首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi-proxy study of short sediment cores recovered in small, karstic Lake Estanya (42°02?? N, 0°32?? E, 670 m.a.s.l.) in the Pre-Pyrenean Ranges (NE Spain) provides a detailed record of the complex environmental, hydrological and anthropogenic interactions occurring in the area since medieval times. The integration of sedimentary facies, elemental and isotopic geochemistry, and biological proxies (diatoms, chironomids and pollen), together with a robust chronological control, provided by AMS radiocarbon dating and 210Pb and 137Cs radiometric techniques, enabled precise reconstruction of the main phases of environmental change, associated with the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the industrial era. Shallow lake levels and saline conditions with poor development of littoral environments prevailed during medieval times (1150?C1300 AD). Generally higher water levels and more dilute waters occurred during the LIA (1300?C1850 AD), although this period shows a complex internal paleohydrological structure and is contemporaneous with a gradual increase of farming activity. Maximum lake levels and flooding of the current littoral shelf occurred during the nineteenth century, coinciding with the maximum expansion of agriculture in the area and prior to the last cold phase of the LIA. Finally, declining lake levels during the twentieth century, coinciding with a decrease in human pressure, are associated with warmer climate conditions. A strong link with solar irradiance is suggested by the coherence between periods of more positive water balance and phases of reduced solar activity. Changes in winter precipitation and dominance of NAO negative phases would be responsible for wet LIA conditions in western Mediterranean regions. The main environmental stages recorded in Lake Estanya are consistent with Western Mediterranean continental records, and show similarities with both Central and NE Iberian reconstructions, reflecting a strong climatic control of the hydrological and anthropogenic changes during the last 800 years.  相似文献   

2.
Despite their sensitivity to climate variability, few of the abundant sinkhole lakes of Florida have been the subject of paleolimnological studies to discern patterns of change in aquatic communities and link them to climate drivers. However, deep sinkhole lakes can contain highly resolved paleolimnological records that can be used to track long-term climate variability and its interaction with effects of land-use change. In order to understand how limnological changes were regulated by regional climate variability and further modified by local land-use change in south Florida, we explored diatom assemblage variability over centennial and semi-decadal time scales in an ~11,000-yr and a ~150-yr sediment core extracted from a 21-m deep sinkhole lake, Lake Annie, on the protected property of Archbold Biological Station. We linked variance in diatom assemblage structure to changes in water total phosphorus, color, and pH using diatom-based transfer functions. Reconstructions suggest the sinkhole depression contained a small, acidic, oligotrophic pond ~11000–7000 cal yr BP that gradually deepened to form a humic lake by ~4000 cal yr BP, coinciding with the onset of modern precipitation regimes and the stabilization of sea-level indicated by corresponding palynological records. The lake then contained stable, acidophilous planktonic and benthic algal communities for several thousand years. In the early AD 1900s, that community shifted to one diagnostic of an even lower pH (~5.6), likely resulting from acid precipitation. Further transitions over the past 25 yr reflect recovery from acidification and intensified sensitivity to climate variability caused by enhanced watershed runoff from small drainage ditches dug during the mid-twentieth Century on the surrounding property.  相似文献   

