首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Small isolated dune fields in the northern Mojave Desert are important centers of biodiversity and archaeological occupation sites. Currently dunes at Ash Meadows, Nevada, are stabilized by vegetation and are experiencing erosion of their upwind margins, indicating a negative sediment budget. New OSL ages from dunes at Ash Meadows indicate continuous eolian accumulation from 1.5 to 0.8 ka, with further accumulation around 0.2 ka. Prior studies (e.g., Mehringer and Warren, 1976) indicate periods of dune accumulation prior to 3.3 ka; 1.9–1 ka; and after 0.9 ka. These periods of eolian accumulation are largely synchronous with those identified elsewhere in the Mojave Desert. The composition of the Ash Meadows dunes indicates their derivation from regional fluvial sources, most likely during periods when axial washes were active as a result of enhanced winter precipitation.  相似文献   

2.
The linear dunes of the southern Kalahari dunefield constitute one of the major palaeoenvironmental proxies in the region. The application of optically stimulated luminescence (OSL) dating since the1990s and advancements in the depth of sampling using augering equipment over the past few years have permitted the reconstruction of linear dune accumulation chronostratigraphies for entire dune profiles from base to crest. These methods are applied to four dunes in the Mariental–Stampriet region of the southern Kalahari dunefield, sampled at predominantly 0.5 m intervals. Individual dunes record multiple phases of dune construction, but with only a few phases recorded consistently between two or more of the dunes. Results from the 48 OSL ages produced here extend the aeolian accumulation record for the southern Kalahari dunefield through the last three glacial–interglacial cycles with two ages from the early part of MIS6. A synthesis of all existing luminescence ages for the southern Kalahari reveals that the dunefield has been partially active throughout much of the past 120 ka. There are no clear clusters of ages within OSL age errors. This is in contrast to previous syntheses of ages for this region. In addition, these new data from Mariental–Stampriet dunes show that clusters in grouped dune OSL ages can be spuriously produced as a function of reducing the sampling frequency with depth within the dunes, from 0.5 to 1 mintervals. This has significant implications for previous conclusions regarding discrete phases of aeolian accumulation based on sampling at 1 m intervals and less vertically intensive sampling techniques. The total luminescence data set of 136 ages for the southern Kalahari implies that this dunefield has been close to the threshold of reactivation throughout much of the late Quaternary.  相似文献   

3.
The establishment of a chronology of landscape-forming events in lowland and mid-altitude Tasmania, essential for assessing the relative importance of climatic and human influences on erosion, and for assessing present erosion risk, has been limited by the small number of ages obtained and limitations of dating methods. In this paper we critically assess previous Tasmanian studies, list published radiocarbon ages considered to be dependable, present new radiocarbon and thermoluminescence (TL) ages for 25 sites around Tasmania, and consider the evidence for the hypotheses that erosion processes at low and mid altitudes have been: (1) purely climatically controlled; and (2) influenced both by climatic and anthropogenic (increased fire frequency) effects. A total of 94 dependable finite ages (calibrated for radiocarbon and ‘as measured’ for TL and optically stimulated luminescence (OSL) determinations) are listed for deposits comprising dunes, colluvium, alluvium and loess-like aeolian deposits. Two fall in the >100 ka period, 15 fall in the period 65–35 ka, and 77 fall in the period 35–0.3 ka. There was a sustained increase in erosion recorded in the period 35–15 ka, as reflected by a greater number of dated aeolian deposits during this period.We considered three possible biases that may have affected the age distribution obtained: the limitations of radiocarbon dating, sampling bias, and preservation bias. Sampling bias may have favoured more recent dune strata, but radiocarbon dating and preservation biases are unlikely to have significantly distorted the age distribution obtained.Long but intermittent aeolian deposition is recorded at two sites (Southwood B; c. 59–28 ka and Dunlin Dune; c. 29–14 ka) but there is no evidence of regional loess deposits such as found in New Zealand. The timing of increased erosion in Tasmania between 35 and 30 ka approximately coincides with the intermittent ten-fold increase of dust accumulation between 33 and 30 ka in the Antarctic Dome C ice core. The absence of widespread erosion before 35 ka, the abrupt increase of erosion around this time, the frequent association of erosion products with charcoal, the arrival of people in Tasmania at c. 40 cal ka, and the known use of fires by Aborigines to maintain areas of non-climax vegetation suggest that ecosystem disturbance by anthropogenic fires, in a drier climate than that presently prevailing, may have contributed to erosion in lowland and mid-altitude Tasmania after 35 ka. Thus the Tasmanian erosion record provides circumstantial support for the proposition that human dispersal in southeast Australia was accompanied by significant ecological change.  相似文献   

