首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Little is known of the interactions between groundwater and surface water on deeply weathered landscapes of low relief in the Great Lakes Region of Africa (GLRA). The role of groundwater in sustaining surface-water levels during periods of absent rainfall is disputed and groundwater is commonly excluded from estimations of surface-water balances. Triangulated piezometers installed beside lake gauging stations on Lake Victoria and Lake Kyoga in Uganda provide the first evidence of the dynamic interaction between groundwater and surface water in the GLRA. Stable isotope ratios (2H:1H, 18O:16O) support piezometric evidence that groundwater primarily discharges to lakes but show further that mixing of groundwater and lake water has occurred at one site on Lake Victoria (Jinja). Layered-aquifer heterogeneity, wherein fluvial-lacustrine sands overlie saprolite, gives rise to both rapid and slow groundwater fluxes to lakes which is evident from the recession of borehole hydrographs following recharge events. Darcy throughflow calculations suggest that direct contributions from groundwater to Lake Victoria comprise <1% of the total inflows to the lake. Groundwater/surface-water interactions are strongly influenced by changing drainage base (lake) levels that are controlled, in part, by regional climate variability and dam releases from Lake Victoria (Jinja).  相似文献   

2.
《Quaternary Science Reviews》2003,22(5-7):555-567
Petrographical and geochemical parameters of stalagmites from the B7 cave in Iserlohn–Letmathe (Northern Rhenish Massif, NW Germany) record Late- and postglacial climate changes (temperature and/or precipitation). Fabrics and microfacies of the stalagmite profiles lead to a differentiation of four hierarchies of rhythms. Clastic layers in the stalagmites are caused by flooding events and are time markers. Twenty-four TIMS Th/U-age-dates provide a time calibration of stalagmite growth phases. One stalagmite reveals an early growth period between 17.6 and 16.7 ka BP. Between 9.6 and 5.5 ka BP (Atlantic episode of the Holocene) the growth rate of the stalagmites was higher than before and after this time, with dominant light-porous microfacial laminae and high δ18O and δ13C values representing partly kinetic fractionation effects. This part of the Holocene is interpreted as a mainly warm episode with frequent interruptions of dripping. Within the past 4 ka the profiles with predominant dark compact facies reveal low isotopic values which may be interpreted as a temperature proxy record. The stalagmite records resemble records from an Irish stalagmite. Correlation with the Δ14C record from European tree rings suggests that colder periods in the North Atlantic were accompanied by drier winters in central Europe.  相似文献   

3.
Oxygen and carbon isotope ratios of Recent ostracods from six localities are presented. The δO18 data are consistent with precipitation of the shells in isotopic equilibrium with seawater. although additional data are necessary to confirm equilibrium precipitation. No strong correlation between carbon isotope ratios and temperature or salinity were observed for ostracods.  相似文献   

4.
This paper gives an account of the implementation of hydrochemical and isotopic techniques to identify and explain the processes that govern solute exchange in two groundwater-dependent shallow lakes in the Southeastern Pampa Plain of Argentina. Water samples (lakes, streams, spring water and groundwater) for hydrochemical and stable isotopic determination were collected and the main physical–chemical parameters were measured. The combination of stable isotope data with hydrogeochemical techniques was used for the identification of sources and preferential recharge areas to these aquatic ecosystems which allowed the explanation of the lake water origin. The hydrochemical processes which explain Los Padres Lake water chemistry are evaporation from groundwater, CO2 input, calcite dissolution, Na+ release by Ca2+ and Mg2+ exchange, and sulfate reduction. The model that best aligns with La Brava Lake hydrochemical constraints includes: mixing, CO2 and calcite dissolution, cationic exchange with Na+ release and Mg2+ adsorption, and to a lesser extent, Ca/Na exchange. This model suggests that the fractured aquifer contribution to this water body is greater than 50 %. An isotopic-specific fingerprint for each lake was identified, finding a higher evaporation rate for La Brava Lake compared to Los Padres Lake. Isotopic data demonstrate the importance of these shallow lakes as recharge areas to the regional aquifer, becoming areas of high groundwater vulnerability. The Tandilia Range System, considered in many hydrogeological studies as the impermeable bedrock of the Pampean aquifer, acts as a fissured aquifer in this area, contributing to low salinity waters and with a fingerprint similar to groundwater isotopic composition.  相似文献   

