首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or ohvine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from< 100 Å to a few hundred Å. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystal-linity of saponite. by contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of Å thick. The Si/(Si+Al) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe+Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+Al) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite±mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.Contribution No. 488 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan  相似文献   

2.
Fluid-saturated subsolidus experiments from 2·0 to 6·5GPa, and from 680 to 800°C have been performed on threemodel peridotites in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O(NCFMASH). Amphibole and chlorite coexist up to 2·4 GPa,700°C. Chlorite persists to 4·2 GPa at 680°C.Starting from 4·8 GPa, 680°C a 10 Å phase structurereplaces chlorite in all compositions. The 10 Å phasestructure contains significant Al2O3 (up to 10·53 wt%) deviating from the MgO–SiO2–H2O 10 Å phase(MSH 10 Å phase). A mixed layered structure (chlorite–MSH10 Å phase) is proposed to account for aluminium observed.In the Tinaquillo lherzolite amphibole breakdown occurs viathe reaction Thermal stabilityof chlorite (chlorite + orthopyroxene = forsterite + garnet+ H2O) is shifted towards lower temperatures, compared withthe system MASH. Furthermore, the chlorite thermal breakdownis also related to the degenerate reaction Chlorite and the Al-10 Å phase structurecontribute significantly to the water budget in subduction zonesin the depth range relevant for arc magmatism, whereas amphibole-relatedfluid release is restricted to the forearc region. Chloriteand Al-10 Å phase breakdowns might explain the occurrenceof a double seismic zone by dehydration embrittlement. KEY WORDS: amphibole; chlorite; high pressure; peridotites; subduction zones  相似文献   

3.
Chlorite is a common sheet silicate that occurs in various lithologies over a wide grade range involving diagenesis and low‐grade metamorphism. Thus, the reaction progress of chlorite offers a unique opportunity for direct correlation of zonal classification of metasedimentary rocks based on illite crystallinity with metabasite mineral facies. To provide such correlation, chlorite crystallinity indices, apparent mean crystallite sizes and lattice strains, crystallite size distributions and compositions of chlorite from coexisting metapelites and metabasites were determined by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), analytical electron microscopy (AEM) and electron microprobe (EMP) methods. Samples were from Palaeozoic and Mesozoic formations of the Bükkium (innermost Western Carpathians, Hungary) that underwent Alpine (Cretaceous) orogenic metamorphism. Metapelites range in grade from late diagenesis to epizone, whereas metabasites vary from prehnite–pumpellyite through pumpellyite–actinolite to greenschist facies. Despite significant differences in composition, mineral assemblages and textures, reaction progress, as measured in part by chlorite crystallinity, in metapelites paralleled that in metabasites. Chlorite crystallinity and mean crystallite size increase and the proportion of mixed layers in chlorite decreases, whereas the calculated lattice strain does not change significantly with increasing metamorphic grade. Similar trends, but (especially at higher grades) significant differences, were found in mean crystallite size values using various methods for XRD line profile analyses. The increase in crystallite size with increasing grade was demonstrated also by direct TEM measurements on ion‐milled whole‐rock samples, but with a larger scatter of data at higher grades. In spite of the different kinds of mixed layering in chlorite (Mg‐rich smectitic, mostly random, local corrensite‐like units in metabasites, and Fe‐rich berthierine and dioctahedral smectite in metapelites), XRD‐calculated and TEM‐measured parameters were found to be reliable tools for measuring reaction progress and metamorphic grade of the same degree in both lithotypes.  相似文献   

4.
 Transmission electron microscopy (TEM) results show there is a series of periodically and nonperiodically interstratified structures composed of berthierine and chlorite layers in low-temperature “chlorite” that is one of the alteration products of granulite-facies Archean ironstone from the eastern border of the Beartooth Mountains, Montana. An antiphase domain structure suggests that the interstratified structures are intermediate transformation products formed by reaction from berthierine (serpentine structure) to chlorite. Periodically interstratified structures consisting of chlorite (C) and serpentine-like (S) (or berthierine) layers include (CS), (CCS), (CCCS), (CCCCS), and (CCCCCCS). The layer sequences in interstratified chlorite-berthierine are indicative of the reaction mechanisms that produce the interstratified structures (e.g., crystallization from solution or solid-state transformation). The reaction from berthierine to chlorite is crystallographically much like a cell-preserved phase transformation, even though it is highly reconstructive. Berthierine can be considered a polymorph of the Fe-rich chlorite mineral chamosite, with berthierine as the los-temperature phase. Interstratification and integrowths in the chlorite-berthierine series may be common phenomena in low-temperature layer silicates resembling chlorite. Although such relations are difficult to recognize from chemical analyses or powder X-ray diffraction patterns, they can be observed readily with TEM method. Received: 25 April 1995/Accepted 5 April 1996  相似文献   

