lower chemical weathering rates despite higher physical erosion rates. The low weathering fluxes from rocky, rapidly eroding slopes allow for the broader implication that mountain building, while elevating overall denudation rates, may not cause increased chemical weathering rates on hillslopes. In order for this sediment to be weathered, intermediate storage, for instance in floodplains, is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号