首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Abstract— The microtextures of pigeonite in four ureilites, Allan Hills (ALH) 77257, Reckling Peak (RKP) A80239, Yamato (Y‐) 791538, and Allan Hills A81101, chosen to span a range of composition and shock level, were investigated by transmission electron microscopy (TEM); two of the samples were also investigated by single crystal X‐ray diffraction to determine Fe2+‐Mg cation site partitioning. The low‐shock and compositionally homogeneous pigeonites in ALHA77257 and RKPA80329 (Wo 6.4 for both, mg 86.3 and 84.3 respectively) display irregularly spaced, shock‐induced stacking faults oriented parallel to (100), and large antiphase domains (50–100 nm). Antiphase domains have no preferential orientation. No evidence of exsolution was observed. The low‐shock Y‐791538 pigeonite is homogeneous and has higher Ca and mg (Wo 9.4, mg 91.2). TEM investigation showed spinodal decomposition, indicative of incipient exsolution; small antiphase domains were observed (~5 nm). Single crystal refinement yielded R4s? = 5.71%, with Fe2+‐Mg partitioning coefficient kd = 0.077(8) and Tc = 658(35) °C. ALHA81101 has compositionally heterogeneous pyroxenes, with large local variations in Wo and mg (Wo = 4–13, mg = 86–68). No compositional gradients from core to rim of grains were observed, and the heterogeneity is interpreted as related to cation migration during shock. In one relatively Ca‐rich region (Wo~12), TEM analysis showed augite‐pigeonite exsolution lamellae, with spacing 145(20) nm. Results for ALHA77257, RKPA80239, and Y‐791538 support a model of rapid cooling following breakup of the ureilite parent body. The presence of exsolution lamellae in ALHA81101 can be related to a local shock‐induced Ca enrichment and provides no constraint on the late cooling history.  相似文献   

2.
Abstract— Experiments on a Martian basalt composition show that Dv augite/melt is greater than Dv pigeonite/melt in samples equilibrated under the same fO2 conditions. This increase is due to the increased availability of elements for coupled substitution with the V3+ or V4+ ions, namely A1 and Na. For this bulk composition, both A1 and Na are higher in concentration in augite compared with pigeonite; therefore more V can enter augite than pigeonite. Direct valence state determination by XANES shows that the V3+ and V4+ are the main V species in the melt at fO2 conditions of IW‐1 to IW+3.5, whereas pyroxene grains at IW‐1, IW, and IW+1 contain mostly V3+. This confirms the idea that V3+ is more compatible in pyroxene than V4+. The XANES data also indicates that a small percentage of V2+ may exist in melt and pyroxene at IW‐1. The similar valence of V in glass and pyroxene at IW‐1 suggests that V2+ and V3+ may have similar compatibilities in pyroxene.  相似文献   

3.
Abstract— Transmission electron microscopy was used to examine pyroxene microstructure in the Northwest Africa (NWA) 856 martian meteorite to construct its cooling and shock histories. All pyroxenes contain strained coherent pigeonite/augite exsolution lamellae on (001). The average width and periodicity of lamellae are 80 and 400 nm, respectively, indicating a cooling rate below 0.1 °C/hr for the parent rock. Pigeonite and augite are topotactic, with strained coherent interfaces parallel to (001). The closure temperature for Ca‐Fe, Mg interdiffusion, estimated from the composition at the augite pigeonite interface, is about 700 °C. Tweed texture in augite reveals that a spinodal decomposition occurred. Locally, tweed evolved toward secondary pigeonite exsolutions on (001). Due to the decreasing diffusion rate with decreasing temperature, “M‐shaped” concentration profiles developed in augite lamellae. Pigeonite contains antiphase boundaries resulting from the C2/c to P21/c space group transition that occurred during cooling. The reconstructive phase transition from P21/c clinopyroxene to orthopyroxene did not occur. The deformation (shock) history of the meteorites is revealed by the presence of dislocations and mechanical twins. Dislocations are found in glide configuration, with the [001](100) glide system preferentially activated. They exhibit strong interaction with the strained augite/pigeonite interfaces and did not propagate over large distances. Twins are found to be almost all parallel to (100) and show moderate interaction with the augite/pigeonite interfaces. These twins are responsible for the plastic deformation of the pyroxene grains. Comparison with microstructure of shocked clinopyroxene (experimentally or naturally shocked) suggests that NWA 856 pyroxenes are not strongly shocked.  相似文献   

