首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on archival Hubble Space Telescope ACS/WFC images, we have performed stellar photometry for eight dwarf galaxies of different types (Irr, S0, E) with a populated horizontal branch on their Hertzsprung-Russell diagrams. We have identified probable RR Lyr stars in these galaxies and constructed the distribution of their number density along the minor axes of the galaxies. For comparison, similar distributions have also been constructed for red giants in the same galaxies. In all cases, the size of the subsystem of RR Lyr stars exceeds that of the subsystem of, on average, younger stars, red giants. Our results are consistent with the hypothesis about expansion of the stellar subsystems in dwarf galaxies that we suggested previously.  相似文献   

2.
A by-product of the APM high-redshift quasar survey was the discovery of several distant (20–100 kpc) N-type carbon stars at high galactic latitude. Following on from this, we have started a systematic all-sky survey at galactic latitudes ⊢ b ⊢>30° to find further examples of these rare objects, and we report here on the results from the first season of follow-up spectroscopy. Faint, high-latitude carbon (FHLC) giants make excellent probes of the kinematic structure of the outer Galactic halo. Therefore, in addition to detailed spectrophotometry covering a wide wavelength range, we have obtained high-resolution (∼1 Å) spectra centred on the CN bands at ∼8000 Å, and have derived accurate (≲10 km s−1) radial velocities for the known FHLC stars. From the initial phase of our survey covering ≈6500 deg2, we find a surface density of faint N-type carbon stars in the halo of ≈1 per 200 deg2, roughly a factor of 4 less than the surface density of CH-type carbon stars in the halo. Intermediate-age, N-type carbon stars seem unlikely to have formed in the halo in isolation from other star-forming regions, and one possibility that we are investigating is that they either arise from the disruption of tidally captured dwarf satellite galaxies or are a manifestation of the long-sought optical component of the Magellanic Stream.  相似文献   

3.
Archival Hubble Space Telescope (HST) data have been used for the photometry of stars in blue compact dwarf (BCD) galaxies of the IZw18 system. Applying the spatial selection of stars, we have detected red giants, stars older than 1–2 Gyr, in the galaxies. These red giants have allowed the distance to IZw18 to be reliably determined for the first time: D = 13.9 ± 1.2 Mpc. The presence of old stars in the galaxies of the IZw18 system refutes the hypothesis about the observed primary star formation in these galaxies.  相似文献   

4.
《New Astronomy Reviews》2004,48(9):727-730
We present results of our ongoing observing program on search and studies of massive stars (O type) in binary systems in our neighbour galaxies, the Magellanic Clouds. Radial velocity orbits are presented for two new binaries, one in the Small Magellanic Cloud and another in the Large Magellanic Cloud.  相似文献   

5.
Six stars out of a sample of ∼2300 carbon stars in the Magellanic Clouds have been identified as having strong C2 bands but CN bands that are very weak or absent. It is argued that five of these are likely to be R Coronae Borealis (RCB) stars on the basis of their spectral characteristics and peculiar colours. Most are variables and the Large Magellanic Cloud (LMC) members have extreme radial velocities that are more like the planetary nebula population than the carbon stars. This sample consists of four LMC members (only one of them previously recognized as an RCB star), one Small Magellanic Cloud (SMC) member (the first RCB star reported in the SMC) and one foreground Galactic star.  相似文献   

6.
We present a list of 75 isolated dwarf galaxies of later types which have no neighbors with a relative radial velocity difference of less than 500 km/s or projected distances of less than 500 kpc. These were selected from ~2000 dwarf galaxies with radial velocities VLG<3500 km/s within the volume of the local supercluster. In terms of their sizes, luminosities, and the amplitudes of their internal motions, the isolated dwarf galaxies do not differ significantly from gas-rich dwarf galaxies in groups and clusters. However, the median mass of neutral hydrogen per unit luminosity for the isolated galaxies is a factor of two greater than for the galaxies of later types in groups. We have also identified 10 presumably isolated spheroidal dwarf galaxies. The discovery of isolated dwarf galaxies populated exclusively by old stars is of great interest for modern cosmological scenarios of galaxy formation.  相似文献   