4.
《Quaternary Science Reviews》2003,22(10-13):1067-1076
This study is concerned with the Late Quaternary climatic chronology of the Strzelecki Desert dunefields in central Australia. The sand ridges comprise layers of quartz sand, some of which include palaeosol horizons with carbonated rootlets providing excellent opportunity for dating of alternations of dune building and stability by using optically stimulated luminescence (OSL). Deduced from the OSL age of the oldest aeolian layer dated, we conclude that the onset of aridity dates back to at least ∼65 ka. Older phases of aeolian activity though, following a fluvial depositional phase 160 ka ago, cannot be excluded, although no aeolian layers giving evidence for this have been found in the two dunes dated here. Unconsolidated dune sands in the upper part of one section with Late Holocene (4 ka to modern) depositional ages indicate a reactivation of the dunefield in recent times.From the crosscheck of 14C ages of the carbonated rootlets with OSL results it is concluded that under the given environmental conditions radiocarbon dating of the calcareous rootlets is not able to provide reliable ages for the phase of soil development.  相似文献   

5.
The evolution processes and forcing mechanisms of the Horqin dunefield in northern China are poorly understood. In this study, systematic OSL dating of multiple sites is used together with pollen analysis of a representative section in order to reconstruct the evolution of the dunefield since the Last Glacial Maximum (LGM). Our results show that there was extensive dune mobilization 25–10 ka, transition to stabilization 10–8 ka, considerable dune stabilization 8–3 ka, and multiple episodes of stabilization and mobilization after 3 ka. Comparison of dune evolution of the dunefields in northern China during the Holocene showed that Asian monsoon and resultant effective moisture have played an important role in the evolution of dunefields at the millennial time scale. Further analysis indicated that the dune evolution in the Horqin dunefield before 3 ka was synchronous with climatic changes. However, increasing human activity has impacted dune evolution during the last 3 ka.  相似文献   

6.
The Holocene and late Pleistocene environmental history of the teri (‘sandy waste’ in local parlance) red sands in the southeast coastal Tamil Nadu was examined using remote sensing, stratigraphy, and optically stimulated luminescence (OSL) dating. Geomorphological surveys enabled the classification of the teri red sands as, 1) inland fluvial teri, 2) coastal teri and, 3) near-coastal teri dunes. The inland teri sediments have higher clay and silty-sand component than the coastal and near-coastal teri, suggesting that these sediments were deposited by the fluvial process during a stronger winter monsoon around > 15 ka. The coastal teri dunes were deposited prior to 11.4 ± 0.9 ka, and the near-coastal dunes aggraded at around 5.6 ± 0.4 ka. We interpret that the coastal dunes were formed during a period of lower relative sea level and the near-coastal dunes formed during a period of higher sea level. Dune reddening is post deposition occurred after 11.4 ± 0.9 ka for the coastal teri dunes and after 5.6 ± 0.4 ka for the near-coastal teri dunes. Presence of microlithic sites associated with the coastal dunes suggest that the cultures existed in the region during 11.4 ± 0.9 ka and 5.6 ± 0.4 ka.  相似文献   