4.
Abstract— Ibitira is a strongly recrystallized and unbrecciated noncumulate eucrite. We measured Ca compositional profiles of Ibitira pyroxene by electron microprobe and computed the cooling rate and burial depth from pyroxene exsolution profiles to gain information on early thermal history of Ibitira. Pyroxene begins to exsolve at 1082 °C and cools down to 550 °C at a rate of 0.02 °C/year, forming an augite lamella about 7.0 μm in width. A notable characteristic of the Ca profile of augite lamellae in Ibitira pyroxene is a gradient near the interface between augite and low‐Ca pyroxene (pigeonite). This profile suggests that after thermal metamorphism Ibitira pyroxene experienced a sudden temperature rise to above solidus temperature of pyroxene (~1082 °C), and subsequent rapid cooling. The 39Ar‐40Ar age of 4.485 Ga for Ibitira, which is the oldest 39Ar‐40Ar age for noncumulate eucrites, may date this reheating event.  相似文献   

5.
High‐precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty‐one of 21 chondrules have multiple homogeneous pyroxene data (?17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty‐one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O‐isotope ratios; and (2) suggest efficient O‐isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching ?40‰, similar to CAI or AOA‐like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8–99.5 and ?17O of ?3.9‰ to ?6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O‐isotope reservoir devoid of 16O‐poor H2O. Six Y‐82094 chondrules have ?17O near ?2.5‰, with Mg#s of 64–97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules plus 16O‐poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (?17O: ~+0.1‰). Their O‐isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite‐like chondrule precursors. Finally, three Mg# >99 chondrules have ?17O of ?6.7‰ to ?8.1‰, potentially due to 16O‐rich refractory precursor components. The predominance of Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules and a high chondrule‐to‐matrix ratio suggests bulk Y‐82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules.  相似文献   

6.
Abstract— ALH84001, originally classified as a diogenite, is a coarse-grained, cataclastic, orthopyroxenite meteorite related to the martian (SNC) meteorites. The orthopyroxene is relatively uniform in composition, with a mean composition of Wo3.3En69.4Fs27.3. Minor phases are euhedral to subhedral chromite and interstitial maskelynite, An31.1Ab63.2Or5.7, with accessory augite, Wo42.2En45.1Fs12.7, apatite, pyrite and carbonates, Cc11.5Mg58.0Sd29.4Rd1.1. The pyroxenes and chromites in ALH84001 are similar in composition to these phases in EETA79001 lithology A megacrysts but are more homogeneous. Maskelynite is similar in composition to feldspars in the nakhlites and Chassigny. Two generations of carbonates are present, early (pre-shock) strongly zoned carbonates and late (post-shock) carbonates. The high Ca content of both types of carbonates indicates that they were formed at moderately high temperature, possibly ~700 °C. ALH84001 has a slightly LREE-depleted pattern with La 0.67x and Lu 1.85x CI abundances and with a negative Eu anomaly (Eu/Sm 0.56x CI). The uniform pyroxene composition is unusual for martian meteorites, and suggests that ALH84001 cooled more slowly than did the shergottites, nakhlites or Chassigny. The nearly monomineralic composition, coarse-grain size, homogenous orthopyroxene and chromite compositions, the interstitial maskelynite and apatite, and the REE pattern suggest that ALH84001 is a cumulate orthopyroxenite containing minor trapped, intercumulus material.  相似文献   