5.
The unusual association of cordierite and cummingtonite (? gedrite+ chlorite + biotite + ilmenite + plagioclase + quartz) definesa metamorphic facies within aluminous, low-Ca amphibolites fromthe Proterozoic rocks of the Gold Brick District, east of Gunnison,Colorado. More Fe-rich bulk chemistries in the same facies arecharacterized by assemblages consisting of cordierite+-gedrite+ garnet + chlorite + biotite + ilmenite + plagioclase + quartz,whereas more Mg-rich compositions are characterized by cordierite+ anthophyllite + chlorite + biotite + ilmenite ? plagioclase+ quartz. The assemblage gedrite 4- cummingtonite + chlorite+ biotite + ilmenite + plagioclase + quartz was also observed.Coexisting cordierite+ anthophyllite + cummingtonite was notobserved in any rocks, apparently because this assemblage isstable over only a very narrow range of bulk compositions. Metamorphosedpelitic rocks are more iron rich than the assemblage cordierite+ gedrite + garnet + chlorite + biotite + ilmenite + plagioclase+ quartz and consist of garnet ?cordierite ?staurolite ? chlorite? andalusite + biotite + ilmenite + plagioclase + quartz? microclineor muscovite. Mineral rim compositions from cordierite-bearing amphibolitesand metapelites determined by electron microprobe analysis showsystematic Fe/Mg partitioning and define assemblages that occupynon-overlapping regions of the compositional system SiO2-TiO2-Al2O3-MnO-FeO-MgO-CaO-Na2O-K2O-H2Oas determined by algebraic and statistical methods developedby Braun & Stout (1975) and Fisher (1989). Graphical methods(projections) produced spurious overlaps not confirmed by themore rigorous algebraic tests. The spurious overlaps were generatedbecause standard projective analysis was not able simultaneouslyto account for the important effects of the components Na2O,CaO, and MnO on the AFM topologies. The results of algebraicand statistical analysis are consistent with an equilibriumorigin at constant values of temperature and pressure. The cordierite-cummingtonite facies encompasses the relativelylow-pressure and moderate-temperature conditions associatedwith the stability field of andalusite. Garnet-biotite geothermo-metry,and garnet, aluminosilicate, silica, plagioclase (GASP) geobarometrysuggest that temperatures and pressures were nearly constantacross the study area at 550( ? 70) ?C and 3 kb, respectively,near the peak of metamorphism. Other geothermometers and geobarometers,and independent pressure and temperature estimates, are compatiblewith garnet-biotite thermometry and GASP geo-barometry. Gradientsin fO2 or H2O are not required to explain the compatibilityof these assemblages at constant T and P. Cordierite + cummingtonite-bearingrocks can apparently be derived from anthophyllite +garnet-bearingrocks by increasing temperature or decreasing pressure.  相似文献   

