首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen analysis from a peat-bog sequence located at 50° 24′ S, 72° 42′ W in the Subantarctic forest – Patagonian steppe ecotone gives information about vegetation and climate changes in Southwestern Patagonia since the glacier retreat. After 11 000 cal yr BP a change from grass steppe to open Nothofagus forest indicates that climatic conditions became rapidly warmer. Development of a closed Nothofagus forest between 5800 and 3200 cal yr BP is interpreted as precipitation increase. During the late Holocene colder climate conditions prevail in response to Neoglacial events. After ca 3000 cal yr BP Nothofagus forest became opener, and after 800 cal yr BP grass steppe expanded. Changes in the forest-steppe ecotone composition as well as the ecotone longitudinal shifts suggest changes in temperature and precipitation. Present-day mean annual precipitation between 300 and 400 mm is associated with grass steppe, and 500–600 mm with a greater forest representation. During the last century, low presence of forest in the area may be related to European settlement and repeated flooding caused by periodic advances of Perito Moreno glacier.  相似文献   

2.
《Quaternary Science Reviews》2007,26(19-21):2661-2673
Extensive areas in the southern part of the Duero Tertiary Basin (Central Spain) are covered by aeolian sands. Presently, the aeolian system is relict but in its origin and development it can be described as a “wet aeolian system”. Climatic and environmental changes during the Holocene are typified by alternating humid and arid periods. These are recorded in the sedimentary record as either organic-rich sandy palaeosols or clean aeolian sand, respectively. Palaeosol dating (12 radiocarbon dated samples) and stratigraphical and sedimentological analysis of several dunefields in quarries and boreholes allow the distinction of four periods of palaeosol development since the Allerød.Aeolian sediments commonly rest on fluvial deposits, which were themselves the major source area for aeolian sands. These fluvial deposits have an age of about 14,000 cal yr BP. The first phase of aeolian activity postdates these fluvial sediments and has an upper age of about 12,000–11,700 cal yr BP, probably corresponding to the last cold oscillation of the Lateglacial (Younger Dryas). The second phase ranges from about 11,500 to 9500 cal yr BP, during which period the majority of dunes in the Tierra de Pinares area formed. This is also a major phase of aeolian activity in other areas of the Iberian Peninsula. A third and probably discontinuous phase of aeolian activity took place between 6800 and about 3000 cal yr BP. The age for this phase is supported by the presence of Visigothic burial sites covered by aeolian sands. The presence of charred material and degraded slipfaces clearly indicate stabilisation by vegetation and the final degradation of the aeolian system at the end of the fourth aeolian phase (990–540 cal yr BP). Minor aeolian activity has also occurred subsequently in this area, since aeolian sand movement was even reported in the 20th century.The aeolian phases can be tentatively correlated with aeolian phases in Europe. Aeolian activity tends to occur regionally during specific time-intervals, especially in dunefields with little human disturbance. This argues for a broad climatic forcing in Holocene aeolian accumulation, such has been previously suggested for the little ice age. The precise timing of these phases, however, is not strictly coincident, probably due to the delayed responses of aeolian environments to climatic and subsequent vegetation change.  相似文献   

3.
High-resolution pollen and magnetic susceptibility (MS) analyses have been carried out on a sediment core taken from a high-elevation alpine bog area located in Sierra Nevada, southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen and Pediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen record shows a progressive aridification since 7000 cal yr BP that occurred in two steps, first shown by a decrease in Pinus, replaced by Poaceae from 7000 to 4600 cal yr BP and then by Cyperaceae, Artemisia and Amaranthaceae from 4600 to 1200 cal yr BP. Pediastrum also decreased progressively and totally disappeared at ca. 3000 yr ago. The progressive aridification is punctuated by periodically enhanced drought at ca. 6500, 5200 and 4000 cal yr BP that coincide in timing and duration with well-known dry events in the Mediterranean and other areas. Since 1200 cal yr BP, several changes are observed in the vegetation that probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the bog, Pinus reforestation and Olea cultivation at lower elevations.  相似文献   