3.
Instrumental climate records from the central Canadian treeline zone display a pattern of variation similar to general Northern Hemisphere temperature trends. To examine whether this general correspondence extends back beyond the instrumental record, we obtained a sediment core from Lake S41, a small lake in the Northwest Territories of Canada at 63°43.11′ N, 109°19.07′ W. A radiocarbon-based chronology was developed for the core. The sediments were analyzed for organic-matter content by loss-on-ignition (LOI), biogenic-silica content (BSi), and chironomid community composition to reconstruct July air temperature and summer water temperature. The paleolimnological records were compared with records of atmospheric CO2 concentration, solar variability, and hemispheric temperature variations over the past 2000 years. The results of the analyses suggest that widely-documented long-term variations in Northern Hemisphere temperature associated with radiative forcing, namely the cooling following the medieval period during the Little Ice Age (LIA), and twentieth century warming, are represented in the central Canadian treeline zone. There is also evidence of a brief episode of warming during the eighteenth century. As evidenced by LOI and BSi, the twentieth century warming is typified by increased lake productivity relative to the LIA. Depending upon the measure, the increased productivity of the twentieth century nearly equals or exceeds that of any other period in the past 2000 years. In contrast, the rate of chironomid head capsule accumulation decreased and remained low during the twentieth century. Although the chironomid-inferred temperature reconstructions indicate cooling during the LIA, they present no evidence of greatly increased temperatures during the twentieth century. Warming during the twentieth century might have enhanced lake stratification, and the response of the chironomid fauna to warming was attenuated by decreased oxygen and lower temperatures in the hypolimnion of the more stratification-prone lake.
Glen M. MacDonaldEmail:
  相似文献   

4.
Several limnological and paleolimnological investigations have linked enhanced atmospheric nitrogen (N) deposition to nutrient enrichment and increased primary production. The Athabasca Oil Sands Region (AOSR) in northeast Alberta, Canada is a significant source of N emissions, particularly since development intensified during the 1990s, and recent paleolimnological investigations provide evidence of increased lake production in adjacent areas subject to enhanced N deposition. The AOSR, however, has also experienced atmospheric warming since ca. AD 1900, and therefore the relative effects of nutrient deposition and climate changes on lake production remain unclear. We undertook a factorial-design paleolimnological assessment of 16 lakes in northwest Saskatchewan to quantify changes in abundance and species composition of scaled chrysophytes over the past 100 years. Study sites included both N-limited and P-limited lakes within control regions, as well as lakes that receive enhanced N deposition from the AOSR. We hypothesized that a change in algal communities within N-limited AOSR-impacted lakes, without concurrent changes in the other lake groups, would suggest AOSR-derived N as a driver of enhanced primary production. Instead, marked increases in concentrations of scaled chrysophytes, mainly Mallomonas crassisquama, occurred in the recent sediments in cores from all four lake groups (N-limited vs. P-limited, impacted vs. control), suggesting that regional climate change rather than N deposition was the paramount process enhancing chrysophyte production. Because chrysophyte abundances tended to be higher in deep, lower-pH lakes, and chrysophyte time series were fit best by lake-specific generalized additive models, we infer that climate effects may have been mediated by additional catchment and/or lake-specific processes.  相似文献   

5.
中国西北干旱区小冰期的湿度变化特征   总被引:3,自引:0,他引:3  
选取中国西北干旱区11 条具有明确古湿度指示意义的气候记录, 结合冰芯、地层沉积、 湖泊沉积、树木年轮、河流阶地等各种研究资料和历史记载, 研究中国西北干旱区小冰期的湿 度变化。结果表明研究区小冰期(1400-1920 AD) 从整体而言处于相对湿润的阶段: 区内高大 山系降水处于较高时段- -西昆仑山古里雅冰芯积累量增大, 天山山间湖泊水位回升, 祁连山 敦德冰芯孢粉总浓度增加; 而盆地内流系统水量也出现了相应的变化- -塔里木盆地克里雅 河和塔里木河流量增大, 准噶尔盆地艾比湖水位上升, 巴丹吉林沙漠地下水补给量上升, 居延 海入湖水量增大, 湖面扩展, 青海湖盆地降水增加, 有效湿度增大, 苏干湖水体盐度降低, 入湖 水量/ 蒸发量之比升高。同时, 较高分辨率的湿度资料显示, 研究区东-南边缘地带在小冰期 内部存在次一级的干湿波动, 两个湿度较高的时期出现在16 世纪和18 世纪, 分别与小冰期内 部的两个相对温暖时期有很好的对应。中国西北相对湿润的小冰期主要是西风带强度增加和 位置南移造成该区域降水增多和全球性普遍降温导致有效湿度增大两个因素共同作用的结果, 研究区边缘地带小冰期内部冷干暖湿的配置则主要体现了夏季风的影响。  相似文献   