5.
Trace element ratios in the Bt2 stalagmite from Botuverá cave, Southern Brazil, are explored as a proxy for changes in the local rainfall recharge during the last 116 ky. BP Mg/Ca and Sr/Ca ratios, measured with an electron microprobe, are significantly positively correlated with one another throughout the entire record, and vary in a way that is very consistent with variations of δ18O in the same speleothem during the last glacial period. We suggest that prior calcite precipitation in the vadose zone of the cave system is the main factor affecting the incorporation of Mg and Sr into calcite of the stalagmite. This interpretation is supported by trace element correlation patterns and by results from a hydrochemistry study performed in a cave located in the same region and in a similar environmental setting. Therefore, we conclude that higher (lower) Mg/Ca and Sr/Ca values are associated with lower (higher) levels of recharge into the karstic aquifer, as such conditions lead to an increase (decrease) in the volume of calcite precipitated in the unsaturated zone above the cave during dry (wet) climate periods.Trace element variations point to generally dryer (wetter) conditions during lower (high) phases of summer insolation in the southern hemisphere. These periods coincide with decreased (increased) activity of the South American summer monsoon, as revealed by δ18O stalagmite records. In addition trace element variations show that rather wet conditions persisted throughout most of the last glacial period from approximately 70 to 17 ky BP. We suggest that during this period the glacial boundary conditions, especially ice volume buildup in the northern hemisphere, played an important role for monsoon rainfall intensification in the region.  相似文献   

6.
Li  Bin-Kai  He  Mao-Yong  Ma  Hai-Zhou  Cheng  Huai-De  Ji  Lian-Min 《中国地球化学学报》2022,41(5):731-740

Boron is an essential, widely used, micronutrient element and is abundant in salt lakes on the Qinghai-Tibet Plateau. The origin and distribution of boron brine deposits on the Qinghai-Tibet Plateau is an important foundation for B resource formation, evolution, and enrichment, which have long been the subject of debate. The boron isotope system is a sensitive geochemical tracer, making it useful for effectively and precisely tracking a wide range of geological processes and sources. This study investigates the major cations, [B], and δ11B values of samples (lake brine, river waters, and cold spring water) from the Bangor Co Lake which is a typical salt lake rich in boron in Tibet, China. There are magnitude-scale differences in [B] among different sample types: river samples < cold spring water < < brine lakes. [B] values vary from 0.73 to ~ 1113 mg/L. Similar to [B], the δ11B values of the samples exhibit magnitude-scale variations as [B], ranging from − 7.35‰ to + 7.66‰. There are also magnitude-scale differences in δ11B among different sample types. The δ11B values of cold spring water are relatively low, and the values range from − 1.26‰ to -7.75‰. However, the river water samples and saline lakes have higher values, from 0.38‰ to 4.62‰, and the δ11B values of river water samples are basically in the distribution range of those of Bangor Co Lake. This indicates that the sources of boron in Bangor Co Lake are mainly the recharge water with higher δ11B values and spring water with lower δ11B values, and the boron sources and the uneven mixing of lake water are two reasons that account for the large change in the δ11B value of Bangor Co Lake.

  相似文献   

7.
The interpretation of climatic information from stalagmites has traditionally been a complex research problem, with oxygen isotopes playing a particularly important role in global climate change studies. This study investigates the relationship between oxygen isotope composition of the atmospheric in precipitation and cave drip water at Panlong cave in southwest China on seasonal timescales of variability. Time series seasonal variability was derived from Panlong cave in Guilin by collecting daily precipitation samples for stable isotope analysis during 2012. Results indicate that δ18O of precipitation contains a clear seasonal variation whereby higher values are mainly distributed during winter and lower values during summer. Seasonal variations in water sources affect the precipitation δ18O values. Drip water δ18O also displayed a seasonal cycle which is attenuated relative to δ18O of precipitation. Drip water time series display seasonal cycle ranges from 1.5 to 3.5 ‰ relative to Vienna Standard Mean Ocean Water, which mainly follow the precipitation δ18O seasonal cycle. Seasonal variation in drip water δ18O supports interpretations of the stalagmite δ18O record as a paleoclimate proxy sensitive to the local environment. This monitoring experiment revealed that drip water must be transported through the epikarst in approximately 1.5 months during cold periods, and <0.5 months during warm periods. Different residence time percolation is mainly affected by the atmospheric precipitation amount, depending on whether soil moisture reaches saturation.  相似文献   