7.
In this paper, we review the formation scenario for field hot subdwarf stars and extreme horizontal branch stars in globular clusters and discuss how the scenario helps us to understand the UV-upturn phenomenon of elliptical galaxies. It is widely accepted that field hot subdwarf stars originate from binary evolution via the following three channels, common envelope evolution channel for hot subdwarf binaries with short orbital periods, stable Roche lobe overflow channel for hot subdwarf binaries with long orbital periods, and the double helium white dwarf merger channel for single hot subdwarfs. Such a scenario can also explain the lack of binarity of extreme horizontal branch stars in globular clusters. We have applied, in an a priori way, the scenario to the study of UV-upturn phenomenon of elliptical galaxies via an evolutionary population synthesis approach and found that the UV-upturn can be naturally explained. This has major implications for understanding the evolution of UV-upturn and elliptical galaxies in general. In particular, it implies that the UV-upturn is not a sign of age, as had been postulated previously, and should not be strongly dependent on the metallicity of the population, but exists universally from dwarf ellipticals to giant ellipticals. The above a priori UV-upturn model is supported by recent GALEX observations and has been applied to naturally explain the colours of both dwarf ellipticals and giant ellipticals without the requirement of dichotomy between their stellar population properties.  相似文献   

8.
Summary The Magellanic Clouds play a fundamental role in a number of fields of astronomical research. Their distances are most relevant to the extragalactic distance scale. Their relative proximity offers exceptional opportunities for detailed studies of their stellar and interstellar content. They serve therefore as testing grounds for modern astrophysical theories, in particular concerning the chemical evolution of stars and galaxies.In this review we will discuss recent attempts to determine accurate distances to the Magellanic Clouds. We will consider their stellar generations as the results of interactions between the Large and the Small Magellanic Cloud as well as between the Clouds and the Galaxy. Recent determinations of the chemical abundances of the various age groups will be presented. The fact that the evolution of the Clouds has been slower than that of our Galaxy gives us the opportunity to study the conditions in slightly metalpoor galaxies. Recent progress in observing techniques has added much to our knowledge about the interstellar medium of the Clouds.The Magellanic System, which comprises the Magellanic Clouds, the Inter-Cloud Region and the Magellanic Stream, will be described. We will in particular consider the complex structure of the Large and the Small Cloud and the kinematics of their populations.  相似文献   

9.
We present a catalogue with coordinates and photometric data of 2446 Be star candidates in the Large Magellanic Cloud (LMC), based on a search of the OGLE II data base. The I -band light curves of these stars show outbursts in 24 per cent of the sample (Type-1 stars), high and low states in 10 per cent, periodic variations in 6 per cent (Type-3 stars), and stochastic variations in 60 per cent of the cases. We report on the result of the statistical study of light curves of Type-1 and Type-3 stars in the LMC, and the comparison with the previously reported results of the Small Magellanic Cloud (SMC) sample. We find a statistically significant difference between amplitude, duration and asymmetry distributions of outbursts in both galaxies. Outbursts of SMC Type-1 stars are usually brighter, longer and with a slower decline. We find a bimodal distribution of periods of Type-3 stars in both galaxies, probably related to the recently discovered double periodic blue variables. We find also period and amplitude distributions of Type-3 LMC stars statistically different from those of the SMC stars. Our findings above suggest that the mechanisms causing the observed photometric variability of Type-1 and Type-3 stars could depend on metallicity. Moreover, they suggest that the outbursts are not primarily caused by stellar winds.  相似文献   

10.
Increasing evidence suggests that the Galactic halo is lumpy on kpc scales as a result of the accretion of at least a dozen small galaxies [Large and Small Magellanic Clouds (LMC/SMC), Sgr, Fornax, etc.]. Faint stars in such lumpy structures can significantly microlense a background star with an optical depth of 10−7–10−6, which is comparable to the observed value to the LMC. The observed microlensing events towards the LMC can be explained by a tidal debris tail from the progenitor of the Magellanic Clouds and Magellanic Stream. The LMC stars can either lense stars in the debris tail a few kpc behind the LMC, or be lensed by stars in the part of the debris tail in front of the LMC. The models are consistent with an elementary particle dominated Galactic halo without massive compact halo objects (MACHOs). They also differ from Sahu's LMC-self-lensing model by predicting a higher optical depth and event rate and lower concentration of events to the LMC centre.  相似文献   