6.
青海湖水位下降与湖区人为耗水关系的研究   总被引:8,自引:2,他引:8  
彭敏  陈桂琛 《地理科学》1994,14(2):127-135
  相似文献   

7.
Climate records during the last millennium are essential in placing recent anthropogenic-induced climate change into the context of natural climatic variability. However, detailed records are still sparse in Alaska, and these records would help elucidate climate patterns and possible forcing mechanisms. Here we present a multiple-proxy sedimentary record from Kepler Lake in south-central Alaska to reconstruct climatic and environmental changes over the last 800?years. Two short cores (85 and 101?cm long) from this groundwater-fed marl lake provide a detailed stable isotope and sediment lithological record with chronology based on four AMS 14C dates on terrestrial macrofossils and 210Pb analysis. The ??18O values of inorganic calcite (CaCO3) range from ?17.0 to ?15.7???, with the highest values during the period of 1450?C1850 AD, coeval with the well-documented Little Ice Age (LIA) cold interval in Alaska. The high ??18O values during the cold LIA are interpreted as reflecting shifts in atmospheric circulation. A weakening of the wintertime Aleutian low pressure system residing over the Gulf of Alaska during the LIA would have resulted in 18O-enriched winter precipitation as well as a colder and possibly drier winter climate in south-central Alaska. Also, elevated calcite contents of >80?% during the LIA reflect a lowering of lake level and/or enhanced seasonality (warmer summer and colder winter), as calcite precipitation in freshwater lakes is primarily a function of peak summer temperature and water depth. This interpretation is also supported by high ??13C values, likely reflecting high aquatic productivity or increased residence times of the lake water during lower lake levels. The lower lake levels and warmer summers would have increased evaporative enrichment in 18O, also contributing to the high ??18O values during the LIA. Our results indicate that changes in atmospheric circulation were an important component of climate change during the last millennium, exerting strong influence on regional climate in Alaska and the Arctic.  相似文献   

8.
Sediments of Lake Van, Turkey, preserve one of the most complete records of continental climate change in the Near East since the Middle Pleistocene. We used seismic reflection profiles to infer past changes in lake level and discuss potential causes related to changes in climate, volcanism, and regional tectonics since the formation of the lake ca. 600 ka ago. Lake Van’s water level ranged by as much as 600 m during the past ~600 ka. Five major lowstands occurred, at ~600, ~365–340, ~290–230, ~150–130 and ~30–14 ka. During Stage A, between about 600 and 230 ka, lake level changed dramatically, by hundreds of meters, but phases of low and high stands were separated by long time intervals. Changes in the lake level were more frequent during the past ~230 ka, but less dramatic, on the order of a few tens of meters. We identified period B1 as a time of stepwise transgressions between ~230 and 150 ka, followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise during period B2, until ~30 ka. During the past ~30 ka, a regression and a final transgression occurred, each lasting about 15 ka. The major lowstand periods in Lake Van occurred during glacial periods, suggesting climatic control on water level changes (i.e. greatly reduced precipitation led to lower lake levels). Although climate forcing was the dominant cause for dramatic water level changes in Lake Van, volcanic and tectonic forcing factors may have contributed as well. For instance, the number of distinct tephra layers, some several meters thick, increases dramatically in the uppermost ~100 m of the sediment record (i.e. the past ~230 ka), an interval that coincides largely with low-magnitude lake level fluctuations. Tectonic activity, highlighted by extensional and/or compressional faults across the basin margins, probably also affected the lake level of Lake Van in the past.  相似文献   