6.
Graphite in the Borrowdale (Cumbria, UK) deposit occurs as large masses within mineralized pipe-like bodies, in late graphite–chlorite veins, and disseminated through the volcanic host rocks. This occurrence shows the greatest variety of crystalline graphite morphologies recognized to date from a single deposit. These morphologies described herein include flakes, cryptocrystalline and spherulitic aggregates, and dish-like forms. Colloform textures, displayed by many of the cryptocrystalline aggregates, are reported here for the first time from any graphite deposit worldwide. Textural relationships indicate that spherulitic aggregates and colloform graphite formed earlier than flaky crystals. This sequence of crystallization is in agreement with the precipitation of graphite from fluids with progressively decreasing supersaturation. The structural characterization carried out by means of Raman spectroscopy shows that, with the exception of colloform graphite around silicate grains and pyrite within the host rocks, all graphite morphologies display very high crystallinity. The microscale SIMS study reveals light stable carbon isotope ratios for graphite (δ 13C = −34.5 to −30.2‰), which are compatible with the assimilation of carbon-bearing metapelites in the Borrowdale Volcanic Group magmas. Within the main mineralized breccia pipe-like bodies, the isotopic signatures (with cryptocrystalline graphite being lighter than flaky graphite) are consistent with the composition and evolution of the mineralizing fluids inferred from fluid inclusion data which indicate a progressive loss of CO2. Late graphite–chlorite veins contain isotopically heavier spherulitic graphite than flaky graphite. This agrees with CH4-enriched fluids at this stage of the mineralizing event, resulting in the successive precipitation of isotopically heavier graphite morphologies. The isotopic variations of the different graphite morphologies can be attributed therefore, to changes in the speciation of carbon in the fluids coupled with concomitant changes in the XH2O during precipitation of graphite and associated hydrous minerals (mainly epidote and chlorite).  相似文献   

7.
The relationship between diagenetic chlorite rims and depositional facies in deltaic strata of the Lower Cretaceous Missisauga Formation was investigated using a combination of electron microprobe, bulk geochemistry and X‐ray diffraction data. The succession studied comprises several stacked parasequences. The delta progradational facies association includes: (i) fluvial or distributary channel sandstones (some with tidal influence); (ii) thick‐bedded delta‐front graded beds of sandstone interpreted as resulting from fluvial hyperpycnal flow during floods and storms; and (iii) more distal muddier delta‐front and prodeltaic facies. The transgressive facies association includes lag conglomerate, siderite‐cemented muddy sandstone and mudstone, and bioclastic sandy limestone. Chlorite rims are absent in the fluvial facies and best developed in thick sandstones lacking mudstone baffles. Good quality chlorite rims are well correlated with Ti in bulk geochemistry. Ti is a proxy for Fe availability, principally from the breakdown of abundant detrital ilmenite (FeTiO3). Under conditions of sea floor diagenesis, the abrupt decrease in sedimentation rate at transgressive surfaces caused progressive shallowing of the sulphate‐depletion level and of the overlying Eh‐controlled diagenetic zones, resulting in conditions suitable for diagenetic formation of berthierine to migrate upwards through the packet of reservoir sandstones. This early diagenetic berthierine suppressed silica cementation and later recrystallized to chlorite. Thick euhedral outer chlorite rims were precipitated from formation water in sandstone lacking muddy baffles on this chlorite substrate and inhibited late carbonate cementation. This study thus shows that the preservation of porosity by chlorite rims is a two‐stage process. Rapidly deposited delta‐front turbidite facies create early diagenetic conditions that eventually lead to the formation of chlorite rims, but the best quality chlorite rims are restricted to sandstones with high permeability during burial diagenesis.  相似文献   

8.
Moderately manganiferous siliceous pelagites near Meyers Pass, Torlesse Terrane, South Canterbury, New Zealand, have been metamorphosed in the prehnite–pumpellyite facies. A conodont colour index measurement suggests T max in the range 190–300 °C. Porphyroblastic manganaxinite, manganoan pumpellyite, manganoan chlorite and trace spessartine-rich garnet and sphalerite have formed in an extremely fine-grained quartz–albite–berthierine–phengite–titanite groundmass. Porphyroblastic manganaxinite semischists and schists are distinctive rocks in prehnite–pumpellyite to lower-grade greenschist and blueschist facies of New Zealand and Japan. Mn in the manganoan pumpellyites substitutes for Ca in W sites. Total Fe/(Fe+Mg) ratios in chlorite are dependent on oxidation state, being ≤0.22 in red hematitic hemipelagites, and ≥0.61 in low-f O2 grey metapelagites. In the low-f O2 metapelagites, manganoan berthierine with little or no chlorite is inferred in the groundmass and iron-rich chlorite occurs as porphyroblasts and veinlets, whereas in the red rocks, Mg-rich chlorite occurs both in groundmasses and veinlets. Variably high Si in the manganoan chlorites correlates with evidence for contaminant phases. The Mn content of chlorite contributing to garnet growth is dependent on metamorphic grade; incipient spessartine indicates a saturation value of 6–8% MnO in chlorite in low-f O2 rocks at Meyers Pass. Lower MnO contents are recorded for otherwise analogous rocks with increasing metamorphic grade, but at a given grade coexisting chlorite and garnet are richer in Mn where f O2 is high. Manganaxinite and manganoan pumpellyite also contributed to reactions forming grossular–spessartine solid solutions. Formation of garnet in siliceous pelagites is dependent on both Mn and Ca content. The spessartine component increases with grade into the greenschist facies. Partial recrystallization of berthierine to chlorite and the growth of porphyroblastic patches of other minerals was facilitated by brittle fracture and access of fluids to an otherwise impermeable matrix; to this extent the very low-grade metamorphism was episodic.  相似文献   

