首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Following the catastrophic “Great Sumatra–Andaman” earthquake- tsunami in the Indian Ocean on the 26th December 2004, questions have been asked about the frequency and magnitude of tsunami within the region. We present a summary of the previously published lists of Indian Ocean Tsunami (IOT) and the results of a preliminary search of archival materials held at the India Records Office, at the British Library in London. We demonstrate that in some cases, normal tidal movements and floods associated with tropical cyclones have been erroneously listed as tsunami. We summarise archival material for tsunami that occurred in 1945, 1941, 1881, 1819, 1762 and a little known tsunami in 1843. We present the results of modelling of the 2004, 1861 and 1833 tsunami generated by earthquakes off Sumatra and the 1945 Makran earthquake and tsunami, and examine how these results help to explain some of the historical observations. The highly directional component to tsunami propagation illustrated by the numerical models may explain why we are unable to locate archival records of the 1861 and 1833 tsunami at important locations like Rangoon, Kolkata (formally Calcutta) and Chennai (formally Madras), despite reports that these events created large tsunami that inundated western Sumatra. The numerical models identify other areas (particularly the central and southern Indian Ocean islands) where the 1833 tsunami may have had a large enough effect to produce a historic record. We recommend further archival research, coastal geological investigations of tsunami impacts and detailed modelling of tsunami propagation to better understand the record and effects of tsunami in the Indian Ocean and to estimate their likelihood of occurring in the future.  相似文献   

2.
An accurate assessment of tsunami risk of a region requires a credible record of past tsunami events in the region. Existing surveys on historical tsunamis of South China have not presented a consistent list of events. The current report makes reference to original historical literature and evaluates the validity of suspected tsunami events in published surveys. A set of refined historical data for further investigation of the tsunami hazard in the region was produced. Only two events have been identified as credible reports of tsunami in the current study. Some events previously considered as tsunami, including a few with great reported casualties, are found to be unsubstantiable.  相似文献   

3.
Here we perform an inventory of tsunamis recorded by tide gauges in the Pacific coast of Costa Rica. This paper also reveals nine tsunami records that had not been published before, at Puntarenas tide gauge corresponding to the 1979 Colombia tsunami and at Quepos tide gauge corresponding to the 1985 Mexico twin tsunamis, the 2010, 2014 and 2015 Chile tsunamis, the 2006 Tonga tsunami, the 2011 Japan tsunami and the 2013 Solomon Islands tsunami. The original record of 1990 Cóbano tsunami at Quepos was digitized again at a higher resolution and re-processed. The arrival of 1979, 1985, 2006 and 2014 tsunamis to Costa Rica is not listed on tsunami catalogs. The maximum tsunami height obtained here after processing 1990, 2011 and 2013 records was higher than reported on catalogs. The opposite happened for the 2010 tsunami. Quepos gauge record for January 2007 was analyzed as it seemed to have registered the Kuril Islands tsunami, but the results were not conclusive due to the low sample rate and the small tsunami amplitude if any. All those eleven tsunamis were modeled and the results compared with the records. A good agreement was obtained for the Quepos gauge, although the modeled 2011 and 2013 tsunamis had a difference of 8 min on the arrival time. An acceptable agreement was obtained for the Puntarenas gauge for 1979 tsunami, considering at least the first 4 h of the marigram is lost.  相似文献   

4.
Jain  Nikita  Virmani  Deepali  Abraham  Ajith 《Natural Hazards》2021,106(1):139-172

In the last fifteen years, tsunami science has progressed at a rapid pace. Three major tsunamis: The Indian Ocean in 2004, the 2011 Tohoku tsunami, and the 2018 Palu tsunami were significant landmarks in the history of tsunami science. All the three tsunamis, as mentioned, suffered from either no warning or poor reception of the alerts issued. Various lessons learned, consequent numerical models proposed, post-2004 tsunami damage findings manifested into solutions. However, the misperceived solutions led to a disastrous impact of the 2011 Tohoku event. In the following years, numerous improvements in warning systems and community preparedness frameworks were proposed and implemented. The contributions and new findings have added multi-fold advancements to tsunami science progress. Later, the 2018 Palu tsunami happened and again led to a massive loss of life and property. The warning systems and community seemed un-prepared for this non-seismic tsunami. A significant change is to take place in tsunami science practices and solutions. The 2018 tsunami is one of the most discussed and researched events concerning the palaeotsunami records, damage assessment, and source findings. In the new era, using machine learning and deep learning prevails in all the fields related to tsunami science. This article presents a complete 15-year bibliometric analysis of tsunami research from Scopus and Web of Science (WoS). The review of majorly cited documents in the form of a progressing storyline has highlighted the need for multidisciplinary research to design and propose practical solutions.