9.
Meretta Lake (Resolute Bay, Cornwallis Island, Nunavut, Canada) is a high arctic lake that received raw sewage for almost 50 years from the Canadian Department of Transport Base. The lake was sampled from 1968–72 during the International Biological Programme, as part of the Char Lake Project. As the number of users at the Transport Base declined throughout the 1990s, so too did the lake's nutrient levels, and Meretta Lake is now classified as oligotrophic. A previous diatom-based paleolimnological study revealed marked species assemblage shifts coincident with sewage inputs beginning in the late 1940s; however, because the core was taken at a time when nutrient levels were still relatively high (i.e., 1993), the diatom record did not yet track any signs of recovery. In this present study, we examined fossil diatom assemblages from a sediment core taken in 2001. Our results indicate a shift to the pre-impact diatom assemblages in the most recent sediments, indicating that the paleolimnological record is tracking the decreased nutrient inputs to this high arctic lake, and confirms that no significant lags exist in these largely ice-covered lakes.  相似文献   

10.
High-resolution quantitative analysis of ostracod assemblages from 4.3-m-thick freshwater tufa-rich sediments, deposited during the last 12.8 ka in Lake Sinijärv, northern Estonia, yielded information on water level, trophic state conditions, and temperature changes since the late glacial. AMS 14C dates from aquatic mosses provided time constraints on the palaeoenvironmental development of the region. In the ostracod assemblage structure, four faunal zones (OFZ) were determined. The most significant change in the ostracod fauna occurred at 10,590 cal. y BP, when a typical littoral, polythermophilic fauna was replaced by a mostly sublittoral, species-rich meso- to stenothermophilic fauna. The ostracod data indicate two major low-water-level periods in the lake at 12,800–10,590 and 7,600–3,700 cal. y BP. Sediment analysis indicates the most intensive tufa precipitation occurred during these low stand periods, rather than during the warmest climate in Estonia between 8,000 and 4,500 cal. y BP. The late glacial low water level in the groundwater-fed Lake Sinijärv at 12,800–10,590 cal. y BP coincides partly with the regression in the Lake Peipsi basin (14,000–12,100 cal. y BP) and with the last drainage event of the Baltic Ice Lake at 11,600 cal. y BP. The low-water-level period in Lake Sinijärv occurred earlier than in lakes in the SE sector of Scandinavian glaciation. The change from low to high water level in Lake Sinijärv at 10,590 cal. y BP preceded the first post-glacial transgression events in the small lowland lakes of Estonia, southern Sweden, Poles`ye in Belarus, and Valday in NW Russia. In general, the mid-Holocene low-water-level period in Lake Sinijärv between 7,600 and 3,700 cal. y BP is concurrent with the regressions in the lakes of the SE sector of Scandinavian glaciation.  相似文献   

11.
Long-term water quality monitoring data from two riverine lakes in the Upper Mississippi River basin, Lakes St. Croix and Pepin, were analyzed to compare the long-term average water quality conditions and land use distributions, water quality trends and loads at lake inlets and outlets, trends from long-term versus short-term monitoring records, and the ability of paleolimnological cores to accurately infer lake water quality conditions. During the 1976–2004 period, the long-term average concentrations of nutrients, suspended solids, and chlorophyll-a were consistently lower at the Lake St. Croix inlet versus the Lake Pepin inlet, which drains a greater proportion of urban and agricultural runoff. Despite these differences, nutrient trends were similar at the inlets to both lakes; reductions in total phosphorus and ammonium concentrations were attributed to improvements in point source technologies, whereas increasing nitrate concentrations were attributed to both point source changes and nonpoint source increases. Despite improvements in several water quality variables, nitrate concentrations are increasing in both lakes, sediment trends indicate persistent nonpoint source inputs to Lake Pepin, and current total phosphorus concentrations remain well above pre-1950s levels in both lakes. Since urban development and agriculture are increasing in the Lake St. Croix and Lake Pepin Watersheds, continued point source regulation and additional nonpoint source control efforts will be needed to further improve water quality in these lakes. The 1976–2004 trends for most water quality variables were similar at inlet versus outlet sites on Lake St. Croix. Trends at Lake Pepin inlet versus outlet sites were less similar, but data availability limited the comparison to the 1993–2003 period. While the truncated data record highlighted short-term trends in both lakes, the full data record was most useful for exploring general patterns in water quality. Length of monitoring record affected our ability to detect trends at the inlets to both lakes, and altered the magnitude of detected trends. During the two decades of the 1980s and 1990s, paleolimnological estimates of retained phosphorus loads were similar to those estimated from recent water quality monitoring. These similarities support the use of paleolimnological approaches to infer past water quality conditions in Lakes St. Croix and Pepin. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