9.
Abstract TEM and XRD techniques were used to study crystal growth characteristics of the fabric-forming phyllosilicates which developed in response to low-grade metamorphism and tectonic imbrication in part of the Southern Uplands thrust terrane. Prograde regional metamorphism, ranging from late diagenesis through the anchizone to the epizone, was accompanied by the development of a slaty cleavage which is commonly bedding-parallel. TEM-measured mean thicknesses of white mica and chlorite crystallite populations increase with advancing grade and correlate with XRD-measured crystallinity indices. Analytical TEM data show that prograde changes in composition lead to a net loss of Si, Ca and minor Fe from the fabric-forming phyllosilicates. White micas are paragonite-poor phengites with a mean b lattice parameter of 9.037 Å, and indicate an intermediate pressure series of metamorphism with a field gradient of <25° C km-1. Chlorite compositions evolved from diabantite (with intergrown corrensite) to ripidolite over an estimated temperature range of 150–320° C. Field gradient and temperature estimates suggest that crystal growth and fabric development occurred at burial depths ranging from 6 km to at least 13 km in the thrust terrane. During late diagenesis, crystal growth of white mica and chlorite was predominantly a consequence of polytypic and phase transitions, and resulted in similar size distributions which resemble typical Ostwald ripening curves. Under anchizonal and epizonal conditions, white mica grew more rapidly than chlorite because of its greater ability to store strain energy and recover from subgrain development; as a result crystal thickness distributions are not typical of Ostwald ripening. In contrast, chlorite crystals which grew under these conditions developed subgrain boundaries at high strain rates which were only partially recovered at low strain rates; these retained dislocations reduce the crystallite thicknesses detected by TEM and XRD, compared with those of white mica. These differences in strain-induced crystal growth indicate that white mica (illite) and chlorite crystallinity indices are likely to show significant differences where low-grade metamorphism is closely associated with tectonic fabric development.  相似文献   

10.
Iron chlorites with compositions intermediate between the two end-members daphnite (Fe5Al2Si3O10(OH)8) and pseudothuringite (Fe4Al4Si2O10(OH)8) were synthesized from mixtures of reagent chemicals. The polymorph with a 7 Å basal spacing initially crystallized from these mixtures at 300 °C and 2 kb after two weeks. Conversion to a 14 Å chlorite required a further 6 weeks at 550 °C. Shorter conversion times were required at higher water pressures. The products contained up to 20% impurities.The maximum equilibrium decomposition temperature for iron chlorite, approximately 550 °C at 2kb, is at an between assemblages (1) and (2) listed below. Synthetic iron chlorite will break down by various reactions with variable P, T, and fugacity of oxygen. For the composition FeAlSi = 523, the sequence of high temperature breakdown products with increasing traversing the magnetite field for P total = =2kb is: (1) corierite+ fayalite+hercynite; (2) cordierite+fay alite+magnetite; (3) cordierite+magnetite+quartz; (4) magnetite+mullite+quartz. Almandine should replace cordierite in assemblages (1) and (2) but it did not nucleate. The significance of the relationship between iron cordierite and almandine in this system is discussed.At water pressures from 4 to 8.5 kb and at the nickel-bunsite buffer, iron chlorite+quartz break down to iron gedrite+magnetite with temperature 550 to 640 °C along the curve. At temperatures 50 °C greater and along a parallel curve, almandine replaces iron gedrite. For on this buffer curve, almandine is unstable below approximately 4 kb for temperatures to approximately 750 °C.  相似文献   

