首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
《Marine pollution bulletin》2014,81(1-2):234-244
Dissolved inorganic nitrogen (DIN), phosphate (PO4) and silicic acid (Si(OH)4) loads from the Seybouse and the Mafragh estuaries into the Bay of Annaba, Algeria, were assessed at three stations of the Bay over three years. The Seybouse inputs had high levels of DIN and PO4, in contrast to the Mafragh estuary’s near-pristine inputs; Si(OH)4 levels were low in both estuaries. The DIN:PO4 molar ratios were over 30 in most samples and the Si(OH)4:DIN ratio was less than 0.5 in the Seybouse waters, but nearly balanced in the Mafragh. The specific fluxes of Si–Si(OH)4 (400–540 kg Si km2 yr1) were comparable in the two catchments, but those of DIN were several-fold higher in the Seybouse (373 kg N km2 yr1). The inner Bay affected by the Seybouse inputs had high levels of all nutrients, while the Mafragh plume and the outer marine station were less enriched.  相似文献   

2.
The objective of this study was to explore the slope position and land use change effects on the variability in magnetic susceptibility and 137Cs inventory as the soil redistribution indicators in a hilly semiarid calcareous area in Iran. The selected study area is located in a hilly region with pasture and cultivation land use of Fereydunshahr, Isfahan Province in west-central Iran. In the two mentioned dominant ecosystems, four slope positions including summit, shoulder, backslope and footslope were identified and in each land use and slope position, three cores were selected to collect 72 soil samples from three depths (0–10, 10–20, 20–30 cm) in an area of 15 × 15 cm. Additional 28 soil samples were collected from the reference site for soil loss and deposition calculations by using the Cs-137 measurement. The results of the study with the use of the Cs-137 technique showed that the average soil loss in the pasture land (46.4 t ha 1 yr 1) was significantly (p < 0.05) lower than the average soil loss in the cultivated land (80.4 t ha 1 yr 1). The highest soil loss in both land uses was obtained in the shoulder position, 60.1 and 84.4 t ha 1 yr 1, respectively, for the pasture and cultivated lands. Moreover, the highest rates of soil deposition was observed in a footslope position in both land uses and they were 34 and 32.4 t ha 1 yr 1 for the pasture and cultivated lands, respectively. Magnetic susceptibility was significantly (p < 0.05) greater in pasture (χlf = 41.51 × 10 8 m3/kg) than in the cultivated land (χlf = 34.90 × 10 8 m3/kg). The pasture land with a lower soil loss rate, indicated significantly higher magnetic susceptibility in all landform positions as compared to that in the cultivated land. The results of the correlation analysis showed that among the studied soil physico-chemical properties, χlf (r = 0.83, p < 0.01) in the pasture land had the highest correlation with the Cs-137 inventory. Throughout the non-linear regression analysis, χlf was introduced for relating soil parameters and the cesium inventory explained 68% and 79% of the total variability of 137Cs in the pasture and cultivated lands, respectively. The results implied that the variability in the magnetic susceptibility within the hillslope is consistent with the variation of the Cs-inventory; and the results thus demonstrate the slope and land use effects on soil redistribution.  相似文献   

