首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method for measuring the two-dimensional distribution of wind velocity vectors near a surface exposed to solar radiation, by tracking brightness temperature images instead of particle images, is proposed. It is based on time-sequential thermography with the algorithm used for particle image velocimetry. This thermal image velocimetry (TIV) was tested on a full-scale building wall covered by polystyrene boards attached side-by-side over a vertically elongated area measuring 22.2 m by 2.73 m. A thermal infrared camera was installed 8 m from the test wall to capture the wall-surface temperature at 30 Hz frequency. A sonic anemometer was also installed 35 mm from the surface used for validation of the TIV. The advection velocity estimated from thermal infrared imagery had a linear relationship with the wind velocity measured by the sonic anemometer, irrespective of the wind speed and direction. This linear slope was multiplied by the advection velocity of the thermal infrared image to rescale it to the wind velocity, and the term ‘TIV velocity’ was then used. A histogram and power spectra of the TIV velocity showed quantitatively good agreement with the velocity measured by the sonic anemometer, except for the high-frequency region of the spectra, where the TIV velocity was overestimated compared with that of the sonic anemometer. The method was also tested on ground covered by artificial turf to demonstrate its application to a horizontal plane with a wider area, extending for more than 80 m by 60 m.  相似文献   

2.
Townsend's attached eddy hypothesis states that the turbulent structure in the constant stress layer can be decomposed into attached and detached eddy motion. This paper proposes and tests a methodology for separating the attached and detached eddy motion from time series measurements of velocity and temperature. The proposed methodology is based on the time-frequency localization and filtering capabilities of the orthonormal wavelet transforms. Using a relative entropy statistical measure, the optimal wavelet basis is identified first. The turbulence time series measurements are then transformed into the wavelet domain where the contribution of specific events in the time-frequency domain is identified. The filtering scheme utilizes a recently constructed Lorentz thresholding methodology that successfully eliminates all wavelet coefficients associated with the detached eddy motion. While this filtering scheme lacks the compression efficiency of the classical Donoho and Johnstone's universal thresholding model, it conserves the higher-order statistics and important turbulence interactions related to the Reynolds stresses. Following the filtering scheme, the attached eddy motion time series is re-constructed by an inverse wavelet transform of the non-zero wavelet coefficients. The proposed partitioning methodology for attached and detached eddy motion is tested using 56 Hz triaxial sonic anemometer velocity and temperature measurements above a uniform dry lake bed in Owens valley, California, for a wide range of atmospheric stability conditions. Validation that the wavelet filtered time series represents the attached eddy motion is also discussed in the context of conservation of turbulence energy and surface fluxes.  相似文献   

3.
We describe the coordinate transformations that can be used to convert the velocity components measured by a set of sonic anemometers with time-dependent tilt fluctuations into a single, time-independent coordinate system. By applying the planar fit method (PFM) to each anemometer dataset, it is possible, for planar flows, to locate the flow plane at each measurement point and compare its orientation with the topography. Installation on a ship is also considered. An application of this method to intercomparison data has led to the detection of an instrument error due to a misalignment between the assembly of the sonic transducers and the anemometer pedestal. If this error occurs, pedestal levelling does not guarantee that measurements are unbiased. A correction method is proposed and the results of two experiments are shown. Flow planarity at different levels and flow distortion caused by the mast are highlighted. The influence of the error on the evaluation of the Reynolds stresses using PFM or the double rotation method and the triple rotation method is discussed and the tilt corrected stresses calculated using the three methods compared.  相似文献   

4.
Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10–50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from −5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the vertical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orientation. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.  相似文献   

5.
We carried out measurements to test a simple theory of the effect of probe-induced flow distortion on turbulence measurements. We used two three-component sonic anemometers mounted 1.8m apart at a height of 6.7 m. Behind one was a horizontal circular cylinder of radius 0.15 m and length 1.2 m, chosen to model two-dimensional probe-induced flow distortion in the limit where the scale of the turbulence is very large compared to the scale of the probe. The second sonic anemometer measured the undistorted flow. The measured flow-distortion effects on the Reynolds shearing stress and the variances of streamwise and vertical velocity agree well with the theory.  相似文献   

6.
The results of calibrations of the airspeed measurement, distance constant and cosine response for a sensitive propellor (vane) anemometer are described. A triad of these anemometers may be used to measure wind velocity, and the estimated uncertainty in this measurement is evaluated for a typical triad and a range of wind directions.The propellor anemometers tested provide sensitivity similar to that of sonic anemometers for research, but at much lower cost (although for a narrower range of wind conditions). Large arrays of the anemometers allow the spatial and temporal structure of wind turbulence to be measured directly. The anemometers have been used for several years, and are robust enough for micrometeorological research.  相似文献   