12.
近60年洞庭湖泊形态与水沙过程的互动响应   总被引:2,自引:0,他引:2  
以历史文献、图件及1951~2009年长系水沙等资料为依据,对比分析洞庭湖形态与水沙过程的互动响应,结果表明:由于湖泊形态与水沙过程存在着相互作用的关系,近60年间,水沙过程以多种形式改变湖泊形态特征值,如湖盆结构破碎、解体,水深变浅以及湖面﹑湖容依次减少1840km2及130×108m3;同时湖泊形态特征值改变也引起水沙特性变异,在1951~2002年间湖盆蓄水量呈明显的增减波动,但同流量下汛期水位普遍抬高1.2~1.90m,西﹑南﹑东洞庭湖水位变幅依次增大1.61m、1.39m和1.35m,各主要水文站前5位最高洪水位排序的年份均出现在湖面积(容积)历史最低值,泥沙淤积率为70%以上;2003年6月三峡水库蓄水及"退田还湖"后,高、中水位下湖盆调蓄量有所减少,城陵矶丰、枯水位分别降低1.12m及0.35m,西湖区与东南湖区的泥沙输出比均呈增大趋势,泥沙淤积率减至35.9%。其互动响应机制,可概化为泥沙淤积循环→湖盆结构破碎、解体,湖面湖容缩小→水沙特性异变→改变湖泊形态→水沙特性变异的互动响应动态演进模式。  相似文献   

13.
Ni and Cu mining and ore processing in Hitura, Western Finland, have resulted in emissions of metal-rich wastewaters into the nearby Kalajoki River since 1970. The wastewaters are discharged into the river 3 km upstream from the eutrophic Lake Pidisjärvi, which is a widening of the river by the town of Nivala. The water level of the lake was elevated by 1.5 m and the extensive macrophyte stands were cut in 1979, profoundly changing the environmental conditions. The effects of the decreasing metal emissions and nutrient concentrations since 1979 on the now open 3.9 km2 lake were studied with paleolimnological techniques. A 2-m sediment core was taken from the lake in February 2004 and analysed for sediment chemistry and diatom assemblages. At the coring site, 13 cm of sediment had been deposited since 1979, on top of a bed of undecomposed macrophyte remains. When the sediment chemistry was compared with records of decreasing metal loading since 1979, no correlation was found because post-depositional mobility and changes in sediment characteristics affect the sediment metal profiles. Thus, the reduced emissions from the mine and the lower lake water phosphorus levels have not caused a corresponding decrease in sediment metal and P concentrations. However, both of these environmental variables accounted for a statistically significant percentage of variation in the sedimentary diatom assemblages in a redundancy analysis constrained to a single variable. This relationship persisted for Ni loading even in a partial analysis, while the importance of nutrients was confirmed by the good correlation between diatom-inferred and measured P concentrations. The results suggest that reductions in metal and nutrient loading have had an effect on the algal assemblages even though the sediment concentrations of Ni, Cu or P have not decreased.  相似文献   