7.
Abstract— NWA 1950 is a new lherzolitic shergottite recently recovered from Morocco and is the first sample of this group found outside Antarctica. Major constituent phases of NWA 1950 are olivine, pyroxenes, and plagioclase glass (“maskelynite”) and the rock shows a two distinct textures: poikilitic and non‐poikilitic typical of lherzolitic shergottites. In poikilitic areas, several‐millimeter‐sized pyroxene oikocrysts enclose cumulus olivine and chromite. In contrast, pyroxenes are much smaller in non‐poikilitic areas, and olivine and plagioclase glass are more abundant. Olivine in non‐poikilitic areas is more Fe‐rich (Fa29–31) and shows a narrower distribution than that in poikilitic areas (Fa23–29). Pyroxenes in non‐poikilitic areas are also more Fe‐rich than those in poikilitic areas that show continuous chemical zoning suggesting fractional crystallization under a closed system. These observations indicate that pyroxene in non‐poikilitic areas crystallized from evolved interstitial melts and olivine was re‐equilibrated with such melts. NWA 1950 shows similar mineralogy and petrology to previously known lherzolitic shergottites (ALH 77005, LEW 88516, Y‐793605 and GRV 99027) that are considered to have originated from the same igneous body on Mars. Olivine composition of NWA 1950 is intermediate between those of ALH 77005‐GRV 99027 and those of LEW 88516‐Y‐793605, but is rather similar to ALH 77005 and GRV 99027. The subtle difference of mineral chemistry (especially, olivine composition) can be explained by different degrees of re‐equilibration compared to other lherzolitic shergottites, perhaps due to different location in the same igneous body. Thus, NWA 1950 experienced a high degree of re‐equilibration, similar to ALH 77005 and GRV 99027.  相似文献   

8.
To shed light on the mechanism of formation of nanophase iron particles (npFe) in space-weathered materials from airless bodies, we analyzed exsolved and unexsolved space-weathered lunar pyroxenes from Apollo 17 sample 71501. The exsolved pyroxene allowed for the observation of the effects of space weathering on similar mineral phases with variable composition. Using coordinated scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy (EELS), we determined that two coexisting pyroxenes in the exsolved grain showed systematic variations in response to space weathering, despite equivalent exposure conditions. The npFe in the space-weathered rim of augite lamellae were smaller and fewer than the npFe in the rim of pigeonite lamellae. EELS spectrum imaging revealed the presence and heterogeneous distribution of Fe0, Fe2+, and Fe3+ in the exsolved pyroxene. Metallic iron occurred in the npFe, a mixture of Fe2+ and Fe3+ occurred in the pigeonite lamellae, and the augite lamellae contained virtually all Fe3+. Approximately 50% of the total Fe measured in the exsolved pyroxene grain was ferric. Partitioning of Fe2+ and Fe3+ among the lamellae is invoked to explain the difference in npFe development in pigeonite and augite. The results of this study, the first to identify Fe3+ in a crystalline lunar ferromagnesian silicate, have implications for our understanding of how space weathering might proceed in oxidized phases. Furthermore, the discovery of an Fe3+-rich pyroxene also supports attribution of the 0.7 μm absorption feature observed in Galileo Solid State Imager data to oxidized Fe in clinopyroxenes.  相似文献   

9.
Abstract— Spectroscopic measurement and analysis of Martian meteorites provide important information about the mineralogy of Mars, as well as necessary ground-truths for deconvolving remote sensing spectra of the Martian surface rocks. The spectroscopic properties of particulate ALH 84001 from 0.3 to 25 μm correctly identify low-Ca pyroxene as the dominant mineralogy. Absorption bands due to electronic transitions of ferrous iron are observed at 0.94 and 1.97 μm that are typical for low-Ca pyroxene. A strong, broad water band is observed near 3 μm that is characteristic of the water band typically associated with pyroxenes. Weaker features near 4.8, 5.2 and 6.2 μm are characteristic of particulate low-Ca pyroxene and can be distinguished readily from the features due to high-Ca pyroxene and other silicate minerals. The reflectance minimum occurs near 8.6 μm for the ALH 84001 powder, which is more consistent with high-Ca pyroxene and augite than low-Ca pyroxene. The dominant mid-infrared (IR) spectral features for the ALH 84001 powder are observed near 9 and 19.5 μm; however, there are multiple features in this region. These mid-IR features are generally characteristic of low-Ca pyroxene but cannot be explained by low-Ca pyroxene alone. Spectral features from 2.5–5 μm are typically associated with water, organics and carbonates and have been studied in spectra of the ALH 84001, split 92 powder and ALH 84001, splits 92 and 271 chip surfaces. Weak features have been identified near 3.5 and 4 μm that are assigned to organic material and carbonates. Another feature is observed at 4.27 μm in many surface spots and in the powder but has not yet been uniquely identified. Spectroscopic identification of minor organic and carbonate components in this probable piece of Mars suggests that detection of small amounts of organics and carbonates in the Martian surface regolith would also be possible using visible-infrared hyperspectral analyses. Laboratory spectroscopic analysis of Martian meteorites provides a unique opportunity to identify the spectral features of minerals and other components while they are embedded in their natural medium.  相似文献   