3.
《Continental Shelf Research》2006,26(17-18):2125-2140
Sediment delivered to coastal systems by rivers (15×109 tons) plays a key role in the global carbon and nutrient cycles, as deltas and continental shelves are considered to be the main repositories of organic matter in marine sediments. The Mississippi River, delivering more than 60% of the total dissolved and suspended materials from the conterminous US, dominates coastal and margin processes in the northern Gulf of Mexico. Draining approximately 41% of the conterminous US, the Mississippi and Atchafalaya river system deliver approximately 2×108 tons of suspended matter to the northern Gulf shelf each year. Unlike previous work, this study provides a comprehensive evaluation of sediment accumulation covering majority of the shelf (<150 m water depth) west of the Mississippi Delta from 92 cores collected throughout the last 15 years. This provides a unique and invaluable data set of the spatial and modern temporal variations of the sediment accumulation in this dynamic coastal environment.Three types of 210Pb profiles were observed from short cores (15–45 cm) collected on the shelf. Proximal to Southwest Pass in 30–100 m water depths, non-steady-state profiles were observed indicating rapid accumulation. Sediment accumulation rates in this area are typically >2.5 cm yr−1 (>1.8 g cm−2 yr−1). Kasten cores (∼200 cm in length) collected near Southwest Pass also indicate rapid deposition (>4 cm yr−1; >3 g cm−2 yr−1) on a longer timescale than that captured in the box cores. Near shore (<20 m), profiles are dominated by sediments reworked by waves and currents with no accumulation (the exception is an area just south of Barataria Bay where accumulation occurs). The remainder of the shelf (distal of Southwest Pass) is dominated by steady-state accumulation beneath a ∼10-cm thick mixed layer. Sediment accumulation rates for the distal shelf are typically <0.7 cm yr−1 (<0.5 g cm−2 yr−1). A preliminary sediment budget based on the distribution of 210Pb accumulation rates indicates that 40–50% of the sediment delivered by the river is transported out of the study region. Sediment is moved to distal regions of the shelf/slope through two different mechanisms. Along-isobath sediment movement occurs by normal resuspension processes west of the delta, whereas delivery of sediments south and southwest of the delta may be also be influenced by mass movement events on varying timescales.  相似文献   

4.
《Continental Shelf Research》2007,27(10-11):1584-1599
Historic data from the Russian-American Hydrochemical Atlas of Arctic Ocean together with data from the TRANSDRIFT II 1994 and TUNDRA 1994 cruises have been used to assess the spatial and inter-annual variability of carbon and nutrient fluxes, as well as air–sea CO2 exchange in the Laptev and western East Siberian Seas during the summer season. Budget computations using summer data of dissolved inorganic phosphate (DIP), dissolved inorganic nitrogen (DIN) and dissolved inorganic carbon (DIC) gives that the Laptev Sea shelf is a net sink of DIP and DIN of 2.5×106, 23.2×106 mol d−1, respectively, while it is a net source of DIC (excluding air–sea exchange) of 1249×106 mol d−1. In the East Siberian Seas the budget computations give 0.5×106, −11.4×106 and −173×106 mol d−1 (minus being a sink) for DIP, DIN, and DIC, respectively. In summers, the Laptev Sea Shelf is net autotrophic while the East-Siberian Sea Shelf is net heterotrophic, and both systems are weak net denitrifying. The Laptev Sea Shelf takes up 2.1 mmol CO2 m−2 d−1 from atmosphere, whereas the western part of the East-Siberian Sea Shelf loose 0.3 mmol CO2 m−2 d−1 to the atmosphere. The variability of DIP, DIN and DIC fluxes during summer in the different regions of the Laptev and East Siberian Seas depends on bottom topography, river runoff, exchange with surrounding seas and wind field.  相似文献   

5.
《Marine pollution bulletin》2011,62(7-12):399-412
In order to quantify the spatial and seasonal variations of sediment oxygen consumption and nutrient fluxes, we performed a spatial survey in the south west lagoon of New Caledonia during the two major seasons (dry and wet) based on a network of 11 sampling stations. Stations were selected along two barrier reef to land transects representing most types of sediments encountered in the lagoon. Fluxes were measured using ex-situ sediment incubations and compared to sediment characteristics. Sediment oxygen consumption (SOC) varied between 500 and 2000 μmol m−2 h−1, depending on season and stations. Nutrient effluxes from sediment were highly variable with highest fluxes measured in muddy sediments near the coast. Inter-sample variability was as high as seasonal differences so that no seasonally driven temperature effect could be observed on benthic nutrient fluxes in our temperature range. Nutrient fluxes, generally directed from the sediment to the water column, varied between −5.0 and 70.0 μmol m−2 h−1 for ammonia and between −2.5 and +12.5 μmol m−2 h−1 for PO4 and NO2+3. SOC and nutrient fluxes were compared to pelagic primary production rates in order to highlight the tight coupling existing between the benthic and pelagic compartments in this shallow tropical lagoon. Under specific occasions of low pelagic productivity, oxygen sediment consumption and related carbon and nutrient fluxes could balance nearly all net primary production in the lagoon. These biogeochemical estimates point to the functional importance of sediment biogeochemistry in the lagoon of New Caledonia.  相似文献   