7.
The Campbell CSAT3 sonic anemometer is one of the most popular instruments for turbulence measurements in basic micrometeorological research and ecological applications. While measurement uncertainty has been characterized by field experiments and wind-tunnel studies in the past, there are conflicting estimates, which motivated us to conduct a numerical experiment using large-eddy simulation to evaluate the probe-induced flow distortion of the CSAT3 anemometer under controlled conditions, and with exact knowledge of the undisturbed flow. As opposed to wind-tunnel studies, we imposed oscillations in both the vertical and horizontal velocity components at the distinct frequencies and amplitudes found in typical turbulence spectra in the surface layer. The resulting flow-distortion errors for the standard deviations of the vertical velocity component range from 3 to 7%, and from 1 to 3% for the horizontal velocity component, depending on the azimuth angle. The magnitude of these errors is almost independent of the frequency of wind speed fluctuations, provided the amplitude is typical for surface-layer turbulence. A comparison of the corrections for transducer shadowing proposed by both Kaimal et al. (Proc Dyn Flow Conf, 551–565, 1978) and Horst et al. (Boundary-Layer Meteorol 155:371–395, 2015) show that both methods compensate for a larger part of the observed error, but do not sufficiently account for the azimuth dependency. Further numerical simulations could be conducted in the future to characterize the flow distortion induced by other existing types of sonic anemometers for the purposes of optimizing their geometry.  相似文献   

8.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

9.
Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared imagery and sonic anemometer measurements were obtained during the boundary layer late afternoon and sunset turbulence (BLLAST) experimental campaign. Temporal turbulence data in the surface-layer are then analyzed jointly with spatial surface-temperature imagery. The surface-temperature structures (identified using surface-temperature fluctuations) are strongly linked to atmospheric turbulence as manifested in several findings. The surface-temperature coherent structures move at an advection speed similar to the upper surface-layer or mixed-layer wind speed, with a decreasing trend with increase in stability. Also, with increasing instability the streamwise surface-temperature structure size decreases and the structures become more circular. The sequencing of surface- and air-temperature patterns is further examined through conditional averaging. Surface heating causes the initiation of warm ejection events followed by cold sweep events that result in surface cooling. The ejection events occur about 25 % of the time, but account for 60–70 % of the total sensible heat flux and cause fluctuations of up to 30 % in the ground heat flux. Cross-correlation analysis between air and surface temperature confirms the validity of a scalar footprint model.  相似文献   

10.
A one-dimensional sonic anemometer system suitable for use in measuring near surface heat fluxes is described. It operates by transferring continuous sound waves in alternate directions between a matched pair of cheap ultrasonic transducers. The design and development of the anemometer is described, together with wind tunnel tests, and field experiments, in which the performances of several prototypes are compared with those of other anemometers over stubble and over forest. The results indicate that the device is suitable for measuring eddy correlation heat fluxes to an accuracy better than 5%.  相似文献   

11.
An anemometer based upon measurement of the tangential windspeed around a sphere with hot-film probes is described. The anemometer determined the windspeed with a root-mean-square (rms) error of 5%, and the direction with an rms error of 5.6 °. A comparison between omnidirectional and sonic anemometers in the field gave practically identical results for the vertical sensible heat flux using eddy correlation procedures. Other turbulence statistics are also reported. The new instrument should be useful for measurements in canopies, where turbulence intensities are often large.  相似文献   

12.
Accurate measurements in highly turbulent flows, as they occur in nature, require reliable velocity measuring techniques that permit instantaneous velocity components to be locally recorded. Hot-element techniques and optical methods are available for local measurements of instantaneous velocity and the present paper summarizes the advantages and disadvantages of different techniques when applied to flow fields in the environment of vegetation. The paper points out the advantages of laser-Doppler anemometry for velocity measurements in highly turbulent flows under laboratory conditions and stresses the reliability of the technique for measurements in polluted air and water flows. The basic principles of the method are explained and developments are described that have yielded optical anemometer systems for measurements of the magnitudes and signs of the instantaneous velocity components. Both quantities have to be known if accurate measurements of the mean flow properties and turbulence characteristics in flow fields with unknown flow directions are required. Electronic data-processing systems for laser-Doppler anemometer measurements are surveyed, embracing frequency analysers, automatic filter banks, frequency trackers, photon correlators and frequency counters. Photon-correlation and counting techniques are introduced as the methods most likely to be employed for the laser-Doppler anemometer. Laser-Doppler anemometer investigations are described in boundary-layer flows along bean leaves and a metal model of plant leaves. These measurements formed the basis of heat and mass transfer predictions near leaves for a specific leaf position relative to the free stream and with different turbulence properties imposed onto the oncoming flow. These data are presented and discussed in some detail. Measurements are also presented that were carried out to investigate the velocity fields in different flow regimes around a square obstacle in a water flow. These flow properties were needed to understand the different growth rates of sea-weed observed in differing flow regimes.  相似文献   