10.
Abstract— We describe the mineralogy, petrology, oxygen, and magnesium isotope compositions of three coarse‐grained, igneous, anorthite‐rich (type C) Ca‐Al‐rich inclusions (CAIs) (ABC, TS26, and 93) that are associated with ferromagnesian chondrule‐like silicate materials from the CV carbonaceous chondrite Allende. The CAIs consist of lath‐shaped anorthite (An99), Cr‐bearing Al‐Ti‐diopside (Al and Ti contents are highly variable), spinel, and highly åkermanitic and Na‐rich melilite (Åk63–74, 0.4–0.6 wt% Na2O). TS26 and 93 lack Wark‐Lovering rim layers; ABC is a CAI fragment missing the outermost part. The peripheral portions of TS26 and ABC are enriched in SiO2 and depleted in TiO2 and Al2O3 compared to their cores and contain relict ferromagnesian chondrule fragments composed of forsteritic olivine (Fa6–8) and low‐Ca pyroxene/pigeonite (Fs1Wo1–9). The relict grains are corroded by Al‐Ti‐diopside of the host CAIs and surrounded by haloes of augite (Fs0.5Wo30–42). The outer portion of CAI 93 enriched in spinel is overgrown by coarse‐grained pigeonite (Fs0.5–2Wo5–17), augite (Fs0.5Wo38–42), and anorthitic plagioclase (An84). Relict olivine and low‐Ca pyroxene/pigeonite in ABC and TS26, and the pigeonite‐augite rim around 93 are 16O‐poor (Δ17O ~ ?1‰ to ?8‰). Spinel and Al‐Ti‐diopside in cores of CAIs ABC, TS26, and 93 are 16O‐enriched (Δ17O down to ?20‰), whereas Al‐Ti‐diopside in the outer zones, as well as melilite and anorthite, are 16O‐depleted to various degrees (Δ17O = ?11‰ to 2‰). In contrast to typical Allende CAIs that have the canonical initial 26Al/27Al ratio of ~5 × 10?5 ABC, 93, and TS26 are 26Al‐poor with (26Al/27Al)0 ratios of (4.7 ± 1.4) × 10?6 (1.5 ± 1.8) × 10?6 <1.2 × 10?6 respectively. We conclude that ABC, TS26, and 93 experienced remelting with addition of ferromagnesian chondrule silicates and incomplete oxygen isotopic exchange in an 16O‐poor gaseous reservoir, probably in the chondrule‐forming region. This melting episode could have reset the 26Al‐26Mg systematics of the host CAIs, suggesting it occurred ~2 Myr after formation of most CAIs. These observations and the common presence of relict CAIs inside chondrules suggest that CAIs predated formation of chondrules.  相似文献   

11.
Abstract Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron‐carbonate were initiated. Naturally occurring siderite was first characterized by a variety of techniques to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten‐alloy holders (W = 90%, Ni = 6%, Cu = 4%) to further ensure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are >50% Fe+2 in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of sizes (?50–100 nm), compositions (100% magnetite to 80% magnetite‐20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) and as the magnetites in Martian meteorite Allan Hills (ALH) 84001. Fritz et al. (2005) previously concluded that ALH 84001 experienced ?32 GPa pressure and a resultant thermal pulse of ?100–110°C. However, ALH 84001 contains evidence of local temperature excursions high enough to melt feldspar, pyroxene, and a silica‐rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to > 470°C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH 84001 could be a product of shock devolatilization of siderite as well.  相似文献   