4.
《Quaternary Science Reviews》2007,26(5-6):705-731
Sediment cores from two mountain lakes (Lake Grusha at 2413 m a.s.l. and Ak-Khol at 2204 m a.s.l.) situated in the Tuva Republic (southern Siberia, Russia), just north of Mongolia, were studied for chironomid fossils in order to infer post-glacial climatic changes and to investigate responses of the lake ecosystems to these changes. The results show that chironomids are responding both to temperature and to changing lake depth, which is regarded as a sensitive proxy of regional effective moisture. The post-glacial history of this mountain region in Central Asia can be divided into seven successive climatic phases: the progressive warming during the last glacial–interglacial transition (ca 15.8–14.6 cal kyr BP), the warm and moist Bølling-Allerød-like interval (ca 14.6–13.1 cal kyr BP), the cool and dry Younger Dryas-like event (ca 13.1–12.1 cal kyr BP), warmer and wetter conditions during ca 12.1–8.5 cal kyr BP, a warm and dry phase ca 8.5–5.9 cal kyr BP, cold and wet conditions during ca 5.9–1.8 cal kyr BP, as well as cold and dry climate within the last 1800 years. The chironomid records reveal patterns of climatic variability during the Late-glacial and Holocene, which can be correlated with abrupt climatic events in the North Atlantic and the Asian monsoon-dominated regimes. Apparently, the water balance of the studied lakes is controlled by the interrelation between the dominant westerly system and the changing influence of the summer monsoon, as well as the influence of alpine glacier meltwater supply. It is possible that monsoon tracks could have reached the southwest Tuva, resulting in an increase in precipitation at ca 14.6–13.1 and ca 12.1–8.5 cal kyr BP, whereas cyclonic westerlies from the North Atlantic were likely responsible for considerable moisture transport accompanying the global Neoglacial cooling at ca 5.9–1.8 cal kyr BP. These events suggest the changes of the regional pattern of atmospheric circulation, which could be in turn induced by the global climatic shifts. Some discrepancies compared with other reconstructions from Central Asia may be associated with regional (spatial) differences between the changing predominant circulation mechanisms and with local differences in uplift and descent of air masses within the complicated mountain landscape. In this paper, we also discuss the possibilities and perspectives for using chironomids in reconstructions of past temperatures and climate-induced changes in water depth of lakes in Central Asia.  相似文献   

5.
Here we report results from a high-resolution palynological record and stratigraphic/geochronologic data related to a Neoglacial event in Torres del Paine National Park, southern Chile (51°S, 71°W), to investigate climatic variations in Southwest Patagonia during the last 5000 years. The record reveals a stepwise expansion of Nothofagus-dominated woodlands and forests with discrete pulses at 4400, 2900, 1300, and 570 cal yr BP. Superimposed upon this trend we identify a relative opening of the woodlands between 4100–2900 and 2300–1300 cal yr BP. Closed-canopy forests dominated the landscape between 570–60 cal yr BP, followed by a rapid decline at the end of the 19th century that coincided with intense fire activity and the appearance of Rumex cf. acetocella, an exotic species introduced by European settlers. We interpret these changes as variations in the intensity and/or position of the southern margin of the westerly winds, which culminated with a net eastward shift of the forest–steppe ecotone during the Little Ice Age. We propose that millennial-scale changes in either the latitudinal position and/or the overall strength of the southern westerlies may be responsible for vegetation changes, fire occurrence, and the dynamic behavior of Patagonian glaciers during the last 5000 years. Because the modern maximum in near-surface wind velocities and precipitation is located between 48° and 50°S, we suggest that the core of the southern westerlies may have achieved this modern position ~570 years ago.  相似文献   

6.
《Quaternary Science Reviews》2007,26(1-2):142-154
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000–18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP).The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.  相似文献   