14.
North End Lake is a polluted and eutrophic freshwater system located in Port Elizabeth, South Africa. Since the lake is expected to be used for recreational/tourist purposes by 2010, a rehabilitation program will have to be designed. For this reason, we retrieved a sediment core from the central region of the lake to decipher the effect of historical human impacts on the water body. Pre-disturbance paleolimnological inferences indicate that the lake was likely mesotrophic. After ∼1831, when sheep farming activities were undertaken in the catchment, increases in trophic state and changes in sediment composition were observed. After ∼1937, increases in trace metal levels, organic matter, spheroidal carbonaceous particles (SCP) and changes in sediment composition were recorded. The system became eutrophic as indicated by the dominance of the diatom Actinocyclus normanii, a cosmopolitan species often observed in systems where water quality has been dramatically degraded. The conditions worsened after 1986 because of the construction of a storm-water retention system, which intentionally channeled storm-water runoff into the lake. Because of this, extremely high values of fecal coliforms (i.e. 2 × 106 every 100 ml) have been measured in the water column. The paleolimnological information identified the sharp increase in organic content in the uppermost section of the core, and this could be correlated to the operation of the storm-water retention system. Therefore, as an immediate management measure, we suggest that the storm-water retention system should either no longer be utilized, or the storm-water runoff should be treated before disposal into the lake. In addition, an effective sewage system has to be constructed.  相似文献   

15.
Whitefish Lake is a large (11-km-long), shallow, basin in Northwestern Ontario, Canada. The presence of extensive stands of wild rice (Zizania sp.) in combination with high archaeological site density suggests that this lake was ecologically important to regional precontact populations. Collection and analysis of sediment from Whitefish Lake was initiated in 2008 in order to reconstruct changes in lake depth, climate, and vegetation throughout the Holocene. In general, the upper 4.5 m of basinal sediment is composed of ~1.5+ m of varves, which is overlain by a 1.5-m-thick unit with ped-like structures, and ~1.5 m of lacustrine sediment. This sequence documents an early proglacial lake phase, followed by a dry interval before 4,300 (4,900 cal) BP when the lake was significantly shallower, and the establishment of the modern lake during the late Holocene. Plant microfossil (phytolith) evidence indicates that wild rice had colonized the basin ~5,300 (6,100 cal) BP as the lake level rose in response to climate change. Beginning ~4,000 (4,500 cal) BP, changes in elemental data suggest a sharp increase in lake productivity and a switch to anaerobic depositional conditions as the rate of organic sedimentation increased. Recent archaeological research confirms that wild rice was locally processed and consumed during the Middle and Late Woodland periods (~300 BC–AD 1700) although it was evidently growing in the lake well before this time.  相似文献   

16.
This study uses the Holocene lake sediment of Lake ?ū?i (Latvia, Vidzeme Heights) for environmental reconstruction with multi-proxy records including lithology, computerised axial tomography scan, grain-size analysis, geochemistry, diatoms and macrofossils, supported by AMS radiocarbon dating. Numerical analyses (PCA; CONISS) reveal three main phases in the development of the lake. Response to the Lateglacial–Holocene transition in Lake ?ū?i took place around 11,300 cal. BP. Organogenic sedimentation started with distinctive 5-cm-thick peat layer and was followed by lacustrine sedimentation of carbonaceous gyttja. Several findings of the peat layer with similar dated age and position at different absolute altitudes indicate that lake basin was formed by glaciokarstic processes. In the Early Holocene (until around 8,500 cal. BP), the lake was shallow and holomictic, surrounded by unstable catchment with erosion and inflow events. Predominance of diatom species of Cyclotella and Tabellaria, large numbers of respiratory horns of phantom midge pupae (Chaoboridae), high Fe/Mn ratio, as well as the presence of laminated sediments indicates the transition to a dimictic and oligo-mesotrophic lake conditions with high water level, anoxia in the near-bottom and stable catchment in the Middle Holocene (8,500–2,000 cal. BP). This contrasts with many hydrologically sensitive lakes in Northern and Eastern Europe in which the water level fell several meters during this period. During the Late Holocene (from 2,000 cal. BP to the present), the lithological and biotic variables reveal major changes, such as the increase in erosion (coarser grain-size fraction) and eutrophication [diatoms Aulacoseira ambigua (Grun.) Sim., Stephanodiscus spp., Cyclostephanos dubius (Fricke) Round]. Characteristics of lake-catchment system during the Late Holocene reflect anthropogenic signal superimposed on the natural forcing factors. To date, the Late Quaternary palaeolimnological reconstructions using lake sediment has been limited in the Baltic region. Therefore, findings from Lake ?ū?i provide important information about environmental and climatic changes that took place in this part of Eastern Europe. This study shows that the relative importance of climate and local factors has varied over the time and it is essential to consider the lake basin topography, catchment size and land cover as potential dominant forcing factors for changes in sedimentary signal.  相似文献   