12.
Abstract— Patches of clastic matrix (15 to 730 μm in size) constitute 4.9 vol% of EH3 Yamato (Y‐) 691 and 11.7 vol% of EH3 Allan Hills (ALH) 81189. Individual patches in Y‐691 consist of 1) ?25 vol% relatively coarse opaque grain fragments and polycrystalline assemblages of kamacite, schreibersite, perryite, troilite (some grains with daubréelite exsolution lamellae), niningerite, oldhamite, and caswellsilverite; 2) ?30 vol% relatively coarse silicate grains including enstatite, albitic plagioclase, silica and diopside; and 3) an inferred fine nebular component (?45 vol%) comprised of submicrometer‐size grains. Clastic matrix patches in ALH 81189 contain relatively coarse grains of opaques (?20 vol%; kamacite, schreibersite, perryite and troilite) and silicates (?30 vol%; enstatite, silica and forsterite) as well as an inferred fine nebular component (?50 vol%). The O‐isotopic composition of clastic matrix in Y‐691 is indistinguishable from that of olivine and pyroxene grains in adjacent chondrules; both sets of objects lie on the terrestrial mass‐fractionation line on the standard three‐isotope graph. Some patches of fine‐grained matrix in Y‐691 have distinguishable bulk concentrations of Na and K, inferred to be inherited from the solar nebula. Some patches in ALH 81189 differ in their bulk concentrations of Ca, Cr, Mn, and Ni. The average compositions of matrix material in Y‐691 and ALH 81189 are similar but not identical‐matrix in ALH 81189 is much richer in Mn (0.23 ± 0.05 versus 0.07 ± 0.02 wt%) and appreciably richer in Ni (0.36 ± 0.10 versus 0.18 ± 0.05 wt%) than matrix in Y‐691. Each of the two whole‐rocks exhibits a petrofabric, probably produced by shock processes on their parent asteroid.  相似文献   

13.
Acfer 217-A new member of the Rumuruti chondrite group (R)   总被引:1,自引:0,他引:1  
Abstract— Previously, three meteorites from Australia and Antarctica were described as a new chondritic “grouplet” (Carlisle Lakes, Allan Hills (ALH) 85151, Yamato (Y) ?75302; Rubin and Kallemeyn, 1989). This grouplet was classified as the “Carlisle Lakes-type” chondrites (Weisberg et al., 1991). Recently, one Saharan sample and four more Antarctic meteorites were identified to belong to this group (Acfer 217, Y-793575, Y-82002, PCA91002, PCA91241). The latter two are probably paired. With the meteorite Rumuruti, the first fall of this type of chondrite is known (Schulze et al., 1994). We report here on the Saharan meteorite Acfer 217 which has chemical and mineralogical properties very similar to Rumuruti and Carlisle Lakes. All eight members of this group, Rumuruti, Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, and the paired samples PCA91002 and PCA91241 justify the introduction of a new group of chondritic meteorites, the Rumuruti meteorites (R). Acfer 217 is a regolith breccia consisting of up to cm-sized clasts (~33 vol%) embedded in a fine-grained, well-lithified clastic matrix. The most abundant mineral is olivine (~72 vol%), which has a high Fa-content of 37–39 mol%. The major minerals (olivine, low-Ca pyroxene, Ca-pyroxene, and plagioclase) show some compositional variability indicating a slightly unequilibrated nature of the meteorite. Considering the mean olivine composition of Fa37.8 ± 5.7, a classification of Acfer 217 as a R3.8 chondrite would result; however, Acfer 217 is a regolith breccia consisting of clasts of various petrologic types. Therefore, we suggest to classify Acfer 217 as a R3–5 chondrite regolith breccia. The bulk meteorite is very weakly shocked (S2). The bulk composition of Acfer 217 and other R-meteorites show that the R-meteorites are basically chondritic in composition. The pattern of moderately volatile elements is unique in R chondrites; Na and Mn are essentially undepleted, similar to ordinary chondrites, while Zn and Se contents are similar to concentrations in CM chondrites. The oxygen isotopic composition in Acfer 217 is similar to that of Rumuruti, Carlisle Lakes, ALH 85151, and Y-75302. In a δ17O vs. δ18O-diagram, the R-meteorites form a group well resolved from other chondrite groups. Acfer 217 was a meteoroid of common size with a radius between 15–65 cm and with a single stage exposure history. Based on 21Ne, an exposure age of about 35 Ma was calculated.  相似文献   