7.
《Quaternary Science Reviews》2005,24(1-2):141-154
Late Quaternary changes in North American vegetation and geography reflect the influence of changing climate induced by the retreating ice sheets, orbitally-driven seasonal insolation patterns, increasing carbon dioxide concentrations, and relatively rapid internal variations. At regional scales, these climate changes resulted in ecosystem variability that impacted human access to resources. We use paleoenvironmental and archaeological records from 14,000 to 10,000 cal yr BP for New England and Maritime Canada (NE/M) to propose the impact of rapid climate change on human resource-procurement and technology. Paleoenvironmental reconstructions for the Younger Dryas chronozone (YDC; 12,900–11,600 cal  yr BP) show ecologic responses to colder-than-earlier conditions. At roughly the same time (13,000–11,000 cal yr BP), we surmise that fluted points were used to hunt large mammals, including caribou, which inhabited regions with sub-arctic-like vegetation. Environmental changes, associated with rapid regional warming at the end of the YDC, coincided with the abandonment of fluting technology. As conditions warmed, vegetation changes led to shifts in animal populations, which may be reflected in the development of other point styles by Paleoindians and subsequent human groups.  相似文献   

8.
《Quaternary Research》2014,81(3):445-451
Some scholars have argued that the formation and outburst of an ancient dammed lake in the Jishi Gorge at ca. 3700 cal yr BP resulted in the destruction of Lajia, the site of a famous prehistoric disaster in the Guanting Basin, upper Yellow River valley, China. However, the cause of the dammed lake and the exact age of the dam breaching are still debated. We investigated ancient landslides and evidence for the dammed lake in the Jishi Gorge, including dating of soil from the shear zone of an ancient landslide, sediments of the ancient dammed lake, and loess above lacustrine sediments using radiocarbon and optically stimulated luminescence (OSL) dating methods. Six radiocarbon dates and two OSL dates suggested that the ancient landslides and dammed lake events in the Jishi Gorge probably occurred around 8100 cal yr BP, and the ancient dammed lake was breached between 6780 cal yr BP and 5750 cal yr BP. Hence, the outburst of the ancient dammed lake in the Jishi Gorge was unrelated to the ruin of the Lajia site, but likely resulted in flood disasters in the Guanting Basin around 6500 cal yr BP.  相似文献   

9.
At present, the climate in south-west Scandinavia is predominantly controlled by westerlies carrying moist Atlantic air, which forms a main source of precipitation in all seasons. Past variations in the ratio between precipitation and evaporation (effective precipitation) from terrestrial sites, however, may indicate changes in the degree of maritime influence. Palaeoclimatic archives in this region are thus ideally situated to study past changes in atmospheric circulation patterns. In this study, multi-proxy comparisons of records from three peat bogs and two lakes are used to reconstruct regional-scale variations of effective precipitation in south-west Sweden during the Late Holocene. The total aeolian sediment influx into two peat bogs is used as a proxy for storm activity. The frequency of storm phases increases strongly after ca 2500 cal yrs BP. Dry conditions occur on a regional scale around 4800–4400, 2000–1700, 1300–1000, 700–500 and 300–100 cal yrs BP. In addition, a comparison to winter precipitation reconstructed from four Norwegian glaciers shows similar variations during the past ca 2000 years. This indicates that the climate in both regions was controlled by large-scale atmospheric circulation dynamics of the North Atlantic region. The strong variability of effective precipitation and storm activity after ca 2500 cal yrs BP indicates a highly variable climate.  相似文献   

10.
Excavations at Bonneville Estates Rockshelter, Nevada recovered rodent remains from stratified deposits spanning the past ca. 12,500 14C yr BP (14,800 cal yr BP). Specimens from horizons dating to the late Pleistocene and early Holocene include species adapted to montane and moist and cool habitats, including yellow-bellied marmot (Marmota flaviventris) and bushy-tailed woodrat (Neotoma cinerea). Shortly after 9000 14C BP (10,200 cal yr BP) these mammals became locally extinct, or nearly so, taxonomic diversity declined, and the region became dominated by desert woodrats (Neotoma lepida) and other species well-adapted to xeric, low-elevation settings. The timing and nature of changes in the Bonneville Estates rodent fauna are similar to records reported from nearby Homestead and Camels Back caves and provide corroborative data on terminal Pleistocene–early Holocene environments and mammalian responses to middle Holocene desertification. Moreover, the presence of northern pocket gopher (Thomomys talpoides) at Bonneville Estates adds to a sparse regional record for that species and, similar to Homestead Cave, it appears that the ca. 9500 14C yr BP (10,800 cal yr BP) replacement of the northern pocket gopher by Botta's pocket gopher in the Great Salt Lake Desert vicinity was also in response to climate change.  相似文献   