17.
High-resolution geochemical analysis of a 6-m-long sediment core from Zoñar Lake, southern Spain, provides a detailed characterization of major changes in lake and watershed processes during the last 4,000 years. Geochemical variables were used as paleolimnological indicators and complement Zoñar Lakes’s paleoenvironmental reconstruction based on sedimentological and biological proxies, which define periods of increasing allochthonous input to the lake and periods of dominant autochthonous sedimentation. Chemical ratios identify periods of endogenic carbonate formation (higher Ca/Al, Sr/Al and Ba/Al ratios), evaporite precipitation (higher S/Al, Sr/Al ratios), and anoxic conditions (higher Mo/Al, U/Th ratios and Eu anomaly). Higher productivity is marked by elevated organic carbon content and carbonate precipitation (Mg/Ca). Hydrological reconstruction for Zoñar Lake was based on sedimentological, mineralogical and biological proxies, and shows that lower lake levels are characterized by Sr-rich sediments (a brackish lake with aragonite) and S-rich sediments (a saline lake with gypsum), while higher lake levels are characterized by sediments enriched in elements associated with alumino-silicates (Al, K, Ti, Fe, trace and rare earth elements), reflecting fresher conditions. Geochemical indicators also mark periods of higher detrital input to the lake related to human activity in the watershed: (1) during the Iberian Roman Humid Period (650 BC–AD 300), around the onset of the Little Ice Age (AD 1400), during the relatively drier Post-Roman and Middle Ages (AD 800–1400), and over the last 50 years, due to mechanized farming practices. Heavy metal enrichment in the sediments (Cu and Ni) suggests intensification of human activities during the Iberian Roman Period, and the use of fertilizers during the last 50 years.  相似文献   

18.
Swan Lake is a small kettle lake located on the Oak Ridges Moraine; a moraine that is recognized as an important source of ground water for the nearby and rapidly expanding Greater Toronto Area. A paleolimnological reconstruction using pollen and diatoms from the lake sediments showed significant changes in biological community composition through the last ∼400 years. Alterations in the diatom and pollen assemblages were most dramatic ca. A.D. 1850, correlating with the highest sediment flux in the lake between the period ca. A.D. 1850 and A.D. 1870. These changes were directly linked to regional deforestation and agricultural activities associated with European settlement. The pollen record from ca. A.D. 1850 to present day indicated that tree species (e.g. Pinus spp., Tsuga canadensis) were declining, while grass (Poaceae) and invasive species (e.g. Ambrosia) were increasing. Around A.D. 1850, the diatom flora changed from an assemblage dominated by large, benthic species (e.g. Sellaphora pupula, Pinnularia cf. maior, and Stauroneis phoenicenteron) to an assemblage characterized by smaller, tychoplanktonic (e.g. Fragilaria tenera, Staurosirella pinnata) and epiphytic (e.g. Achnanthidium minutissimum, Rossithidium linearis) taxa. This diatom community change supports the intermediate disturbance hypothesis which predicts a high level of diversity and richness following an intermediate to intense disturbance of short duration. Phosphorus concentrations in Swan Lake were inferred using a diatom-based regional calibration model, and the results indicated marked changes in lake water chemistry through time (from below detection limits before land clearance and settlement to 19.3 μg l−1 in the current sediments), which were concurrent with episodes of regional deforestation and land-use change. Although the sediment and biological records indicate that the lake ecology has stabilized over the last 30–50 years, paleolimnological records show that the water quality and biology of Swan Lake has changed dramatically and not returned to pre-settlement conditions. Swan Lake presents a detailed record of the impact created by deforestation and urban development with a population of <50 individuals per km2. Detailed paleolimnological studies like Swan Lake, in tandem with global human footprint studies, can create realistic estimates of land-use impacts at the global scale.  相似文献   