8.
Carbon isotopes in speleothems can vary in response to a number of complex processes active in cave systems that are both directly and indirectly related to climate. Progressing downward from the soil zone overlying the cave, these processes include soil respiration, fluid-rock interaction in the host limestone, degassing of CO2 and precipitation of calcite upflow from the speleothem drip site, and calcite precipitation at the drip site. Here we develop a new approach to independently constrain the roles of water-rock interaction and soil processes in controlling stalagmite δ13C. This approach uses the dead carbon proportion (dcp) estimated from coupled 14C and 230Th/U measurements, in conjunction with Sr isotope analyses on stalagmite calcite from a central Sierra Nevada foothills cave in California, a region characterized by a highly seasonal Mediterranean-type climate, to determine the roles of water-rock interaction and soil processes in determining stalagmite δ13C. Increases in stalagmite dcp between 16.5 and 8.8 ka are coincident with decreased δ13C, indicating a varying yet substantial contribution from the soil organic matter (SOM) reservoir, likely due to significantly increased average age of SOM in the soil veneer above the cave during wet climatic intervals.We use geochemical and isotope mixing models to estimate the host-carbonate contribution throughout the δ13C time series and determine the degree of degassing and calcite precipitation that occurred prior to precipitation of stalagmite calcite. The degree of degassing and prior calcite precipitation we calculate varies systematically with other climate indicators, with less degassing and prior calcite precipitation occurring during wetter climatic intervals and more during drier intervals. Modeled δ13C values and degassing calculations suggest that some degree of prior calcite precipitation is necessary at all time intervals to explain measured stalagmite δ13C values, even during relatively wet intervals. These results illustrate the importance of constraining degassing and prior calcite precipitation in the interpretation of speleothem δ13C records, particularly those from caves that formed in seasonal semi-arid to arid environments.  相似文献   

9.
We present a multi‐proxy approach to reconstructing Holocene climate conditions in northeastern Spain based on an excellent correlation among the lamina thickness, colour parameters and isotope (δ18O and δ13C) variations recorded in a speleothem. An age model constructed from five U/Th dates and annual lamina counting suggests that the uppermost 14.7 cm of the MO‐7 stalagmite grew between 7.2 and 2.5 ka before present but experienced a growth hiatus from 4.9 to 4.3 ka. Three spectral analysis methods were applied to 11 time series. The results reveal common solar periodicities on decennial (Gleissberg cycle) and centennial (De Vries‐Suess cycle) scales. The onset of Holocene carbonate precipitation in the MO‐7 stalagmite appears to be associated with a cold, wet period, whereas the hiatus and the end of growth are related to warm, dry periods. This environmental trend fits well within the regional Holocene climate.  相似文献   

10.
We have measured δ44/42Ca of laboratory-precipitated calcite grown in an experimental setup that closely replicates stalagmite formation. Calcium solutions were dripped onto two different substrates in tightly-controlled conditions and calcite precipitated due to rapid CO2 degassing. With seeded glass slides as the substrate, we observe a Ca isotope ratio in the calcite which is ∼0.5‰ per amu lower than that in the growth solution. This fractionation is generally almost twice that observed in previously published calcite growth experiments and indicates a large kinetic effect on Ca isotopes in the stalagmite growth environment. The precipitate forming near the spot where the drip lands shows slightly greater solution-to-precipitate fractionation than calcite further from the drip reflecting a decrease in this kinetic fractionation as precipitation continues. We interpret these results in the context of the model of Fantle and DePaolo (2007) which involves surface entrapment of light Ca isotopes to decrease calcite δ44/42Ca, and depletion of Ca from the solution in the direct vicinity of the growing calcite to increase calcite δ44/42Ca. In the stalagmite setting, the second of these effects is minimized so that calcite Ca isotope ratios are unusually light. This interpretation suggests that stalagmite Ca isotope ratios should decrease with the saturation state of the drip water (i.e. with the growth rate of calcite). Ca isotopes might therefore allow reconstruction of surface entrapment of trace metals and isotopes more generally and might, for instance, allow an assessment of the appropriate relationship between oxygen isotope fractionation and temperature for periods of past growth in stalagmites.  相似文献   