14.
Abstract— This study provides a complete data set of all five noble gases for bulk samples and mineral separates from three Martian shergottites: Shergotty (bulk, pyroxene, maskelynite), Zagami (bulk, pyroxene, maskelynite), and Elephant Moraine (EET) A79001, lithology A (bulk, pyroxene). We also give a compilation of all noble gas and nitrogen studies performed on these meteorites. Our mean values for cosmic‐ray exposure ages from 3He, 21Ne, and 38Ar are 2.48 Myr for Shergotty, 2.73 Myr for Zagami, and 0.65 Myr for EETA79001 lith. A. Serious loss of radiogenic 4He due to shock is observed. Cosmogenic neon results for bulk samples from 13 Martian meteorites (new data and literature data) are used in addition to the mineral separates of this study in a new approach to explore evidence of solar cosmic‐ray effects. While a contribution of this low‐energy irradiation is strongly indicated for all of the shergottites, spallation Ne in Chassigny, Allan Hills (ALH) 84001, and the nakhlites is fully explained by galactic cosmic‐ray spallation. Implanted Martian atmospheric gases are present in all mineral separates and the thermal release indicates a near‐surface siting. We derive an estimate for the 40Ar/36Ar ratio of the Martian interior component by subtracting from measured Ar in the (K‐poor) pyroxenes the (small) radiogenic component as well as the implanted atmospheric component as indicated from 129Xe, * excesses. Unless compromised by the presence of additional components, a high ratio of ~2000 is indicated for Martian interior argon, similar to that in the Martian atmosphere. Since much lower ratios have been inferred for Chassigny and ALH 84001, the result may indicate spatial and/or temporal variations of 40Ar/36Ar in the Martian mantle.  相似文献   

15.
Abstract— Miller Range (MIL) 05035 is a low‐Ti mare basalt that consists predominantly of pyroxene (62.3 vol%) and plagioclase (26.4 vol%). Pyroxenes are strongly shocked and complexly zoned from augite (Wo33) and pigeonite (Wo17) cores with Mg# = 50–54 to hedenbergite rims. Coexisting pyroxene core compositions reflect crystallization temperatures of 1000 to 1100 °C. Plagioclase has been completely converted to maskelynite with signs of recrystallization. Maskelynite is relatively uniform in composition (An94Ab6–An91Ab9), except at contacts with late‐stage mesostasis areas (elevated K contents, An82Ab15Or3). Symplectites (intergrowth of Fe‐augite, fayalite, and silica) of different textures and bulk compositions in MIL 05035 suggest formation by decomposition of ferro‐pyroxene during shock‐induced heating, which is supported by the total maskelynitization of plagioclase, melt pockets, and the presence of a relict pyroxferroite grain. Petrography and mineral chemistry imply that crystallization of MIL 05035 occurred in the sequence of Fe‐poor pyroxenes (Mg# = 50–54), followed by plagioclase and Fe‐rich pyroxenes (Mg# = 20–50), and finally hedenbergite, Fe‐Ti oxides, and minor late‐stage phases. Petrography, bulk chemistry, mineral compositions, and the age of MIL 05035 suggest it is possibly source crater‐paired with Asuka (A‐) 881757 and Yamato (Y‐) 793169, and may also be launch‐paired with Meteorite Hills (MET) 01210. MIL 05035 represents an old (?3.8–3.9 Ga), incompatible element‐depleted low‐Ti basalt that was not sampled during the Apollo or Luna missions. The light‐REE depleted nature and lack of Eu anomalies for this meteorite are consistent with an origin distant from the Procellarum KREEP Terrane, and genesis from an early cumulate mantle‐source region generated by extensive differentiation of the Moon.  相似文献   