19.
A mean annual temperature increase has been recorded on the Yunnan–Guizhou Plateau of China during the last century. This temperature increase has been significantly greater since the 1950s. Thus, paleolimnological analyses may be utilized to better understand ecological responses to recent changing climate over decadal to centennial timescales, especially in regions with sparse lake monitoring data. Here, we present paleolimnological results from a 210Pb/137Cs-dated sediment core spanning approximately the last ~250 years from a remote, alpine, semi-closed oligotrophic lake (Lugu Lake) on the northwestern Yunnan–Guizhou Plateau. Sediment profiles of diatoms, geochemical variables (LOI550, TOC and C/N) and median grain size were analyzed and compared with the climate data (1951 AD–2010 AD) from the Lijiang weather station. Endogenous productivity of Lugu Lake has increased gradually over the last 30 years. The majority of diatom taxa encountered in the core are typical of alkaline oligotrophic lakes. Diatom assemblages were dominated by Cyclostephanos dubius, Cyclotella taxa, and fragilarioid taxa. Diatom species composition has changed significantly with three assemblage shifts at different scales over the ~250-year period. Diatom species diversity reveals a distinct increase before ~1970 AD, followed by a decline. In addition, a decreasing trend in diatom cell-size was consistent with recent warming trends. Redundancy analysis (RDA) shows that regional air temperature trends (annual, spring, summer, and winter) have played a significant role (p < 0.05) in determining diatom compositional changes over the past six decades. Results of this study suggest that regional warming is the main driving force behind recent changes in diatom composition at Lugu Lake, while nutrients may also have impact on the diatom change in recent 10 years.  相似文献   

20.
The St. Louis River Estuary (SLRE), a freshwater estuary bordering Duluth, Minnesota, Superior, Wisconsin, and the most western point of Lake Superior (46.74°, ? 92.13°), has a long history of human development since Euro-American settlement ~ 200 years ago. Due to degradation from logging, hydrologic modification, industrial practices, and untreated sewage, the SLRE was designated an Area of Concern in 1987. Action has been taken to restore water quality including the installation of the Western Lake Superior Sanitary District in 1978 to help remove beneficial use impairments. A better understanding of historical impacts and remediation is necessary to help document progress and knowledge gaps related to water quality, so a paleolimnological study of the SLRE was initiated. Various paleolimnological indicators (pigments, diatom communities, and diatom-inferred phosphorus) were analyzed from six cores taken throughout the SLRE and another from western Lake Superior. Reductions in eutrophic diatom taxa such as Cyclotella meneghiniana and Stephanodiscus after 1970 in certain cores suggest an improvement in water quality over the last 40 years. However, in cores taken from estuarine bay environments, persistence of eutrophic taxa such as Cyclostephanos dubius and Stephanodiscus binderanus indicate ongoing nutrient problems. Sedimentary pigments also indicate cyanobacteria increases in bays over the last two decades. Diatom model-inferred phosphorus and contemporary monitoring data suggest some of the problems associated with excess nutrient loads have been remediated, but modern conditions (internal phosphorus loading, changing climate) may be contributing to ongoing water quality impairments in some locations. The integrated record of biological, chemical, and physical indicators preserved in the sediments will aid state and federal agencies in determining where to target their resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号