13.
城市冠层中湍流运动的统计特征   总被引:21,自引:3,他引:18  
对1997 年夏天和冬天北京湍流运动的各种统计特征量进行了初步的统计分析。结果表明,城市冠层中湍流运动的各种统计特征量与平坦下垫面条件下边界层湍流运动的相比, 有不同的地方也有相似的地方; 无论白天还是夜晚, 垂直方向的湍流强度和湍流脉动风速标准差均小于水平方向的, 水平方向的相应湍流特征量则总是接近相等; 城市冠层中湍流脉动强度和标准差几乎均大于平坦下垫面边界层的; 平均风速u≥1 m /s 时的湍流统计特征量与u< 1 m /s 时的有所不同; 城市冠层的阻力系数较大, 可达00625,Panofsky 等提出的公式σw /u* = 13 (1- 3z/L)1/3在城市冠层中并不适用。  相似文献   

14.
Many new types of sonic anemometer obtain sonic temperature from an average value of temperature measured along three paths, unlike previous sonic anemometers that generally used one path. New equations are derived to calculate temperature variance from sonic temperature variance and sensible heat flux from buoyancy flux considering the influence of a crosswind. These equations can be applied to CSAT3, Solent R2, R3, R3A, HS, and USA-1 sonic anemometers with the corresponding correction factors given in this paper. The equations are verified by data measured by a CSAT3 sonic anemometer in the LITFASS-1998 field study.  相似文献   

15.
The most recent of a series of thrust anemometers, designed for measurement of wind turbulence and eddy fluxes and for long-term unattended operation, is evaluated. Calibration and data analysis procedures are outlined, and results of field trials are given, showing agreement with data from a sonic anemometer.  相似文献   

16.
Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average $-63\,\%$ ) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.  相似文献   

17.
高风速相干结构对通量输送影响的实验研究   总被引:2,自引:0,他引:2  
切变湍流的相干结构是湍流研究中的重大发现,它表明湍流运动并非完全随机,其中具有可检测的有序结构.本文通过处理南京浦口地区大气边界层观测数据,来分析不稳定层结中高风速相干结构特征.本次观测项目包括对场地中央的气象铁塔上2 m和40 m高度上超声风速仪的脉动速度、温度测量以及风廓线雷达对边界层风速廓线的测量.对超声水平风速时间序列数据进行小波变换 (时间尺度400 s),通过阈值来识别这种高风速相干结构.与多普勒风廓线雷达测量结果对比后发现,这种方法确定的相干结构符合常规的认识,具有较长的时间尺度和较大的垂直尺度 (接近边界层厚度).分析三天相干结构特性得到无量纲空间间隔约为6,即每隔6个边界层厚度的水平位置出现一个高速相干结构.通过与垂直风速小波系数的比较,发现高风速相干结构与向下垂直风速之间有较好相关,这与湍流中 “阵风” 现象的研究结论相似.使用四象限分析方法分类得到两种动量通量输送为负的运动:较小水平风速的上扬 (ejection) 运动 (简称为上扬运动) 和较大水平风速的下扫 (sweep) 运动 (简称为下扫运动),这两种运动在整个湍流活动中处于主导地位.高风速相干结构通过促进下扫运动和抑制上扬运动来影响动量通量的输送.  相似文献   

18.
The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.  相似文献   

19.
Flow distortion by supporting structures   总被引:3,自引:0,他引:3  
During the 1976 International Turbulence Comparison Experiment, a number of participants found significant values of upflow over the horizontal support arm of the sensor used. For example, the Japanese sonic anemometer reported an average upflow of 2.4 °. By means of model experiments and fitting to a potential flow solution, it is predicted that the horizontal support would introduce an upflow of 0.5 °. Further model experiments with a full sonic anemometer model plus associated structures predicted an upflow of 2.2 °, in reasonable agreement with the observed result. The need for extreme care in the exposure of turbulence sensors is emphasized. The theory is capable of predicting the error incurred in the various turbulence parameters, such as uw, and these error equations bear a close similarity to those normally used in applying a tilt correction.  相似文献   

20.
超声风温仪测温的误差订正   总被引:3,自引:0,他引:3  
利用同步进行的风速、温度、湿度湍流观测资料,对超声风温仪温度测量结果作了水平风速和湿度的订正。结果表明:由于超声风温仪测温受空气湿度和水平风速的影响,对其作相应的订正是十分必要的。|z/L|<1时,湿度和风速对超声风温仪温度方差和感热通量测量值所引起的误差是不可忽视的。而在|z/L|>1区间,仅计入湿度影响,已够精确。对于温度谱密度,当nSθ(n)/σ2θ低于0.01时,有一高频的噪声频率阈值,高于此频率,nSθ(n)/σ2θ与无因次频率f呈+1次幂关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号