11.
《Quaternary Science Reviews》2007,26(15-16):1951-1964
On the basis of lake-level data, the period of the Preboreal oscillation (PBO) at 11 300–11 150 cal yr BP as defined by the GRIP oxygen-isotope record appears to correspond to wetter climatic conditions in west-central Europe and to a marked drying in north-central Italy. Additional short-lived phases of higher lake level have been identified before the PBO at ca 11 450–11 400 and 11 350 cal yr BP in west-central Europe, and at ca 11 500 cal yr BP in Italy. Such multiple climatic oscillations around the PBO have been observed in various records in northwestern Europe. On the basis of various proxies, a map of changes in moisture over western Europe during the PBO indicates a mid-latitude zone between 58 and 43°N characterised by wetter conditions, while a drier climate developed in southern and northern Europe. This wet middle zone shows a larger extension and suggests a more meandering, weaker Atlantic Westerly Jet during the PBO than during the 8.2 kyr event. A comparison of lake-level records in west-central Europe with (1) outbursts from North American and north-European proglacial lakes, and (2) variations in solar activity as reflected by 14C and the 10Be records supports the hypothesis that the PBO was a response to successive meltwater pulses at 11 300, 11 250, 11 200 and 11 170 cal yr BP and to a sudden decrease in solar activity at 11 250 cal yr BP. This study points to the necessity of developing integrated multi-proxy approaches to construct more robust regional event stratigraphies, and of better documenting palaeohydrological changes in the Mediterranean area.  相似文献   

12.
《Quaternary Science Reviews》2005,24(12-13):1463-1478
The aragonite mineralogy and geochemistry of the mollusc faunas preserved at Navan and Bearbrook, Ontario, serve as proxies of original seawater chemistry. The composite section spanning 12,980–10,980 cal yr BP includes the Younger Dryas (YD) paleoclimatic oscillation. Oxygen isotopes demonstrate the onset of cooling with the YD event, in addition to the lowering of marine values by the influx of isotopically light glacial meltwater from Lake Agassiz. Impact of cooling and dilution is reduced or eliminated with the start of the Holocene, when water temperatures and salinities for Champlain Sea (CS) seawater were 8–16 °C and 27–34 ppt, respectively. Overall, oxygen isotope values deceased to −3.5% during the YD mainly due to freshening by glacial meltwater. Carbon isotopes confirm the rise in atmospheric CO2 concentration at the YD–Holocene transition. Marine strontium isotope values for the Allerød–YD–earliest Holocene range from 0.709151 (16,210 cal yr BP) to 0.709145 (12,980 cal yr BP) and 0.709142 (10,950 cal yr BP). The oceanographic changes recorded for the CS are in agreement with the evolutionary phases of Lake Agassiz and deglaciation dynamics of the Laurentide Ice Sheet. The volume and direction of meltwater discharge from Lake Agassiz alternated between the Gulf of Mexico during the Allerød, via the Great Lakes through the CS to the North Atlantic during the YD, and back to the Gulf of Mexico during the early Holocene, but with diminished impact.  相似文献   

13.
In order to understand human response to Holocene ashfall events, tephra layers found in archaeological sites along the upper Limay River basin, Northern Patagonia, Argentina were bracketed with radiocarbon dates and correlated with tephra from a lacustrine sediment core and from outcrops and the archaeological evidence was analyzed.A dark tephra associated with seismic activity was identified in the El Trébol rockshelter filling interstices between fallen blocks together with remains of human activity and bones of extinct fauna, marking a seismo-volcanic event occurring between 11 758 and 12 866 cal yr BP. This same seismic event affected the Cuyín Manzano site, where the roof collapse made the site uninhabitable for a time. A white tephra, present in Epullán Grande, Epullán Chica and Traful I caves is correlated with Nahuel Huapi tephra (NHT), equivalent to Laya's Río Blanco and Río Pereyra members, (Río Pireco Formation). NHT is considered to have been derived from the same eruptive event, with dates ranging between ca. 1950–2500 cal yr BP. A dark tephra from Ortega's cave and several tephra from Puerto Tranquilo I rockshelter ranging between 521 and 2069 cal yr BP show how the mobile hunters–gatherers of Northern Patagonia were able to cope with the changing circumstances.  相似文献   