7.
The remains of former lakes show that in the past the Arabian Peninsula experienced much wetter conditions than today. The last of these humid periods dates to about 10 to 5.5 ka ago. The chronological framework for an earlier humid phase, radiocarbon dated to some 35–20 ka, is inconsistent with evidence from other records from the region. Possibly, these ages are significantly underestimating the true depositional age due to methodological problems. The earliest phase of dune accumulation known so far is dated to the penultimate glaciation maximum of the mid latitudes (ca. 150 ka). Subsequently, dune accumulation occurred around 110 ka, 65 ka and 20 ka ago. All these phases concur with rapid drops in global sea level that caused a drying out of the Persian Gulf basin and of the shelf of the Oman coast. In contrast to some previous interpretations, it is concluded here that aeolian deposition has been limited by sediment supply and not by preservation potential.  相似文献   

8.
《Quaternary Science Reviews》2003,22(10-13):1027-1033
The Liwa region of the United Arab Emirates contains some of the largest and most areally extensive megabarchanoid sand dunes on a global scale. Here we present optical dating results on samples of aeolian sediment from deep drill cores extracted from the largest dune field of the Liwa area. Optical dating of these core sediments using the single aliquot regeneration protocol indicates Mid–Late Holocene phases of rapid dune deposition, the most recent period of reactivation began at ca 2.8 ka. This event was preceded by a period of deposition at ca 5 ka. These results suggest that the dune systems of the southeastern Arabian Peninsula are closely linked to changes in Late Quaternary global climate, particularly linked to the intensity and spatial extent of palaeomonsoon rainfall. Since the last precessional maxima at ca 9 ka, at which time a peak in monsoonal rainfall has been recognised, a significant environmental transition to widespread desert conditions occurred in an apparently abrupt fashion. During the initial period of aridification, large quantities of sand were transported and deposited in the form of large and very large (up to 160 m high) scale aeolian bedforms. Following the initial phase of aeolian accumulation, the system appears to have remained in stasis.  相似文献   

9.
The extensive shoreline deposits of Lake Chilwa, southern Malawi, a shallow water body today covering 600 km2 of a basin of 7500 km2, are investigated for their record of late Quaternary highstands. OSL dating, applied to 36 samples from five sediment cores from the northern and western marginal sand ridges, reveal a highstand record spanning 44 ka. Using two different grouping methods, highstand phases are identified at 43.7–33.3 ka, 26.2–21.0 ka and 17.9–12.0 ka (total error method) or 38.4–35.5 ka, 24.3–22.3 ka, 16.2–15.1 ka and 13.5–12.7 ka (Finite Mixture Model age components) with two further discrete events recorded at 11.01 ± 0.76 ka and 8.52 ± 0.56 ka. Highstands are comparable to the timing of wet phases from other basins in East and southern Africa, demonstrating wet conditions in the region before the LGM, which was dry, and a wet Lateglacial, which commenced earlier in the southern compared to northern hemisphere in East Africa. We find no evidence that wet phases are insolation driven, but analysis of the dataset and GCM modelling experiments suggest that Heinrich events may be associated with enhanced monsoon activity in East Africa in both timing and as a possible causal mechanism.  相似文献   

10.
Extensive coastal dunes occur in the Great Lakes region of North America, including northwestern Michigan where some are perched on high (~ 100 m) bluffs. This study focuses on such a system at Arcadia Dunes and is the first to systematically generate optical ages from stratigraphic sections containing buried soils. Dune growth began ca. 4.5 ka during the Nipissing high lake stand and continued episodically thereafter, with periods of increased sand supply at ca. 3.5 ka and ca. 1.7 ka. The most volumetrically dominant phase of dune growth began ca. 1.0 ka and continued intermittently for about 500 years. It may have begun due to the combined effects of a high lake phase, potential changes in lake hydrodynamics with final isostatic separation of Lake Superior from Lakes Michigan and Huron, and increased drought and hydrologic variability associated with the Medieval Warm Period. Thus, this latest eolian phase likely reflects multiple processes associated with Great Lakes water level and climate variability that may also explain older eolian depositional events. Comparison of Arcadia ages and calendar corrected 14C ages from previous studies indicate broad chronological agreement between events at all sites, although it appears that dune growth began later at Arcadia.  相似文献   