  相似文献   

5.
A coupled hydrostatic and morph-dynamic model COMCOT-SED was used to investigate the morphological change in Lhok Nga bay during the 2004 Indian Ocean tsunami, and the coupled model predicted the thickness of tsunami deposits in agreement with the measured ones. The relationship between the characteristics of tsunami deposit and flow hydrodynamics was discussed in details. Phenomena such as landward thinning in deposit thickness, landward fining in grain size, and fining upwards in grain size are commonly used to identify tsunami deposits and were examined in this case study. We also discussed the effects of sediment supplies and the constraints that can be put on the earthquake parameters using the information derived from tsunami deposits. This study shows that the model presented in this paper is capable of simulating extreme tsunami events (tsunami wave height ~30?m) in a large domain and that forward models of tsunami sediment transport can be a promising tool to help tsunami geologists understand tsunami deposits.  相似文献   

6.
2004年12月26日印度尼西亚苏门答腊岛西北近海发生ML9级强烈地震。地震的强度是100a来全球非常罕见的。地震引起了巨大海啸,浪高近10m,波及到东南亚、南亚和东非地区10多个国家,造成近30万人遇难。地震使印度尼西亚、泰国的部分岛屿发生了地形变化。海啸在受灾国留下了大片的盐碱地。苏门答腊板块边缘的一个长距离破裂带通过长时间积累,蓄积了巨大能量。这些能量在2004-12-26集中释放出来。导致了这次地震海啸的发生。地震海啸灾害本身规模巨大,发生异常突然,再加上受灾地区人员密集,缺乏海啸灾害逃生的知识和经验。印度洋沿岸国家没有海啸预警系统,是造成这次灾害巨大伤亡的原因。中国从台湾-海南岛一线的海区,存在地震海啸的可能性。因此应不断完善海啸预警系统,提高沿海地区建设工程的防灾抗灾标准,加强防波堤建设以及采取恢复红树林等生物工程措施,预防潜在的海啸灾害。  相似文献   

7.
The Sultanate of Oman is among the Indian Ocean countries that were subjected to at least two confirmed tsunamis during the twentieth and twenty-first centuries: the 1945 tsunami due to an earthquake in the Makran subduction zone in the Sea of Oman (near-regional field tsunami) and the Indian Ocean tsunami in 2004, caused by an earthquake from the Andaman Sumatra subduction zone (far - field tsunami). In this paper, we present a probabilistic tsunami hazard assessment for the entire coast of Oman from tectonic sources generated along the Makran subduction zone. The tsunami hazard is assessed taking into account the contribution of small- and large-event magnitudes. Results of the earthquake recurrence rate studies and the tsunami numerical modeling for different magnitudes were used through a logic-tree to estimate the tsunami hazard probabilities. We derive probability hazard exceedance maps for the Omani coast considering the exposure times of 100, 250, 500, and 1000 years. The hazard maps consist of computing the likelihood that tsunami waves exceed a specific amplitude. We find that the probability that a maximum wave amplitude exceeds 1 m somewhere along the coast of Oman reaches, respectively, 0.7 and 0.85 for 100 and 250 exposure times, and it is up to 1 for 500 and 1000 years of exposure times. These probability values decrease significantly toward the southern coast of Oman where the tsunami impact, from the earthquakes generated at Makran subduction zone, is low.  相似文献   

8.
For the testing of the effect on the tsunami prevention facilities, a simplified methodfor tsunami risk assessment was suggested without wave run-up analysis. This methodis proposed using calculated offshore tsunami waveform and field reconnaissance suchas the seawall height, time necessary for residents' evacuation and tsunami warninginsurance. Then, two normalized values are evaluated; one is the ratio of calculatedmaximum tsunami height to seawall height, the other is the ratio of time betweentsunami over-topping and evacuation completion to total time required for evacuation.These two values are used to qualitatively estimate the safety of residents and the effectof tsunami prevention facilities, eliminating the necessity to compute complicatedtsunami run-up onshore.  相似文献   