11.
Phyllosilicates in rocks which are transitional from mudstone to slate from Lehigh Gap, Pa., have been studied by a variety of techniques, including high resolution Transmission Electron Microscopy and Analytical Electron Microscopy. The principal minerals are white mica which is transitional from illite in mudstone to ordered twolayer mica in slate, and chlorite. 7Å berthierine occurs more rarely. Dioctahedral and trioctahedral layers are shown to be interleaved in individual crystals at all scales between the following two end members: (1) both random and regular 11 interlayering at the scale of individual layers, as shown, in part, by lattice fringe images. (2) packets of trioctahedral and dioctahedral layers up to a few thousand Ångstroms or microns in thickness, detectable with ordinary optical techniques. The complete range of intermediate structures is represented in samples which are in transition to slate. Bulk analytical (EMPA), X-ray diffraction or other measurements are shown to result in averages over both kinds of layers when TEM techniques are not used.Contribution No. 400 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan  相似文献   

12.
Globular, platy, and fine-dispersed phyllosilicates of chloritic composition were studied in the outer contact of dike with glauconite-bearing rocks. It is shown that the globular Al-glauconite is replaced by pseudomorphs of mixed-layer Mg- and Fe-bearing chlorite–berthierine containing 5% berthierine layers in this zone. The crystallochemical characteristics and microstructure are reported for the globular, platy, and fine-dispersed chlorites. The possible models of chlorite–berthierine formation are discussed.  相似文献   

13.
Transmission and scanning electron microscopy were utilized to investigate the nature and mechanisms of alteration of abundant detrital biotite of volcanic origin and progressive modification of phyllosilicate aggregates in a prograde sequence of pelitic rocks (illite crystallinity index = 0.19–0.58λ2θ) from the Gaspé Peninsula in Quebec.
Detrital biotite has been diagenetically altered to form corrensite and chlorite through two mechanisms; (1) layer-by-layer replacement gave rise to interstratification of packets of layers and complex mixed layering via several kinds of layer transitions between biotite and chlorite, corrensite or smectite; (2) dissolution-transport-precipitation resulted in the formation of relatively coarse-grained aggregates of randomly orientated, corrensite-rich flakes and fine-grained corrensite intergrown with chlorite and illite in the matrix.
The data show that stacks consisting of alternating packets of trioctahedral and dioctahedral phyllosilicates originated during early diagenesis when lenticular fissures in strained altering biotite were filled by dioctahedral clays. Subsequent prograde evolution of dioctahedral clays occurred through deformation, dissolution and crystallization, and overgrowth. Illite evolved to muscovite, with K in part provided through biotite alteration, and corrensite/chlorite to homogeneous chlorite. The alteration of detrital biotite is closely related to the formation of titanite and magnetite in diagenetic rocks, and pyrite, calcite and anatase or rutile in the higher grade rocks.
The observations demonstrate that detrital biotite of volcanic origin may be the principal precursor of chlorite in chlorite-rich metapelites originating in marginal basins. The mineral parageneses suggest that the transitions from corrensite to chlorite and illite to muscovite may be a function of local chemistry and time.  相似文献   

14.
15.
Chlorite and associated minerals from the volcanogenic Taveyanne metasediment of the western Helvetic nappes, Switzerland, were investigated by electron microprobe (EMP) and transmission electron microscopy (TEM) in order to determine their textural and chemical evolution during low-temperature metamorphism. EMP analyses of chloritic material from sub-greenschist facies outcrops show a decrease of Si and Σ(Ca, Na, K) with increasing metamorphic grade. A number of conclusions may be drawn from combined TEM images and analytical electron microscopy (AEM) data. 1 In diagenetic-grade samples, chlorite crystals (observed maximum defect-free distance=80 nm) always contain some 1 nm layers (with a maximum of 29% of all layers) and less frequently some 0.7 nm berthierine-like layers. With increasing grade, the amounts of 1 and 0.7 nm layers decrease, and most chlorite from the epizone is structurally pure or contains less than 2% of 1 nm layers. 2 A positive correlation was found between the amount of 1 nm layers and the Ca+K+Na content, indicating that the 1 nm layers are saponite. 3 Observations and calculations suggest that the transformation reaction of saponite to chlorite takes place by the replacement of the interlayer cations in saponite by brucite-like layers resulting in a local volume decrease. In contrast, the destruction of berthierine has only minor influence on the local bulk volume. These results confirm recent studies which show that the change in composition measured by EMP of diagenetic-grade chloritic material are mainly the result of mixtures of chlorite and saponite. The use of chlorite ‘geothermometry’ in such systems is greatly influenced by the presence of saponite and hence is not based on reaction equilibria, even though temperatures calculated in this study agree with temperatures derived from other methods. Therefore, chlorite evolution should be treated as a kinetically controlled grade indicator and developed as a qualitative scale similar to the illite crystallinity index.  相似文献   