11.
《Quaternary Science Reviews》2007,26(3-4):386-404
This study provides an interpretation of interrelated Quaternary fluvial and aeolian activity related to climate change on Cooper Creek in the Lake Eyre Basin in southwestern Queensland, central Australia. The extensive muddy floodplain is characterised by buried sandy palaeochannels now almost entirely invisible but stratigraphically connected to source-bordering dunes that emerge as distinctive sandy islands through the floodplain surface. Luminescence dating has identified pronounced periods of fluvial activity represented by abundant sandy alluvium from Marine Isotope Stages (MIS) 8–3. While all these sandy fluvial episodes on Cooper Creek were much more powerful than anything subsequent, they appear to be ranked in order of declining activity. MIS 8–6 saw reworking of almost the entire floodplain whereas subsequent phases of reworking were far less extensive. Source-bordering dunes were derived from active sandy channels in late MIS 5 (∼85–80 ka) and mid MIS 3 (50–40 ka). After ∼40 ka sand-channel activity largely ceased and the floodplains and channels were inundated with mud, isolating the dunes as emergent features. Although aeolian reworking of the upper parts of some dunes has continued to the present, they show remarkable resilience, having survived without appreciable migration for at least 40 ka. Whilst the channels once determined the location of source-bordering dunes, in an interesting role reversal the remnant dunes now determine the position of many contemporary flood-channels and waterholes by deflection and confinement of overbank flows.  相似文献   

12.
《Quaternary Science Reviews》2007,26(19-21):2598-2616
Linear dunes occupy more than one-third of the Australian continent, but the timing of their formation is poorly understood. In this study, we collected 82 samples from 26 sites across the Strzelecki and Tirari Deserts in the driest part of central Australia to provide an optically stimulated luminescence chronology for these dunefields. The dunes preserve up to four stratigraphic horizons, bounded by palaeosols, which represent evidence for multiple periods of reactivation punctuated by episodes of increased environmental stability. Dune activity took place in episodes around 73–66, 35–32, 22–18 and 14–10 ka. Intermittent partial mobilisation persisted at other times throughout the last 75 ka and dune activity appears to have intensified during the late Holocene. Dune construction occurred when sediment was available for aeolian transport; in the Strzelecki and Tirari Deserts, this coincided with cold, arid conditions during Marine Isotope Stage (MIS) 4, late MIS 3 and MIS 2, and the warm, dry climates of the late Pleistocene–Holocene transition period and late Holocene. Localised influxes of sediment on active floodplains and lake floors during the relatively more humid periods of MIS 5 also resulted in dune formation. The timing of widespread dune reactivation coincided with glaciation in southeastern Australia, along with cooler temperatures in the adjacent oceans and Antarctica.  相似文献   

13.
Barrier systems contain lengthy, but complex, records of long-term environmental fluctuations. The Wilderness embayment, South Africa, contains a system of shore-parallel barriers reaching up to 200 m above modern sea level. This study reports the results of chronological, topographical (both on- and off-shore), sedimentological and micromorphological analyses within the Wilderness embayment. Sixty-one new luminescence ages from sixteen sites in unconsolidated dunes and three separate barriers are presented which, when combined with previously published luminescence ages from the area, provide a high-resolution chronological framework for the emplacement and evolution of the barrier system. The preserved barriers have been constructed within at least the last two glacial–interglacial cycles with notable phases between 241–221 ka, 159–143 ka, 130–120 ka, 92–87 ka and post 6 ka. Multiple phases of barrier construction occurred during sea-level highstands, with sediment deposition on each individual barrier occurring over at least two interglacials. Holocene evolution of the system sheds light on earlier events, with dune preservation occurring only during early regression from the Mid-Holocene highstand. Tectonic stability at Wilderness allowed glacio-eustatically formed shorelines to occupy similar positions on multiple occasions. This, in conjunction with a relatively humid climate and a well-vegetated landscape, enabled deflated sediment from beaches to form dunes which stacked upon each other to form an extensive and complex vertical accretionary sequence. Repeated erosion and recycling of pre-existing barriers as well as barrier construction on what is currently the off-shore platform during still-stands in sea-level regressional cycles, when sea levels dropped below ca ?50 m from the present day, has added to the complexity of the preserved terrestrial barrier record. The Wilderness barrier system contrasts with barriers developed elsewhere in the world where higher rates of crustal uplift have allowed preservation of a more complete and more widely spaced palaeorecord. This research also shows the utility of integrating off-shore topography as revealed by bathymetry, with terrestrial topographic data for the better understanding of the evolution of palaeo-coastlines and the preserved dune record found on present-day coastal plains. Local variation in the topography of the continental shelf at Wilderness has generated spatial and temporal complexity within the sedimentary records of individual barriers as well as having a significant influence on preservation.  相似文献   