9.
Indonesia is one country in the world featuring a complex tectonic structure. This condition makes earthquakes often occur in many areas of this country and as an earthquake rages beneath the sea, it will potentially trigger tsunami. One of the areas in Indonesia with a high seismic activity is Sulawesi region particularly in the Sulawesi Sea subduction zone, making it important to carry out a study on the potential tsunami at this location. The purpose of this study was to analyze the existing huge potential energy in Sulawesi Sea subduction zone and to identify tsunami modeling likely to occur based on the potential energy of the region. The approach used in assessing the tsunami disaster was the calculation of the potential energy of an earthquake and tsunami modeling based on the potential energy. The method used in this research was the least squares method for the calculation of potential energy, and near-field tsunami modeling with the assistance of TUNAMI-N2 COD. The research finding has shown that the Sulawesi Sea subduction zone has potential energy of 1.35469?×?1023 erg, equivalent to an earthquake with a magnitude of 7.6 Mw. The tsunami modeling made shown the average wave propagation reaching ashore within 12.3 min with a height varying between 0.1 and >?3 m. The tsunami modeling also indicated that there are seven sub-districts in Buol District, Central Sulawesi, which is affected by a significant tsunami.  相似文献   

10.
Possible tsunamis in the Pacific Ocean, especially in its northeastern part, are discussed in relation to a predicted major earthquake in the Shumagin Seismic Gap (located in the eastern part of the Aleutian Island Chain) and to a major eruption of the St. Augustine volcano in Cook Inlet, Alaska. The deep-water propagation of the tsunami generated in the Shumagin Gap is simulated through the use of a spherical polar coordinate grid of the approximate size of 14km. The tsunami generated by the St. Augustine volcano is studied through the fine mesh grid confined to the Cook Inlet only. The numerical models were calibrated against historical tsunami data. The properties of the tsunami signal are described by the maximum amplitude which occurs in the tsunami record. This allows us to single out the direction along which a maximum tsunami is to be expected.Presented at the International Conference on Natural and Man-Made Hazards in Coastal Zones, held in Ensenada, Mexico, August 1988.  相似文献   

11.
The National Geophysical Data Center and co-located World Data Center for Geophysics and Marine Geology provide integrated access to historical tsunami event, deposit, and proxy data. Historical events are important for understanding the frequency and intensity of relatively recent tsunamis. Deposit data collected during post-tsunami field surveys provide information on tsunami erosion, sedimentation, flow depths, inundation, and run-up. Deposit data from prehistoric tsunami events extend the record to pre-recorded times, constrain tsunami recurrence intervals, and estimate the minimum magnitude of tsunami inundation. Proxies indicate that an event capable of producing a tsunami occurred, but are not direct evidence of a tsunami. All of these data are used to develop tsunami hazard assessments, provide guidance to warning centers, validate models, inform community preparedness efforts, and educate the public about tsunami risks.  相似文献   

12.
By combining landslide dynamics research and tsunami research, we present an integrated series of numerical models quantitatively simulating the complete evolution of a landslide-induced tsunami. The integrated model simulating the landslide initiation and motion uses measured landslide dynamic parameters from a high-stress undrained dynamic-loading ring shear apparatus. It provides the numerical data of a landslide mass entering and moving under water to the tsunami simulation model as the trigger of tsunami. The series of landslide and tsunami simulation models were applied to the 1792 Unzen-Mayuyama megaslide and the ensuing tsunami disaster, which is the largest landslide disaster, the largest volcanic disaster, and the largest landslide-induced tsunami disaster to have occurred in Japan. Both the 1792 megaslide and the tsunami portions of the disaster are well documented, making this an excellent test of the reliability and precision of the new simulation model. The simulated tsunami heights at the coasts well match the historical tsunami heights recorded by “Tsunami-Dome-Ishi” (a stone showing the tsunami reaching point) and memorial stone pillars.  相似文献   