14.
Our study provides detailed information on the Lateglacial landscape and vegetation development of Tibet. Based on a suite of geomorphological and palynological proxy data from the Nianbaoyeze Shan on the eastern margin of the Tibetan Plateau (33°N/101°E, 3300–4500 m asl.), we reconstruct the current state as a function of climate history and the longevity of human influence. Study results constrain several major phases of aeolian sedimentation between 50–15 ka and various glacier advances during the Late Pleistocene, the Holocene and the Little Ice Age. Increased aeolian deposition was primarily associated with periods of more extensive glacial ice extent. Fluvial and alluvial sediment pulses document an increase of erosion starting at 3926 ± 79 cal yr B.P., coinciding with cooling (Neoglacial) and a growing anthropo-zoogenic influence. Evidence for periglacial mass movements indicate that the late Holocene cooling started at around 2000 cal yr B.P., demonstrating increased surface activity under the combined effects of human influence and climate deterioration. The onset of peat growth generally depended on local conditions that include relief, meso-climate and in more recent times also on soil compaction due to animal trampling. We distinguish three initiation periods of peat growth: 12,700–10,400 cal yr B.P. for flat basins inside last glacial terminal moraines; 7000–5000 cal yr B.P. for the main valley floors; and 3000–1000 cal yr B.P. for the higher terrace surfaces.The Holocene vegetation history started with an open landscape dominated by pioneer shrubs along braided rivers (<10,600–9800 cal yr B.P.), followed by the spreading of conifers (Picea, Juniperus, Abies) and Betula-trees accompanied by a successive closing of the vegetation cover by Poaceae, Cyperaceae and herbs (9800–8300 cal yr B.P.). First signs of nomadic presence appear as early as 7200 cal yr B.P., when temperatures were up to 2 °C warmer than today. Forest remained very patchy with strong local contrasts. During the following cooling phase (5900–2750 cal yr B.P.) the natural vegetation was transformed by nomadic grazing to Bistorta-rich Kobresia pygmaea-pastures. Modern nomadic migration routes were established at least 2200 years ago. Overgrazing and trampling led to the shrinking of Bistorta and the spreading of annual weeds. Short-lived cold events (8000, 6200, 3500 cal yr B.P.) impacted on the vegetation only temporarily.As the transformation of the natural Poaceae-rich vegetation into Kobresia-pastures modified the influence of the Tibetan Plateau (“hot plate”) on the monsoon system, our data even point to an early start of a nomadic (!) Anthropocene nearly 6000 years ago. Against the background of a very long grazing history, modern Tibet must be seen as a cultural landscape.  相似文献   

15.
Located on a mountain pass in the west-central Pyrenees, the Col d'Ech peat bog provides a Holocene fire and vegetation record based upon nine 14C (AMS) dates. We aim to compare climate-driven versus human-driven fire regimes in terms of frequency, fire episodes distribution, and impact on vegetation. Our results show the mid-Holocene (8500–5500 cal yr BP) to be characterized by high fire frequency linked with drier and warmer conditions. However, fire occurrences appear to have been rather stochastic as underlined by a scattered chronological distribution. Wetter and colder conditions at the mid-to-late Holocene transition (4000–3000 cal yr BP) led to a decrease in fire frequency, probably driven by both climate and a subsequent reduction in human land use. On the contrary, from 3000 cal yr BP, fire frequency seems to be driven by agro-pastoral activities with a very regular distribution of events. During this period fire was used as a prominent agent of landscape management.  相似文献   