14.
The stabilized northwestern (NW) Negev vegetated linear dunes (VLD) of Israel extend over 1300 km2 and form the eastern end of the Northern Sinai – NW Negev Erg. This study aimed at identifying primary and subsequent dune incursions and episodes of dune elongation by investigating dune geomorphology, stratigraphy and optically stimulated luminescence (OSL) dating. Thirty-five dune and interdune exposed and drilled section were studied and sampled for sedimentological analyses and OSL dating, enabling spatial and temporal elucidation of the NW Negev dunefield evolution.In a global perspective the NW Negev dunefield is relatively young. Though sporadic sand deposition has occurred during the past 100 ka, dunes began to accumulate over large portions of the dunefield area only at ~23 ka. Three main chronostratigraphic units, corresponding to three (OSL) age clusters, were found throughout most of the dunefield, indicating three main dune mobilizations: late to post last glacial maximum (LGM) at 18–11.5 ka, late Holocene (2–0.8 ka), and modern (150–8 years). The post-LGM phase is the most extensive and it defined the current dunefield boundaries. It involved several episodes of dune incursions and damming of drainage systems. Dune advancement often occurred in rapid pulses and the orientation of VLD long axes indicates similar long-term wind directions. The late Holocene episode included partial incursion of new sand, reworking of Late Pleistocene dunes as well as limited redeposition. The modern sand movement only reactivated older dunes and did not lengthen VLDs.This aeolian record fits well with other regional aeolian sections. We suggest that sand supply and storage in Sinai was initiated by the Late Pleistocene exposure of the Nile Delta sands. Late Pleistocene winds, substantially stronger than those usually prevailing since the onset of the Holocene, are suggested to have transported the dune sands across Sinai and into the northwestern Negev.Our results demonstrate the sensitivity of vegetated linear dunes located along the (northern) fringe of the sub-tropical desert belt to climate change (i.e. wind) and sediment supply.  相似文献   

15.
It has long been understood that as ephemeral landscape features sand dunes are highly sensitive to environmental change, and thus their distribution and the timing of their development may provide clues to past climate dynamics. The relationship between climate and dune activity, however, is neither simple nor straightforward, with a range of controls affecting the balance between erodibility (the availability of sediment for deflation) and erosivity (the potential for sediment transport). To explore such complex systems over large spatial and temporal scales, a number of dune activity indices (DAI) have been created that incorporate wind speed and moisture balances to calculate the potential for, and degree of dune mobilisation. Using modern weather station data, these indices have generally been shown to provide reasonable indications of dune activity potential. Until recently, however, the detailed quantitative data required to inform these equations has not been available for past climate scenarios, and attempts to determine the relative importance of the various controls of dune activity have relied on rough estimations of climatic parameters. This paper combines data from monthly general circulation model (GCM) outputs from the coupled Ocean-Atmosphere GCMs for 21 ka with the most detailed DAI equation presently available to calculate the potential for dune reactivation in southern Africa during the Last Glacial Maximum (LGM, 18–24 ka). Based on these data and calculations it is indicated that there was significantly less potential for dune activity across southern Africa at 21 ka. When compared to the aeolian sediment records from the region, this study poses serious and fundamental questions about: 1) the reliability of the model outputs, 2) the degree to which DAIs are able to account for the complexity and dynamics of aeolian systems, and/or 3) the interpretation of dune records as palaeoclimatic proxies at millennial time scales.  相似文献   

16.
Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20–3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.  相似文献   