13.
Over the past 200 years of written records, the Hawaiian Islands have experienced tens of tsunamis generated by earthquakes in the subduction zones of the Pacific ‘Ring of Fire’ (for example, Alaska–Aleutian, Kuril–Kamchatka, Chile and Japan). Mapping and dating anomalous beds of sand and silt deposited by tsunamis in low-lying areas along Pacific coasts, even those distant from subduction zones, is critical for assessing tsunami hazard throughout the Pacific basin. This study searched for evidence of tsunami inundation using stratigraphic and sedimentological analyses of potential tsunami deposits beneath present and former Hawaiian wetlands, coastal lagoons, and river floodplains. Coastal wetland sites on the islands of Hawai΄i, Maui, O΄ahu and Kaua΄i were selected based on historical tsunami runup, numerical inundation modelling, proximity to sandy source sediments, degree of historical wetland disturbance, and breadth of prior geological and archaeological investigations. Sand beds containing marine calcareous sediment within peaty and/or muddy wetland deposits on the north and north-eastern shores of Kaua΄i, O΄ahu and Hawai΄i were interpreted as tsunami deposits. At some sites, deposits of the 1946 and 1957 Aleutian tsunamis are analogues for deeper, older probable tsunami deposits. Radiocarbon-based age models date sand beds from three sites to ca 700 to 500 cal yr bp , which overlaps ages for tsunami deposits in the eastern Aleutian Islands that record a local subduction zone earthquake. The overlapping modelled ages for tsunami deposits at the study sites support a plausible correlation with an eastern Aleutian earthquake source for a large prehistoric tsunami in the Hawaiian Islands.  相似文献   

14.
地震与海啸关系探讨   总被引:4,自引:1,他引:4  
本文探讨了海啸、地震和它们的成因。作者认为,破坏性地震常伴生着破坏性海啸,但地震不会直接引发海啸。构造地震和地壳变动型海啸之间不是因果关系,而是伴生或共生关系。此外,本文还探讨了破坏性海啸的形成条件和控制地震震级的主要因素。  相似文献   

15.
Choi  Byung-Ho  Cho  Yong-Sik  Yoon  Sung Bum 《Natural Hazards》2016,84(2):437-454
The tsunamis that have occurred in many places around the world over the past decades have taken a heavy toll on human lives and property. The eastern coast of the Korean Peninsula is not safe from tsunamis and has sustained tsunami damage in the past. The aim of this study is to review the past, present, and future of some aspects of tsunami research in Korea. A composite numerical model comprising propagation and inundation models is described. The paper also covers tsunami mitigation efforts in Korea, and a tsunami hazard map is developed and introduced.  相似文献   

16.
Educational tsunami evacuation map brochures in Washington and Oregon have been developed locally, resulting in significant differences between the types of tsunami hazard information they include. This paper identifies six tsunami hazard information types present in 38 brochures in Washington and Oregon: (1) tsunami hazard zone, (2) road network, (3) assembly areas, (4) evacuation guidance, (5) infrastructure, and (6) terrain. It compares and contrasts these information types in the maps and text of six of the brochures, including a proposed design standard in Oregon. Design differences of all 38 brochure maps are then organized using principles of cartographic abstraction, which describe mapmaker decisions about selection, generalization, and symbolization of information. We further use this framework to situate the information content of a new interactive Google Maps tool in Oregon. Our assessment identifies limitations of current tsunami hazard information that may be relevant to improving tsunami education. In theory, more advanced evacuation map tools can play an important role in reducing the limitations of tsunami hazard information relevant to the public. The new Google Maps tool addresses few of these limitations. Recognizing how map-making decisions define the underlying information content of evacuation maps can facilitate much needed future evaluations and developments in evacuation map design.  相似文献   

17.
The 2011 Tohoku earthquake and tsunami motivated an analysis of the potential for great tsunamis in Hawai‘i that significantly exceed the historical record. The largest potential tsunamis that may impact the state from distant, Mw 9 earthquakes—as forecast by two independent tsunami models—originate in the Eastern Aleutian Islands. This analysis is the basis for creating an extreme tsunami evacuation zone, updating prior zones based only on historical tsunami inundation. We first validate the methodology by corroborating that the largest historical tsunami in 1946 is consistent with the seismologically determined earthquake source and observed historical tsunami amplitudes in Hawai‘i. Using prior source characteristics of Mw 9 earthquakes (fault area, slip, and distribution), we analyze parametrically the range of Aleutian–Alaska earthquake sources that produce the most extreme tsunami events in Hawai‘i. Key findings include: (1) An Mw 8.6 ± 0.1 1946 Aleutian earthquake source fits Hawai‘i tsunami run-up/inundation observations, (2) for the 40 scenarios considered here, maximal tsunami inundations everywhere in the Hawaiian Islands cannot be generated by a single large earthquake, (3) depending on location, the largest inundations may occur for either earthquakes with the largest slip at the trench, or those with broad faulting over an extended area, (4) these extremes are shown to correlate with the frequency content (wavelength) of the tsunami, (5) highly variable slip along the fault strike has only a minor influence on inundation at these tele-tsunami distances, and (6) for a given maximum average fault slip, increasing the fault area does not generally produce greater run-up, as the additional wave energy enhances longer wavelengths, with a modest effect on inundation.  相似文献   