16.
Northwest Africa 7533, a polymict Martian breccia, consists of fine‐grained clast‐laden melt particles and microcrystalline matrix. While both melt and matrix contain medium‐grained noritic‐monzonitic material and crystal clasts, the matrix also contains lithic clasts with zoned pigeonite and augite plus two feldspars, microbasaltic clasts, vitrophyric and microcrystalline spherules, and shards. The clast‐laden melt rocks contain clump‐like aggregates of orthopyroxene surrounded by aureoles of plagioclase. Some shards of vesicular melt rocks resemble the pyroxene‐plagioclase clump‐aureole structures. Submicron size matrix grains show some triple junctions, but most are irregular with high intergranular porosity. The noritic‐monzonitic rocks contain exsolved pyroxenes and perthitic intergrowths, and cooled more slowly than rocks with zoned‐pyroxene or fine grain size. Noritic material contains orthopyroxene or inverted pigeonite, augite, calcic to intermediate plagioclase, and chromite to Cr‐bearing magnetite; monzonitic clasts contain augite, sodic plagioclase, K feldspar, Ti‐bearing magnetite, ilmenite, chlorapatite, and zircon. These feldspathic rocks show similarities to some rocks at Gale Crater like Black Trout, Mara, and Jake M. The most magnesian orthopyroxene clasts are close to ALH 84001 orthopyroxene in composition. All these materials are enriched in siderophile elements, indicating impact melting and incorporation of a projectile component, except for Ni‐poor pyroxene clasts which are from pristine rocks. Clast‐laden melt rocks, spherules, shards, and siderophile element contents indicate formation of NWA 7533 as a regolith breccia. The zircons, mainly derived from monzonitic (melt) rocks, crystallized at 4.43 ± 0.03 Ga (Humayun et al. 2013 ) and a 147Sm‐143Nd isochron for NWA 7034 yielding 4.42 ± 0.07 Ga (Nyquist et al. 2016 ) defines the crystallization age of all its igneous portions. The zircon from the monzonitic rocks has a higher Δ17O than other Martian meteorites explained in part by assimilation of regolith materials enriched during surface alteration (Nemchin et al. 2014 ). This record of protolith interaction with atmosphere‐hydrosphere during regolith formation before melting demonstrates a thin atmosphere, a wet early surface environment on Mars, and an evolved crust likely to have contaminated younger extrusive rocks. The latest events recorded when the breccia was on Mars are resetting of apatite, much feldspar and some zircons at 1.35–1.4 Ga (Bellucci et al. 2015 ), and formation of Ni‐bearing pyrite veins during or shortly after this disturbance (Lorand et al. 2015 ).  相似文献   

17.
We conducted a transmission electron microscope study of the exsolution microstructures of Ca-rich pyroxenes in type I chondrules from the Paris CM and Renazzo CR carbonaceous chondrites in order to provide better constraints on the cooling history of type I chondrules. Our study shows a high variability of composition in the augite grains at a submicrometer scale, reflecting nonequilibrium crystallization. The microstructure is closely related to the local composition and is thus variable inside augite grains. For compositions inside the pyroxene miscibility gap, with a wollastonite (Wo) content typically below 40 mole%, the augite grains contain abundant exsolution lamellae on (001). For grain areas with composition close to Wo40, a modulated texture on (100) and (001) is the dominant microstructure, while areas with compositions higher than Wo40 do not show any exsolution microstructure development. To estimate the cooling rate, we used the spacing of the exsolution lamellae on (001), for which the growth is diffusion controlled and thus sensitive to the cooling rate. Despite the relatively homogeneous microstructures of augite grains with Wo < 35 mole%, our study of four chondrules suggests a range of cooling rates from ~10 to ~1000 °C h−1, within the temperature interval 1200–1350 °C. These cooling rates are comparable to those of type II chondrules, i.e., 1–1000 °C h−1. We conclude that the formation of type I and II chondrules in the proto-solar nebula was the result of a common mechanism.  相似文献   