17.
《Quaternary Research》2014,81(3):488-499
Paleoclimatic reconstruction based on aeolian sediments in the eastern Qaidam Basin (QB) has been hindered by the limited chronological data. Here we present 61 Optically Stimulated Luminescence (OSL) ages. On the basis of these OSL ages and the lithologic stratigraphy, we propose the ‘effective moisture index (EMI)’ for aeolian sediments to reconstruct the effective moisture change. Based on the EMI from twelve sections, the effective moisture change, moisture sources and relevant mechanisms for paleoclimatic change in the eastern QB are discussed. The results indicate that (1) aeolian deposition started at least before 12.4 ± 0.7 ka during the deglaciation, the paleosols developed at the early and mid-Holocene, and aeolian sand and loess accumulated at mid- and late Holocene; (2) effective moisture history was: hyper-arid at 12.8–11.6 ka, humid and variable at 11.6–8.3 ka, moderately humid and stable at 8.3–3.5 ka, and increasingly arid at 3.5–0 ka; (3) the effective moisture change was mainly controlled by the Asian summer monsoon (ASM), which mainly followed the change of Northern Hemispheric summer insolation, and the westerlies strengthened and increased the aridity in the QB when the ASM shrank.  相似文献   

18.
Proglacial lake sediments at Goting in the Higher Central Himalaya were analyzed to reconstruct the summer monsoon variability during the Last Glacial to early Holocene. Sedimentary structures, high resolution mineral magnetic and geochemical data suggest that the lacustrine environment experienced fluctuating monsoonal conditions. Optically stimulated luminescence (OSL) dating indicates that the lake sedimentation occurred before 25 ka and continued after 13 ka. During this period, Goting basin witnessed moderate to strengthened monsoon conditions around 25 ka, 23.5 ka–22.5 ka, 22 ka–18 ka, 17 ka–16.5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at ~11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen.A close correspondence at the millennial scale between our data and that of continental and marine records from the Indian sub-continent suggests that Goting basin responded to periods of strengthened monsoon during the Last Glacial to early Holocene. We attribute the millennial scale monsoon variability to climatic instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau.  相似文献   

19.
This paper reports the main sedimentary characteristics, soil micromorphology and optically-stimulated luminescence (OSL) ages, and details the pedosedimentary reconstruction, of the Hudson site situated in the northern Pampas of Buenos Aires province. It also provides the OSL chronology and a reinterpretation of previously reported micromorphological features for the nearby site of Gorina. Finally, the stratigraphic records of both sites are compared and the main environmental events discussed in a regional context.At Hudson, situated at a low altitude environment close to the coastal plain, the basal fine-grained paludal deposits were unconformably covered by coastal marine sediments with an OSL age of ca. 128 ka supporting its correlation with the high stand of sea level of marine isotope stage 5e. A paleosol developed on the marine deposits and the underlying paludal sediments. OSL ages suggest that soil development and its subsequent erosion occurred over some period between ca. 128 and 54 ka. Fine sediment accumulation in a paludal environment continued until prior to ca. 23 ka when the accumulation of the uppermost loess mantle started. It continued until the early Holocene when present soil development began. At Gorina, OSL ages suggest that the upper part of the pedocomplex formed at some stage between ca. 194 and 56 ka. Loess then accumulated followed by an erosional phase; loess deposition restarted by ca. 29 ka and continued until the beginning of the Holocene (ca. 9 ka) when the present land surface was established.The stratigraphic and paleoenvironmental differences exhibited by the Hudson and Gorina records result from their contrasting geomorphological settings. The OSL geochronology suggests that the last interglacial (MIS 5) at Hudson is marked by the accumulation of marine deposits (MIS 5e) and the subsequent development of a paleosol. The equivalent soil-forming interval at Gorina is represented by the upper part of the buried pedocomplex. Both at Gorina and Hudson, loess accumulation was dominant especially during MIS 2. Loess accumulation continued during MIS 1 until the early Holocene with apparently somewhat higher sedimentation rates in Hudson. Pedogenesis has been predominant during the rest of the Holocene, resulting in the formation of the surface soil profiles.  相似文献   

20.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号