16.
Textural and chemical changes occurring in illite and chlorite concomitant with pressure solution of limestone were studied in samples from the Kalkberg Formation of Catskill, New York, using XRD and TEM/AEM. Samples on one limb of an anticline are massive shaly limestones, but those on the other have undergone extensive pressure solution and well-developed cleavage is present. Illite and chlorite from the uncleaved shaly limestone are found in small individual packets (100–800 Å thick) dispersed throughout the carbonate matrix with crystal morphologies characteristic of burial diagenesis. Phyllosilicates from the limb more affected by pressure solution occur in larger units (>1 μm thick) as stacks of subparallel packets (150–500 Å thick). Such stacks are inferred to represent coalescence of smaller packets. These data imply that the phyllosilicates are largely passive during pressure solution of limestone; however, localized solution-recrystallization is required by the coherent to semi-coherent packet boundaries and the crystal morphologies present in the pressure solution sample. The largely passive role is in contrast with the more active role of phyllosilicates in many shales and slates.XRD data for illite show an increase in crystallinity in the pressure solution sample under isothermal conditions. Differences in illite crystallinity are adequately explained in large part by differences in crystal size with some contribution due to strain. The data demonstrate that illite crystallinity cannot be unambiguously used in determining absolute or even relative temperatures.  相似文献   

17.
绿泥石包膜在国内外碎屑岩储集层中常有发现,其对石英次生加大的抑制及对储集层物性的影响一直是国内外学者的研究热点。本文回顾了绿泥石包膜的研究历史,总结了其研究成果,包括微观赋存状态、形成时间和机理、控制因素、对石英次生加大的抑制和对储集层物性的影响等。结果表明:(1)储集层中绿泥石包膜主要偏富铁,具连续生长的双层结构,符合“Ostwald”熟化过程,始于早期富铁黏土包膜,早成岩期转化为平行或斜切颗粒表面的内层包膜,逐渐向外生长为垂直颗粒表面的孔隙衬里绿泥石,并可在埋藏成岩过程持续生长;(2)富含铁镁矿物的火山物质(火山岩岩屑和火山灰)及暗色矿物(黑云母和角闪石等)是形成绿泥石包膜的主要物质来源,并主要富集在三角洲入海(湖)的高能水动力相带,如三角洲前缘水下分流河道及河口坝等沉积微相中,烃类充注影响孔隙衬里绿泥石的生长形态;(3)中低温环境绿泥石包膜明显抑制石英次生加大的生长,高温环境抑制效果减弱;(4)绿泥石包膜的发育有利于粒间孔隙的保护,但易降低孔隙喉道的连通性。最后指出了绿泥石包膜在目前研究中存在的问题和今后的研究趋势。  相似文献   