6.
《Marine pollution bulletin》2008,56(10-12):415-424
The sulphur cycle in the sediment of the Venice canal network was investigated by considering the sulphate reduction rate (SRR) and the distribution of sulphur compounds, in both pore water and sediment. Sulphate reduction (SR) is the main process in the metabolism of the organic matter supplied to the network by untreated urban effluents. Although it might account for the decomposition of only a limited percentage of the total organic-C inputs, the estimated rates are among the highest observed in coastal sediments. Measured rates range from 0.26 to 0.99 μmol cm−3 d−1, while mean annual values, estimated by a diagenetic model, vary from 0.16 to 0.43 μmol cm−3 d−1. The speciation of S in the sediment reveals that pyrite-S is the most abundant component of the total reduced S pool, whereas acid volatile sulphides and elemental sulphur together account for less than 45%. A preliminary budget indicates that the rate of burial of solid-phase S is small compared to the S produced by SR (from 10 to 25%). A large amount of reduced S is then lost from the canal deposits to be re-oxidised at the sediment-water interface or in the overlying water column.  相似文献   

7.
《Marine pollution bulletin》2014,83(1-2):155-166
Recently compiled databases facilitated estimation of basin-wide benthic organic biomass and turnover in the Strait of Georgia, an inland sea off western Canada. Basin-wide organic biomass was estimated at 43.1 × 106 kg C and production was 54.6 × 106 kg C yr−1, resulting in organic biomass turnover (P/B) of 1.27 × yr−1. Organic biomass and production for sub-regions were predictable from modified organic flux (r2 > 0.9). P/B declined significantly with increasing modified organic flux, suggesting greater biomass storage in high flux sediments. Biomass and production were highest, and P/B lowest near the Fraser River. Annual basin-wide benthic production was 60% of previously estimated oxidized organic flux to substrates, which agrees with proportional measurements from a recent, localized study.Deviations from expected patterns related to organic enrichment and other stressors are discussed, as are potential impacts to benthic biomass and production, of declining bottom oxygen, increasing bottom temperature and potential changes in riverine input.  相似文献   

8.
The Mongolian Plateau (MP) steppe is one of the largest steppe environments in the world. To monitor the terrestrial vegetation dynamics on the MP and to ascertain what the driving forces, this study examined the vegetation dynamics in Republic of Mongolia (M) and the Inner Mongolia Autonomous Region (IM) of China from the period 1982 to 2011, based on the satellite-derived GIMMS NDVI3g (Normalized Difference Vegetation Index) data across three biomes (desert, grassland and forest). The results are as followed: (1) Vegetation coverage in IM was generally greater than that in M. Before 2002, time series of NDVI over the MP increased at an average rate of 0.05% yr−1. Additionally, after 2002, the NDVI increased at a rate of 0.21% yr−1. From 1982 to 2011, the area of IM and M with positive anomalies in the NDVI increased at a separate rate of 1.82% yr−1 and 1.76% yr−1, respectively. (2) At the biome scale, the inter-annual forest NDVI variation in IM and desert NDVI for the entire MP had a significant increasing trend (0.06% yr−1 and 0.04% yr−1, respectively). (3) Climate forcing was a dominant controlling factor affecting the vegetation, and the anthropogenic behavior exhibited no significant value in the whole region. However, overgrazing was the most important reason for the regional degradation, particularly in IM. (4) In the future, the forest biome will go to recovery, whereas both the grassland and desert biomes are predicted to degrade continuously.  相似文献   