11.
The abundance patterns of the most metal‐poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star‐ and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of “stellar archaeology” – the diverse use of metal‐poor stars to explore the high‐redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron‐poor stars is for learning about Population III supernovae yields. Rapid neutron‐capture signatures found in metal‐poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal‐poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of ~ 1000 metal‐poor stars and their abundances as collected from the literature is provided in electronic format (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We have analyzed the spectra of blue compact dwarf galaxies from the SLOAN Digital Sky Survey (SDSS) Data Release 7 and created a sample of 271 galaxies with Wolf-Rayet (WR) spectral features produced by high-velocity stellar winds. A blue WR feature (bump) is a blend of the N V λλ 460.5 and 462.0 nm, N III λλ 463.4 and 464.0 nm, C III λ 465.0 nm, C IV λ 465.8 nm, and He II λ 468.6 nm emission lines. A red WR feature (bump) is the broad C IV λ 580.8 nm emission. The blue WR bump is mainly due to emissions of nitrogen WR (WN) stars, while the red bump is fully produced by emissions of carbon WR (WC) stars. All the sample spectra show the blue WR bumps, whereas the red WR bumps are only identified in 50% of sample spectra. We have derived the numbers of early-type WC stars (WCE) and late-type WN stars (WNL) in the galaxies using the luminosities of single WC and WN stars in the red and blue bumps, respectively. The number of O stars is estimated using the Hβ luminosity. The ratio of the overall number of WR stars of different types to the number of all massive stars N(WR)/N(O + WR) decreases with decreasing metallicity, corresponding to the evolution population synthesis models.  相似文献   

13.
Summary. Hubble's (1936, p. 125) view that the Local Group (LG) is “a typical, small group of nebulae which is isolated in the general field” is confirmed by modern data. The total number of certain and probable Group members presently stands at 35. The half-mass radius of the Local Group is found to be kpc. The zero-velocity surface, which separates the Local Group from the field that is expanding with the Hubble flow, has a radius Mpc. The total mass of the LG is . Most of this mass appears to be concentrated in the Andromeda and Milky Way subgroups of the LG. The total luminosity of the Local Group is found to be :. This yields a mass-to-light ratio (in solar units) of . The solar motion with respect to the LG is \,km s, directed towards an apex at , and . The velocity dispersion within the LG is km s. The galaxies NGC 3109, Antlia, Sextans A and Sextans B appear to form a distinct grouping with kpc relative to the LG, that is located beyond the LG zero-velocity surface at a distance of 1.7 Mpc from the Local Group centroid. The luminosity distribution of the LG has a slope . This value is significantly less negative than that which is found in rich clusters of galaxies. The luminosity distribution of the dwarf spheroidal galaxies is steeper than that for dwarf irregulars. Furthermore the dSph galaxies are strongly concentrated within the Andromeda and Milky Way subclusters of the Local Group, whereas the majority of dIr galaxies appear to be free-floating members of the LG as a whole. With the possible exception of Leo I and Leo A, most LG members appear to have started forming stars simultaneously Gyr ago. Many of the galaxies, for which evolutionary data are available, appear to have shrunk with time. This result is unexpected because Hubble Space Telescope observations appear to show galaxies at to be smaller than they are at . In the Large Magellanic Cloud the rate of cluster formation was low for a period that extended from Gyr to Gyr ago. The rate of cluster formation may have increased more rapidly 3–5 Gyr ago, than did the rate of star formation. The reason for the sudden burst of cluster formation in the LMC Gyr ago remains obscure. None of the dwarf galaxies in the LG appears to have experienced a starburst strong enough to have produced a “boojum”. Received 14 April 1999  相似文献   