11.
Large-scale atmospheric circulation patterns determine the quantity and seasonality of precipitation, the major source of water in most terrestrial ecosystems. Oxygen isotope (δ18O) dynamics of the present-day hydrologic system in the Palouse region of the northwestern U.S.A. indicate a seasonal correlation between the δ18O values of precipitation and temperature, but no seasonal trends of δ18O records in soil water and shallow groundwater. Their isotope values are close to those of winter precipitation because the Palouse receives  75% of its precipitation during winter. Palouse Loess deposits contain late Pleistocene pedogenic carbonate having ca. 2 to 3‰ higher δ18O values and up to 5‰ higher carbon isotope (δ13C) values than Holocene and modern carbonates. The late Pleistocene δ18O values are best explained by a decrease in isotopically light winter precipitation relative to the modern winter-dominated infiltration. The δ13C values are attributed to a proportional increase of atmospheric CO2 in soil CO2 due to a decrease in soil respiration rate and 13C discrimination in plants under much drier paleoclimate conditions than today. The regional climate difference was likely related to anticyclonic circulation over the Pleistocene Laurentide and Ice Sheet.  相似文献   

12.
Two stalagmites from Devil's Icebox Cave, central Missouri, display similar δ13C and δ18O values and trends during the late Holocene. Positive δ13C excursions at 3.5-2.6 ka and 1.2-0.9 ka are interpreted to reflect drier conditions. These elevated stalagmite δ13C values could have plausibly been driven by increasing C4 plant abundances over the cave or an increased contribution of bedrock carbon, both of which could reflect decreased effective moisture. A lack of corresponding oxygen isotopic anomalies during these intervals suggests that neither mean annual temperature nor the seasonality of precipitation changed concomitantly with dryness. Both of the δ13C excursions identified in our stalagmite record are roughly coincident with dry intervals from a number of sites located across the Great Plains.  相似文献   

13.
The amount and timing of aquifer recharge and the evolution of lakes and groundwater in the south-eastern Badain Jaran desert of Inner Mongolia, with high megadunes, has been investigated using stable isotopes and hydrochemistry. Unsaturated zone moisture profiles down to 22 m have recorded recharge over 1185 years. Small but finite amounts of recharge are recorded with mean recharge rates of 0.95-1.33 mm year?1, determined using a chloride mass balance technique. The unsaturated profile also acts as a unique archive of hydrological and climate change. Before 1300, it was relatively dry but distinct wet periods may be recognised during 1340-1450, 1500-1610 and 1710-1820. Since the mid 1800s, the climate shows a trend towards greater aridity. The interdune lakes are generally fresh but locally, hypersaline lakes are found in juxtaposition. This implies that in general, the lakes have low residence times and flow back into the dune system, but sedimentary obstruction locally prevents outflow and extreme evaporation occurs. The stable isotope records show that the lakes are fed by palaeowaters which on the basis of other proxy data must predate the Last Glacial Maximum. Their recharge source is problematic but most likely this derives from a diminishing water table extending some 30 m south to the Yabulai Mountains.  相似文献   