18.
Tsunami education activities, materials, and programs are recognized by the National Tsunami Hazard Mitigation Program (NTHMP) as the essential tool for near-source tsunami mitigation. Prior to the NTHMP, there were no state tsunami education programs outside of Hawaii and few earthquake education materials included tsunami hazards. In the first year of the NTHMP, a Strategic Plan was developed providing the framework for mitigation projects in the program. The Strategic Plan identifies education as the first of five mitigation strategic planning areas and targets a number of user groups, including schools, businesses, tourists, seasonal workers, planners, government officials, and the general public. In the 6 years of the NTHMP tsunami education programs have been developed in all five Pacific States and include print, electronic and video/film products, curriculum, signage, fairs and workshops, and public service announcements. Multi-state education projects supported by the NTHMP include TsuInfo, a bi-monthly newsletter, and Surviving a Tsunami, a booklet illustrating lessons from the 1960 Chilean tsunami. An additional education component is provided by the Public Affairs Working Group (PAWG) that promotes media coverage of tsunamis and the NTHMP. Assessment surveys conducted in Oregon, Washington, and Northern California show an increase in tsunami awareness and recognition of tsunami hazards among the general population since the NTHMP inception.  相似文献   

19.
A method for the evaluation of tsunami potential in the seas surrounding Italy is presented. A major difficulty for performing reliable estimates of tsunami occurrence is that the existing tsunami catalog for Italy includes a small number of cases. This is due partly to the catalog incompleteness, strangely more pronounced in our century, and partly to the relative infrequency of tsunamis along the Italian seas. Evaluation of tsunami activity is therefore deduced by complementing the tsunami catalog data with data on seismicity that are by far more abundant and reliable. Analysis of seismicity and assessment of earthquake rate in coastal and submarine regions form the basis of the present method to perform tsunami potential estimates for Italy. One essential limitation of the method is that only tsunamis of seismic origin are taken into account, which leads to an underestimation of the tsunami potential. Since tsunamis generated by earthquakes are much more frequent than events produced by slumps or volcanic eruptions, the underestimation is not dramatic and very likely affects only a limited portion of the Italian coasts. In the present application of the method, eight separate regions have been considered that together cover all the coasts of Italy. In each region, seismicity has been independently examined and the earthquake potential has been calculated in small 20 × 20 cells. Then, on the basis of suitable assumptions, tsunami potential has been evaluated in each cell. According to this study, the Italian coasts that are the most exposed to the attacks of locally generated tsunamis are to be found in the Messina Straits, in Tyrrhenian coasts of Calabria, in the Ionian Sicilian coasts around Catania, and in the Gargano promontory in the Southern Adriatic Sea. Furthermore, this study confirms that the Northern Adriatic Sea has a low level of tsunami potential, in agreement with recent studies emphasizing that the large historical events concerning this region included in the first versions of the Italian tsunami catalog are largely overestimated and must be decreased.  相似文献   

20.
Tsunami deposits in the geological record   总被引:2,自引:0,他引:2  
A review is presented here of tsunami deposits in the geological record. It begins with a discussion of the relationships between the processes of tsunami generation and propagation and the sedimentary responses. This is followed by a consideration of the sedimentary processes associated with the passage of tsunami waves across coastlines. Attention is also given to the sedimentary processes associated with tsunami-triggered gravity backwash flows and comparisons are made with turbidity current action. We observe that despite sedimentary evidence for recent tsunamiites, geological research on ancient tsunamis has not identified stratigraphic units associated with onshore tsunami sedimentation. Equally, it is noted that nearly all published studies of sedimentary processes associated with modern tsunamis have not considered patterns of sediment transport and deposition in the offshore zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号