14.
In the present work we consider the questions of star formation and evolution of nearby dwarf galaxies. We describe the method of star formation history determination based on multicolor photometry of resolved stars and models of color-magnitude diagrams of the galaxies. We present the results of star formation rate determination and its dependence on age and metallicity for dwarf irregular and dwarf spheroidal galaxies in the two nearby galaxy groups M81 and Cen A. Similar age of the last episode of star formation in the central part of the M81 group and also unusually high level of metal enrichment in the several galaxies of the Cen A group are mentioned. We pay special attention to the consideration of perspectives of star formation study in nearby dwarf galaxies with he new WSO-UV observatory.  相似文献   

15.
The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matter during their lifetime (either intergalactic gas, or galaxies) because they will typically lose the competition with the much larger galaxy. We can utilise observations of stars of a range of ages to measure star formation and enrichment histories back to the earliest epochs. The most ancient objects we have ever observed in the Universe are stars found in and around our Galaxy. Their proximity allows us to extract from their properties detailed information about the time in the early Universe into which they were born. A currently fashionable conjecture is that the earliest star formation in the Universe occurred in the smallest dwarf galaxy sized objects. Here I will review some recent observational highlights in the study of dwarf galaxies in the Local Group and the implications for understanding galaxy formation and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Astronomy Letters - Based on archival Hubble Space Telescope images, we have performed stellar photometry for 18 dwarf galaxies. Branches of young and old stars are seen on the constructed...  相似文献   

17.
We present an analysis of the faint M star population seen as foreground contaminants in deep extragalactic surveys. We use space-based data to separate such stars from high-redshift galaxies in a publicly available data set, and consider the photometric properties of the resulting sample in the optical and infrared. The inferred distances place these stars well beyond the scaleheight of the thick disc. We find strong similarities between this faint sample (reaching   i 'AB= 25  ) and the brighter disc M dwarf population studied by other authors. The optical–infrared properties of the bulk of our sources spanning 6000 Å-4.5 μm are consistent with those 5–10 mag brighter. We also present deep spectroscopy of faint M dwarf stars reaching continuum limits of i 'AB≈ 26, and measure absorption-line strengths in the CaH2 and TiO5 bands. Both photometrically and spectroscopically, our sources are consistent with metallicities as low as a tenth solar: metal-rich compared with halo stars at similar heliocentric distances. We comment on the possible massive astrophysical compact halo object (MACHO) identification of M stars at faint magnitudes.  相似文献   

18.
简述了精确测定相对自行的方法,特别介绍了在用2~3个历元的底片和CCD观测结果推导恒星自行的过程中如何消除光学视场畸变、星等差和色差的具体办法;并介绍了用星系把相对自行推算绝对自行的方法。还介绍了用自行资料研究银河系结构和演化的一些前沿课题,其中包括星团研究、与银河系兼并的矮星系的发现、暗物质的检测、外星行星的探测和银河系中心黑洞的质量估算等。最后评价了自行在研究银河系中的重要性,论述了我国研制4m光学/近红外望远镜的重要意义。  相似文献   

19.
We present proper-motion measurements for carbon stars found during the APM Survey for Cool Carbon Stars in the Galactic halo as reported in an earlier paper by Totten & Irwin. Measurements are obtained using a combination of POSSI, POSSII and UKST survey plates supplemented where necessary by CCD frames taken at the Isaac Newton Telescope. We find no significant proper motion for any of the new APM colour-selected carbon stars and so conclude that there are no dwarf carbon stars present within this sample. We also present proper-motion measurements for three previously known dwarf carbon stars and demonstrate that these measurements agree favourably with those previously quoted in the literature, verifying our method of determining proper motions. Results from a complimentary program of JHK photometry obtained at the South African Astronomical Observatory are also presented. Dwarf carbon stars are believed to have anomalous near-infrared colours, and this feature is used for further investigation of the nature of the APM carbon stars. Our results support the use of JHK photometry as a dwarf/giant discriminator and also reinforce the conclusion that none of the new APM-selected carbon stars is a dwarf. Finally, proper-motion measurements combined with extant JHK photometry are presented for a sample of previously known halo carbon stars, suggesting that one of these stars, CLS29, is likely to be a previously unrecognized dwarf carbon star.  相似文献   

20.
It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I &; Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for the Sculptor and Fornax dwarf spheroidal galaxies which have been previously had single element (low resolution) calcium abundance studies (Tolstoy et al., 2001). See Figures 1 and 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号