14.
Analyses of sediment cores from two lakes in the central Brooks Range provide temperature and moisture balance information for the past 8500 cal yr at century-scale resolution. Two methods of oxygen isotope analysis are used to reconstruct past changes in the effective moisture (precipitation minus evaporation) and temperature. Effective moisture is inferred from oxygen isotope ratios in sediment cellulose from Meli Lake (area 0.13 km2, depth 19.4 m). The lake has a low watershed-to-lake-area ratio (7) and significant evaporation relative to input. Summer temperature shifts are based on oxygen isotope analyses of endogenic calcite from Tangled Up Lake (area 0.25 km2, depth 3.5 m). This basin has a larger watershed-to-lake-area ratio (91) and less evaporation relative to input. Sediment oxygen isotope analyses from the two sites indicate generally more arid conditions than present prior to 6000 cal yr B.P. Subsequently, the region became increasingly wet. Temperature variability is recorded minimally at centennial scale resolution with values that are generally cool for the past 6700 cal yr. The timing and direction of climate variability indicated by the oxygen isotope time series from Meli and Tangled Up lakes are consistent with previously established late Holocene glacier advances at 5000 cal yr B.P. in the central Brooks Range, and high lake-levels at Birch Lake since 5500 cal yr B.P. This unique use of oxygen isotopes reveals both moisture balance and temperature histories at previously undetected high-resolution temporal scales for northern Alaska during the middle to late Holocene.  相似文献   

15.
Sources of groundwater recharge to the Badain Jaran Desert in China have been investigated using geochemical and isotopic techniques. Stable isotope compositions (δ18O and δ2H) of shallow groundwater and surface water from oasis lakes evolve from a starting composition considerably depleted compared to local unsaturated zone moisture, confirming inferences from chloride mass balance that direct infiltration of precipitation is not a volumetrically important source of recharge to the shallow aquifer in the study area. Shallow phreatic and deeper confined groundwater bodies appear unconnected based on chemical composition and radiocarbon activities. Hydrogeologic evidence points toward a bordering mountain range (Yabulai) as a likely recharge zone, which is consistent with tracer results. A mean residence time in the range of 1–2 ka for the desert’s southeastern margin is inferred from radiocarbon. These results reveal that some replenishment to the desert aquifer is occurring but at a rate much lower than previously suggested, which is relevant for water resources planning in this ecologically sensitive area.  相似文献   

16.
The oxygen isotopic composition of carbonate in lakes has been used as a useful indicator in Palaeolimnological research, and has made some important contributions to our understanding of lacustrine systems. For modern lakes in arid or cold areas, however, there are few data available to test the effect of lake salinity and temperature on the oxygen isotopic composition of various carbonate sources such as ostracod, bulk carbonate, and fine-grained carbonate (< 60 μm). Here we examined the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonates, as well as that of coexisting water from Lake Qinghai and the smaller surrounding lakes and ponds on the Qinghai–Tibet Plateau. Our investigation highlights three key effects. First, the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonate in the lakes and ponds shows a clear response to lake water δ18O values, and these vary with water salinity. The relationship between lake water δ18O and salinity is not only dominated by the evaporation/freshwater input ratios, but is also controlled by the distance to the mouth of the major rivers supplying to the lake. Second, the ostracod, bulk carbonate, and fine-grained carbonate show similar isotopic change trends in the study area, and oxygen isotopic differences between ostracods and authigenic carbonate may be explained by the different water temperatures and very small ‘vital offsets’ of ostracods. Finally, the effect of water depth on temperature leads to increasing δ18O values in carbonates as water depth increases, both in benthic ostracods living on the lake bottom, as well as in bulk carbonate precipitated at the water surface.For arid, high-altitude Lake Qinghai, our results suggest that variations in the δ18O values of carbonate in Lake Qinghai are mainly controlled by the oxygen-isotope ratio of the lake water changing with water salinity. As a secondary effect, increasing water depth leads to cooler bottom and surface water, which may result in more positive δ18O values of ostracod and bulk carbonate.  相似文献   