9.
This study examines the recent evolution of the Greenland ice sheet and its six major drainage basins. Based on laser altimetry data acquired by the Ice, Cloud and Land Elevation Satellite (ICESat), covering the period September–November 2003 to February–March 2008, ice surface height changes and their temporal variations were inferred. Our refined repeat track analysis is solely based on ICESat data and is independent of external elevation models, since it accounts for both ice height changes and the local topography. From the high resolution ice height change pattern we infer an overall mean surface height trend of −0.12 ± 0.006 m yr−1. Furthermore, the largest changes could be identified at coastal margins of the ice sheet, exhibiting rates of more than −2 m yr−1. The total ice volume change of the entire ice sheet amounts to −205.4 ± 10.6 km3 yr−1. In addition, we assessed mass changes from 78 monthly Gravity Recovery and Climate Experiment (GRACE) solutions. The Release-04 gravity field solutions of GeoForschungsZentrum Potsdam cover the period between August 2002 and June 2009. We applied an adjusted regional integration approach in order to minimize the leakage effects. Attention was paid to an optimized filtering which reduces error effects from different sources. The overall error assessment accounts for GRACE errors as well as for errors due to imperfect model reductions. In particular, errors caused by uncertainties in the glacial isostatic adjustment models could be identified as the largest source of errors. Finally, we determined both seasonal and long-term mass change rates. The latter amounts to an overall ice mass change of −191.2 ± 20.9 Gt yr−1 corresponding to 0.53 ± 0.06 mm yr−1 equivalent eustatic sea level rise. From the combination of the volume and mass change estimates we determined a mean density of the lost mass to be 930 ± 11 kg m−3. This value supports our applied density assumption 900 ± 30 kg m−3 which was used to perform the volume–mass-conversion of our ICESat results. Hence, mass change estimates from two independent observation techniques were inferred and are generally in good agreement.  相似文献   

10.
The Senegal River is of intermediate size accommodating at present about 3.5 million inhabitants in its catchment. Its upstream tributaries flow through different climatic zones from the wet tropics in the source area in Guinea to the dry Sahel region at the border between Senegal and Mauritania. Total suspended matter, particulate and dissolved organic carbon and nitrogen as well as nutrient concentrations were determined during the dry and wet seasons at 19 locations from the up- to downstream river basin. The aims of the study were to evaluate the degree of human interference, to determine the dissolved and particulate river discharges into the coastal sea and to supply data to validate model results. Statistical analyses showed that samples from the wet and dry season are significantly different in composition and that the upstream tributaries differ mainly in their silicate and suspended matter contents. Nutrient concentrations are relatively low in the river basin, indicating low human impact. Increasing nitrate concentrations, however, show the growing agriculture in the irrigated downstream areas. Particulate organic matter is dominated by C4 plants during the wet season and by aquatic plankton during the dry season. The total suspended matter (TSM) discharge at the main gauging station Bakel was about 1.93 Tg yr−1 which is in the range of the only available literature data from the 1980s. The calculated annual discharges of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are 55.8 Gg yr−1, 54.1 Gg yr−1, and 5.3 Gg yr−1, respectively. These first estimates from the Senegal River need to be verified by further studies.  相似文献   

11.
《Marine pollution bulletin》2009,58(6-12):349-356
This study examined the phosphorus retention and release characteristics of sediments in the eutrophic Mai Po Marshes in Hong Kong. Results of chemical fractionation show that the sum of inorganic P pools exceeded 50% of the total sediment P content, with the redox-sensitive iron-bound P (Fe(OOH)  P) being the dominant P fraction. Given the considerable average Fe(OOH)  P concentration of 912 μg g−1, Mai Po sediments demonstrated a great potential to release bioavailable P under low sediment redox potentials. This was further supported by the high mean anaerobic P flux of 31.8 mg m−2 d−1 recorded in Mai Po sediment cores, indicating the role of bottom sediments as a net P source. Although sediments in Mai Po had appreciable Langmuir adsorption maxima (1642–3582 mg kg−1), the high zero equilibrium P concentrations (0.02–0.51 mg L−1) obtained suggest that sediment sorption processes would contribute to sustaining the eutrophic conditions in overlying water column even with a further reduction in external P load. Concerted efforts should be made to reduce internal loading of P, especially under reducing conditions, to complement the implementation of zero discharge policy for Deep Bay for effective eutrophication abatement and long-term water quality improvement in the Mai Po Marshes.  相似文献   