16.
We present detailed pollen and charcoal records from Lago Pichilafquén (~ 41°S) to decipher the effects of climate change and varying disturbance regimes on the composition and structure of the vegetation on the Andean foothills of northwestern Patagonia during the last 2600 yr. Here, temperate rainforests have dominated the landscape since 2600 cal yr BP with variations ranging from cool-temperate and wet north Patagonian rainforests to relatively warm and summer-drought-resistant Valdivian rainforests. We interpret relatively warm/dry conditions between 1900–2600, 690–750 and 320–430 cal yr BP, alternating with cold/wet conditions between 1500–1900, 750–1100 and 430–690 cal yr BP. Rapid deforestation and spread of plants introduced by Europeans occurred at 320 and 140 cal yr BP. The record includes five tephras with ages of 2130, 1460, 1310, 1210, and 340 cal yr BP, all of which precede local fire events and increases in trees favored by disturbance by less than 100 yr. We conclude that centennial-scale changes in the southern westerlies were the primary driver of vegetation shifts in northwestern Patagonia over the last 2600 yr. Within this interval, local disturbance regimes altered the structure, composition, and dynamics of the lowland rainforest vegetation during several discrete, short-lived episodes.  相似文献   

17.
《Quaternary Science Reviews》2007,26(11-12):1650-1669
We reconstruct the vegetational history of the southern side of the Alps at 18,000–10,000 cal yr BP using previous and new AMS-dated stratigraphic records of pollen, stomata, and macrofossils. To address potential effects of climatic change on vegetation, we compare our results with independent paleoclimatic series (e.g. isotope and chironomid records from the Alps and the Alpine forelands). The period before 16,000 cal yr BP is documented only at the lowland sites. The previous studies used for comparison with our new Palughetto record, however, shows that Alpine deglaciation must have started before 18,000–17,500 cal yr BP south of the Alps and that deglaciated sites were colonized by open woods and shrublands (Juniperus, tree Betula, Larix, Pinus cembra) at ca 17,500 cal yr BP. The vegetational history of a new site (Palughetto, 1040 m a.s.l.) is consistent with that of previous investigations in the study region. Our results show three conspicuous vegetational shifts delimited by statistically significant pollen zones, at ca 14,800–14,400, 13,300–12,800 and 11,600–11,200 cal yr BP. At sites situated above 1000 m a.s.l. (e.g. Palughetto, Pian di Gembro) forests expanded in alpine environments at ca 14,500 cal yr BP (onset of Bølling period, GI-1 in the Greenland ice record). At the same time, rather closed treeline communities of the lowlands were replaced by dense stands of Pinus sylvestris and Betula. These early forests and shrublands consisted of Larix, P. cembra, Juniperus, P. sylvestris, Pinus mugo, and Betula, and had become established at ca 16,000 cal yr BP, probably in response to a temperature increase. If combined with other records from the Southern Alps, our data suggest that treeline ascended by ca 800–1000 m in a few centuries at most, probably as a consequence of climatic warming at the beginning of the Bølling period. At 13,100–12,800 cal yr BP the onset of a long-lasting decline of P. sylvestris was accompanied by the expansion of Quercus and other thermophilous tree taxa below ca 600 m a.s.l. This vegetational change was probably induced by a shift to warmer climatic conditions before the onset of the Younger Dryas, as indicated by independent paleoclimatic records. Only a few centuries later, at ca 12,700–12,500 cal yr BP, an expansion of herbaceous taxa occurred in the lowlands as well as at higher altitudes, documenting an opening of forested habitats. This change coincided with the beginning of the Younger Dryas cooling (GS-1), which according to the paleoclimatic series (e.g. oxygen isotope series), started at 12,700–12,600 cal yr BP and lasted for about 1000 years. Environments south of the Alps responded markedly to climatic warming at the onset of the Holocene (11,600–11,500 cal yr BP). Thermophilous trees that had declined during the Younger Dryas re-expanded very rapidly in the lowlands and reached the high altitude sites below ca 1500 m a.s.l. within a few centuries at most. Our study implies that the synchronous vegetational changes observed over wide areas were probably a consequence of abrupt climatic shifts at the end of the Last Glacial Maximum (LGM) and during the Lateglacial. We emphasize that important vegetational changes such as the expansion of forests occurred millennia before the onset of similar processes in northwestern and central Europe.  相似文献   