18.
Abstract— The lherzolitic Martian meteorite Northwest Africa (NWA) 1950 consists of two distinct zones: 1) low‐Ca pyroxene poikilically enclosing cumulate olivine (Fo70–75) and chromite, and 2) areas interstitial to the oikocrysts comprised of maskelynite, low‐ and high‐Ca pyroxene, cumulate olivine (Fo68–71) and chromite. Shock metamorphic effects, most likely associated with ejection from the Martian subsurface by large‐scale impact, include mechanical deformation of host rock olivine and pyroxene, transformation of plagioclase to maskelynite, and localized melting (pockets and veins). These shock effects indicate that NWA 1950 experienced an equilibration shock pressure of 35–45 GPa. Large (millimeter‐size) melt pockets have crystallized magnesian olivine (Fo78–87) and chromite, embedded in an Fe‐rich, Al‐poor basaltic to picro‐basaltic glass. Within the melt pockets strong thermal gradients (minimum 1 °C/μm) existed at the onset of crystallization, giving rise to a heterogeneous distribution of nucleation sites, resulting in gradational textures of olivine and chromite. Dendritic and skeletal olivine, crystallized in the melt pocket center, has a nucleation density (1.0 × 103 crystals/mm2) that is two orders of magnitude lower than olivine euhedra near the melt margin (1.6 × 105 crystals/mm2). Based on petrography and minor element abundances, melt pocket formation occurred by in situ melting of host rock constituents by shock, as opposed to melt injected into the lherzolitic target. Despite a common origin, NWA 1950 is shocked to a lesser extent compared to Allan Hills (ALH) 77005 (45–55 GPa). Assuming ejection in a single shock event by spallation, this places NWA 1950 near to ALH 77005, but at a shallower depth within the Martian subsurface. Extensive shock melt networks, the interconnectivity between melt pockets, and the ubiquitous presence of highly vesiculated plagioclase glass in ALH 77005 suggests that this meteorite may be transitional between discreet shock melting and bulk rock melting.  相似文献   

19.
Abstract— Antarctic meteorite QUE 94201 is a new basaltic shergottite that is mainly composed of subequal amounts of maskelynite and pyroxenes (pigeonite and augite) plus abundant merrillite and accessory phases. It also contains impact melt. Complex zoning patterns in QUE 94201 pyroxenes revealed by elemental map analyses using an electron microprobe suggest a crystallization sequence from Mg-rich pigeonite (En62Fss30Wog) to extremely Fe-rich pigeonite (En5Fs81Wo14) via {110} Mg-rich augite bands (En44Fs20Wo36) in a single crystal. These textures, along with the abundant plagioclase (maskelynite), indicates single-stage rapid cooling (>5 °C/year) of this rock from a supercooled magma. Transition from Mg-rich augite to Fe-rich pigeonite reflects the onset of plagioclase crystallization. Enrichment of late-stage phases in QUE 94201 implies crystallization from an evolved magma and suggests a different parent magma composition from the other basaltic shergottites. Lithology B of EETA79001 basaltic shergottite contains pyroxenes that show complex zoning with augite bands similar to those in QUE 94201 pyroxene, which suggests similar one-stage rapid cooling. Lithology B of EETA79001 also resembles QUE 94201 in its coarse-grained texture of silicates and its high abundance of maskelynite, although QUE 94201 probably crystallized from a more fractionated magma. We also note that some Apollo lunar mare basalts (e.g., 12020 and 12021) have similar mineralogy and petrology to QUE 94201, especially in pyroxene zoning. All these basaltic rocks with complex pyroxene zoning suggest rapid metastable crystallization from supercooled magmas.  相似文献   

20.
To better understand volcanism on planetary bodies other than the Earth, the quantification of physical processes is needed. Here, the petrogenesis of the achondrite Martian Yamato (Y) nakhlites (Y 000593, Y 000749, and Y 000802) is reinvestigated via quantitative analysis of augite (high-Ca clinopyroxene) phenocrysts: crystal size distribution (CSD), spatial distribution patterns (SDP), and electron backscatter diffraction (EBSD). Results from CSD and EBSD quantitative data sets show augite to have continuous uninterrupted growth resulting in calculated minimum magma chamber residence times of either 88–117 ± 6 yr or 9–12 yr. All samples exhibit low-intensity S-LS type crystallographic preferred orientation. Directional strain is observed across all samples with intracrystalline misorientation patterns indicative of (100)[001]:(001)[100] (Y 000593 and Y 000802) and {110}<001>or {110}1/2<110> (Y 000749) slip systems. SDP results indicate phenocryst-bearing crystal-clustered rock signatures. Combined findings from this work show that the Yamato nakhlites formed on Mars as individual low-viscosity lava flows or sills. This study shows that through combining these different quantitative techniques over multiple samples, one can more effectively compare and interpret resulting data to gain a more robust, geologically contextualized petrogenetic understanding of the rock suite being studied. The techniques used in this study should be equally applicable to igneous achondrites from other parent bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号