17.
Few terrestrial Holocene climate records exist from south‐eastern Europe despite its important geographical position as a transitional climatic zone between the Mediterranean and mainland continental Europe. Here we present new petrographic and stable isotope data for two Holocene speleothems from Modri? Cave, Croatia (44°15′N, 15°32′E), a coastal Adriatic site (120 m inland). Modern meteorological and cave conditions have been monitored for 2 years to understand the links between climate variability and stable isotope time‐series records in speleothems. Typical of a Mediterranean‐type climate, a negative water balance exists between April and September, so that recharge of the aquifer is restricted to the winter months. The weighted mean δ18O of the rainfall is ?5.96‰ (2σ = 2.83), and the weighted mean D/H rainfall value is ?36.83‰ (2σ = 19.95), slightly above the Global Meteoric Water Line, but well below the Mediterranean Meteoric Water Line. Modern calcite from the tops of each stalagmite exhibits δ18O values that are close to isotopic equilibrium with their respective drip water values. Unfortunately, the relatively young ages and low uranium contents (ca. 50 p.p.b.) of both stalagmites hamper the use of U‐series dating. Radiocarbon dates have been used instead to constrain their chronology using a dead carbon correction. Apart from some Isotope Stage 3 material (ca. 55 ka), both stalagmites were deposited during the late Holocene. Climatic conditions during the late Holocene are inferred to have been sufficiently wet to maintain stalagmite growth and any hiatuses appear to be relatively short lived. Inferred changes in the stalagmite diameters during deposition are linked to δ13C and δ18O variations, indicating alternating periods of drier and wetter conditions. Drier conditions are inferred for the late Roman Ages warm period and the mid‐Medieval Warm Period. Wetter conditions are associated with the Little Ice Age. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   

19.
《Quaternary Science Reviews》2007,26(1-2):130-141
Analyses of sediment cores from Marcella Lake, a small, hydrologically closed lake in the semi-arid southwest Yukon, provides effective moisture information for the last ∼4500 years at century-scale resolution. Water chemistry and oxygen isotope analyses from lakes and precipitation in the region indicate that Marcella Lake is currently enriched in 18O by summer evaporation. Past lake water values are inferred from oxygen isotope analyses of sedimentary endogenic carbonate in the form of algal Charophyte stem encrustations. A record of the δ18O composition of mean annual precipitation at Jellybean Lake, a nearby evaporation-insensitive system, provides data of simultaneous δ18O variations related to decade-to-century scale shifts in Aleutian Low intensity/position. The difference between the two isotope records, Δδ, represents 18O-enrichment in Marcella Lake water caused by summer effective moisture conditions. Results indicate increased effective moisture between ∼3000 and 1200 cal BP and two marked shifts toward increased aridity at ∼1200 and between 300 and 200 cal BP. These prominent late Holocene changes in effective moisture occurred simultaneously with changes in Aleutian Low circulation patterns over the Gulf of Alaska indicated by Jellybean Lake. The reconstructed climate patterns are consistent with the topographically controlled climatic heterogeneity observed in the coastal mountains and interior valleys of the region today.  相似文献   

20.
High‐resolution records of carbon isotope composition and grey level were analysed from a stalagmite, BW‐1, from Beijing, China, deposited between c. 14 and 10.5 ka BP, the δ18O profile of which has been used to discuss the timing and structure of the Younger Dryas (YD) event in north China. The high grey level and low δ13C match the milk‐white coloured locations on the polished stalagmite surface and coincide with enhanced luminescent bands within which the concentration of both impurities and the total organic carbon (TOC) are high. Additionally, the fluorescence of speleothems was derived from organic acids that have been flushed onto the stalagmite surface along with impurities from the overlying soil by heavy summer rain and co‐precipitated with the speleothem calcite. Thus, predominantly low δ13C and high grey level values indicate increased summer precipitation that supports abundant vegetation and robust biological productivity. Consequently, three distinct time intervals are defined by the palaeoenvironmental conditions expressed in the δ13C and grey level records of stalagmite BW‐1: (i) a warm‐humid stage (Pre‐YD, 13.97 to 12.85 ka BP, including a hiatus from 12.99 to 13.21 ka BP reported before); (ii) a cool‐arid stage (YD, 12.85 to 11.56 ka BP); and (iii) a warm‐humid stage (Post‐YD, 11.56 to 10.39 ka BP). The inferences based on our research are generally consistent with other regional vegetation and climatic records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号