18.
The Kolkheti lowlands of western Georgia have a unique vegetation and a rich cultural history. Palynological and macrofossil analysis accompanied by AMS 14C-dates of the deposits of the Ispani 2 mire near Kobuleti allow the reconstruction of regional vegetation, environmental history and local peatland development within the context of Black Sea level and cultural changes. Comparison of two adjacent peatland cores confirms spatial differences in wetland development. Prior to 5400 cal yr BP, the Ispani basin was a floodplain of an active river system where overbank deposits with fluvially transported Castanea pollen were deposited. Subsequently, a lake or lagoon developed in which reeds expanded. These were succeeded by herb-rich open alder carrs. After 1900 cal yr BP, Carpinus and Fagus expanded on the dry grounds, where formerly Quercus was more abundant. Also Castanea declined. Local reedbeds, that burned regularly, succeeded the alder carr. After 1000 cal yr BP, a percolation bog developed resulting in the formation of 4 m of loose, porous, and largely undecomposed Sphagnum austinii peat with Molinia roots. The upper 50 cm of the analysed section show extensive human impact on the landscape during the 20th century.  相似文献   

19.
《Quaternary Science Reviews》2007,26(5-6):793-807
The environmental history of a talus-derived rockglacier located in northern Norway has been reconstructed through the Last Glacial–Interglacial transition based on two cores retrieved from an adjacent lake. The methods used to quantify sedimentary properties include rock magnetism, grain size analyses, loss-on-ignition (LOI) and bulk density, which when combined has enabled an unmixing of the various sediment components and their corresponding sources. Rockglaciers signify mean annual air temperatures (MAAT) of −4 °C or colder, but little is known about their dynamical response to changing thermal regimes. We document here for the first time that a permafrost regime did exist in northern Norway during the lateglacial period, and that it required a lowering equivalent of at least 7 °C compared to present-day MAAT. The lake sediments suggest that the rockglacier existed prior to the local deglaciation of the Fennoscandian Ice Sheet (>14 800 cal yr BP), and continued its expansion until the end of the Younger Dryas whereupon it became fossil. The cool climate of the lateglacial was intersected by brief warming spells that caused a systematic release of sedimentladen meltwater from the rockglacier. During the Holocene the minerogenic influx to the lake was driven by spring snowmelting, which are related to the magnitude of winter precipitation. Three phases are recognised: (1) 9800–6500 cal yr BP when wet winters prevailed, (2) 6500–4000 cal yr BP with dry winters, and (3) the last 4000 cal yr BP with a return to wetter winters.  相似文献   

20.
《Quaternary Science Reviews》2007,26(17-18):2128-2151
After the first emergence following deglaciation, relative sea level rose by 10 m in western Norway and culminated late in the Younger Dryas (YD). The relative sea-level history, reconstructed by dating deposits in isolation basins, shows a sea-level low-stand between ∼13 640 and 13 080 cal yr BP, a 10 m sea-level rise between ∼13 080 and 11 790 cal yr BP and a sea-level high-stand between ∼11 790 and 11 550 cal yr BP. Shortly after the YD/Holocene boundary, sea level fell abruptly by ∼37 m. The shorelines formed during the sea-level low-stand in the mid-Allerød and during the sea-level high-stand in the YD have almost parallel tilts with a gradient of ∼1.3 m km−1, indicating that hardly any isostatic movement has taken place during this period of sea-level rise. We conclude that the transgression was caused by the major re-advance of the Scandinavian Ice Sheet that took place in western Norway during the Lateglacial. The extra ice load halted the isostatic uplift and elevated the geoid due to the increased gravitational attraction on the sea. Our results show that the crust responded to the increased load well before the YD (starting ∼12 900 cal yr BP), with a sea-level low-stand at 13 640 cal yr BP and the subsequent YD transgression starting at 13 080 cal yr BP. Thus, we conclude that the so-called YD ice-sheet advance in western Norway started during the Allerød, possibly more than 600 years before the Allerød/YD transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号