12.
To investigate the interaction between cyanobacteria and heterotrophic bacteria under gradients of glucose and nitrate, a cyanobacterial strain of Microcystis aeruginosa was grown in microcosms with and without a freshwater bacterial mixture, which was collected from Lake Taihu. Concentrations of glucose (1350, 975, 600, 300, 150, and 37.5 μmol C L−1) and nitrate (150, 300, and 9000 μmol N L−1) were used in a range of combinations giving 9 different treatments of glucose:nitrate. In the microcosm without the bacterial mixture, M. aeruginosa abundance gradually increased with days in all treatments. However, M. aeruginosa had much lower density in some treatments with the bacterial mixture. The difference in M. aeruginosa growth could be explained by competition with bacteria in the cultures in which these were added. The abundance of M. aeruginosa and bacteria when grown together was nearly equal and the number of the bacterial species was highest in the treatment with 300 μmol C L−1 and 150 μmol N L−1. Our results suggest that at this glucose:nitrate ratio M. aeruginosa and the bacterial mixture maintain a balance, and bacteria maintain diversity. In conclusion, we propose that dissolved organic carbon and nitrate availability fundamentally affects the structure as well as stoichiometry of pelagic associations.  相似文献   

13.
Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of Escherichia coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: (1) irreversible attachment only (best-fit ki = 7.6 day−1); (2) reversible attachment only (ka = 10.5 and kd = 0.2 day−1); and (3) a combination of reversible and irreversible modes of attachment (ka = 60, kd = 7.6, ki = 5.2 day−1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.  相似文献   

14.
Three shallow basins in Huizhou West Lake, China, were compared with respect to phosphorus (P) cycling between sediment and water, binding forms of P in sediment, and macrophyte biomass. The basins had similar sediments and similar depths, but two of the basins were restored by carp fish removal and macrophyte transplantation. These two basins have had clear water, low Chl.a and high macrophyte coverage for seven and ten years, whilst the unrestored control basin had turbid water and higher Chl.a. Judged by diffusive ammonium efflux, sediments in restored basins had higher mineralization rates than the unrestored basin, but the release of total dissolved P were more similar. However, sediments of restored basins released primarily dissolved organic P, while the sediment from the unrestored basin only released dissolved inorganic P. One third of the P release in the unrestored basin occurred from resuspended sediment, while this pathway contributed less than 3% in restored basins where resuspension rates were 10 times lower and the surface sediments affinity for phosphate higher. Besides from the presence of carps in the unrestored basin, the main differences were a large pool of P (700–850 mg P m−2) in macrophyte biomass and a smaller pool (∼150 mg m−2) as loosely adsorbed P in the sediment of restored basins than in the unrestored (0 in macrophytes and 350 mg P m−2 as loosely adsorbed). Also, a tendency of higher concentrations of oxidized iron was observed in the surface sediment from restored basins. The study underlines the potential of trophic structure changes to alter internal nutrient cycling in shallow lakes.  相似文献   

15.
《Marine pollution bulletin》2012,64(5-12):195-200
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, 222Rn, and nutrient concentration measurements. Nitrate levels as high as 126 μM, or 1–2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May–October) than the dry season (November–April). Dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2 mmoles m−2 d−1, respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.  相似文献   