18.
Sapphirine/kornerupine-bearing rocks occur within the anorthosites of the Messina layered intrusion in the Limpopo mobile belt of Zimbabwe. The XMg range of the major minerals is as follows: cordierite (0.98-0.93); enstatite (0.97-0.86); chlorite (0.98-0.92); phlogopite (0.98-0.90); sapphirine (0.98-0.86); kornerupine (0.94-0.88); gedrite (0.96-0.85); spinel (0.92-0.78). There are four rock types, the constituent minerals of which have different values, which decrease in the above mineral order; other minerals are corundum, sillimanite and relict kyanite. We recognise twenty reactions without phlogopite and nine reactions involving phlogopite. The textural relations and the plots of the microprobe data of coexisting minerals in the MgO-Al2O3-SiO2-(H2O) system are consistent with the following sequence of main reactions: (1) enstatite+corundum cordierite+sapphirine; (4) sapphirine+sillimanite cordierite+corundum; (8) kornerupine+corundum cordierite+sapphirine; (13) kornerupine cordierite+sapphirine+enstatite; (15) enstatite+spinel chlorite+sapphirine; (18) cordierite+sapphirine chlorite+corundum; (20) sapphirine chlorite+corundum+spinel. The early reactions are shown by coarse-grained reaction intergrowths, kornerupine and gedrite breakdown is shown by finer-grained symplectites, and the latest reactions by very fine-grained products in micro-fractures. These selected reactions illustrate a remarkably steep trajectory from thePT peak close to 10 kbar and 800° C to the minimum observable at 3.5–4.5 kbar and 700° C as indicated by the pure MASH system. Very rapid uplift took place under nearly isothermal conditions. The protolith of this material was possibly sedimentary, derived from altered volcanic rocks. The bulk composition is close to the composition of kornerupine or to a mixture of alunite, chlorite and pyrophyllite. These texturally and mineralogically complex rocks contain a wealth of relevant data for documenting crustal uplift history.  相似文献   

19.
Chlorite peridotites from Almklovdalen in southwest Norway were studied to understand the deformation processes and seismic anisotropy in the upper mantle. The lattice preferred orientation (LPO) of olivine and chlorite was determined using electron backscattered diffraction (EBSD)/scanning electron microscopy. A sample with abundant garnet showed [100] axes of olivine aligned sub-parallel to lineation, and [010] axes aligned subnormal to foliation: A-type LPO. Samples rich in chlorite showed different olivine LPOs. Two samples showed [001] axes aligned sub-parallel to lineation, and [010] axes aligned subnormal to foliation: B-type LPO. Two other samples showed [100] axes aligned sub-parallel to lineation, and [001] axes aligned subnormal to foliation: E-type LPO. Chlorite showed a strong LPO characterized by [001] axes aligned subnormal to foliation with a weak girdle subnormal to lineation. Fourier transform infrared (FTIR) spectroscopy of the specimens revealed that the olivines with A-type LPO contain a small amount (170 ppm H/Si) of water. In contrast, the olivines with B-type LPOs contain a large amount (340 ppm H/Si) of water.

The seismic anisotropy of the olivine and chlorite was calculated. Olivine showed Vp anisotropy of up to 3.8% and a maximum Vs anisotropy of up to 2.7%. However, the chlorite showed a much stronger Vp anisotropy, up to 21.1%, and a maximum Vs anisotropy of up to 31.7%. A sample with a mixture of 25% of olivine and 75% of chlorite can produce a Vp anisotropy of 14.2% and a maximum Vs anisotropy of 22.9%. Because chlorite has a wide stability field at high pressure and high temperature in the subduction zone, the strong LPO of chlorite can be a source of the observed trench-normal or trench-parallel seismic anisotropy in the mantle wedge as well as in subducting slabs depending on the dipping angle of slab in a subduction zone where chlorite is stable.  相似文献   

20.
Interstratification of complete layers has long been recognized in phyllosilicates. Interlayering on a fine scale with a host containing partial layers of a second phase has only recently been recognized by using TEM. Considering similarities in structural units of phyllosilicates this type of interlayering should be expected. Alteration samples from Butte, Montana, show extensive development of partial interlayers in kaolinite, sericite, and pyrophyllite. Kaolinite found in plagioclase sites always grows from smectite and in the growth process incorporates unit cell thick lenses of the smectite. The interlayers show up as increased spacing in 001 fringes and cause considerable strain in the surrounding kaolinite structure. Pyrophyllite studied was found to have abundant interlayers and inclusions of muscovite. This muscovite was identified from diffuse 10 Å reflections and microanalysis. The muscovite inclusions are usually less than 5 layers thick and extend from 50 Å to 1,000 Å in the ab plane. In sericite fine interlayering is subtle for the interlayers vary only slightly in unit cell size and composition from the host; however, structural changes are significant enough to cause imagable strain contrast in the host. Zones of fine interlayers are thought to mark healed subgrain boundaries which originally were zones of compositional heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号