16.
《Marine pollution bulletin》2012,64(5-12):385-395
The influence of different environmental stresses, including salinity (5–35‰), tidal cycle (6/6, 12/12 and 24/24 h of high/low tidal regimes) and nutrient addition (1–6 times background nitrogen and phosphorus content) on Bruguiera gymnorrhiza and Aegiceras corniculatum grown in sediment contaminated with spent lubricating oil (7.5 L m−2) were investigated. The oil-treated 1-year-old mangrove seedlings subject to low (5‰) and high (35‰) salinity had significantly more reduction in growth, more release of superoxide radical (O2) and higher activity of superoxide dismutase (SOD) than those subject to moderate salinity (15‰). Extended flooding (24/24 h of high/low tidal regime) enhanced O2 release and malondialdehyde (MDA) content in both oil-treated species but had little negative effects on biomass production (P > 0.05) except the stem of A. corniculatum (P = 0.012). The addition of nutrients had no beneficial or even posed harmful effects on the growth and cellular responses of the oil-treated seedlings.  相似文献   

17.
《Marine pollution bulletin》2014,78(1-2):274-281
Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m−2) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m−2). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m−2 and the macroalgal biomass between 1 and 296.0 g m−2. The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.  相似文献   

18.
《Journal of Geodynamics》2010,49(3-5):284-291
The island of Taiwan is located on the convergent boundary between the Philippine Sea plate and the Chinese continental margin. It offers very active mountain building and collapsing processes well illustrated by the rugged topography, rapid uplift and denudation, young tectonic landforms, active faulting and numerous earthquakes. In this paper, using simple models, we have estimated vertical movements and associated absolute gravity variations which can be expected along a profile crossing the southern part of the island and probably suffering the highest rates of rising. The two different tectonic styles proposed for the island, thin-skinned and thick-skinned, were taken into account. Horizontal and vertical movements were modeled by an elastic deformation code. Gravity variations due to these deformations are then modeled at a second step. They are dominated by plate and free-air effects, i.e. elevation of the topography, with several μGal yr−1. By comparison, gravity changes generated by mass transfers are weak: maximum 0.1 μGal yr−1 with the thin-skinned tectonic and 0.3 μGal yr−1 with the thick-skinned tectonic. Though elastic rheology has limitations, this modeling offers interesting results on what gravity signal can be expected from the AGTO project (Absolute Gravity in the Taiwanese Orogen), which proposes to study the dynamic of these mountain ranges using absolute gravimetry (AG) and also including relative gravimetry (RG) and GPS measurements.  相似文献   

19.
《Continental Shelf Research》2006,26(17-18):2178-2204
Continental-shelf lithofacies are described from a series of cores collected in the northern Gulf of Alaska, a high-energy paraglacial shelf experiencing rapid rates of sediment accumulation. Short-lived tracers (234Th and chlorophyll-a) indicate that during the annual peak in fluvial sediment input (summer), biologic sediment mixing coefficients in the surficial seabed are generally lower than other coastal environments (<20 cm2 yr−1) and mixing extends downward <10 cm.210Pb geochronology indicates that sediment accumulation rates (time scales of 10–100 yr) are 0.1–3 cm yr−1. The measured bioturbation and accumulation rates lead to predictions of moderate to bioturbated lithofacies, as observed. Primary depositional fabric is preferentially preserved where sediment accumulation rates >2 cm yr−1 and non-steady sediment deposition occurs. Depositional fabric is also observed in strata at 50–100 m water depths and is similar in appearance to beds that may form through deposition of wave-induced fluid-mud flows, which have been observed forming on other shelves with moderate to high wave energy. Five general lithofacies can be identified for the study area: inner-shelf sand facies, interbedded sandy mud facies, moderate-to-well-bioturbated mud facies, gravelly mud facies, and Tertiary bedrock facies. The moderate-to-well-bioturbated mud facies is areally dominant, representing over 50% of the shelf area, although roughly equal volumes (∼0.4 km3) of strata with some preservation of primary fabric are annually accumulating. Lithofacies on this paraglacial shelf generally resemble mid- and low-latitude allochthonous shelf strata to a much greater degree than Holocene glacimarine strata formed on shelves dominated by icebergs and floating ice shelves. Paraglacial strata may be differentiated from non-glacial shelf strata by lower organic carbon concentrations, a relatively lower degree of bioturbation, and increased preservation of primary depositional fabric.  相似文献   

20.
We investigated the provenance of organic matter in the inner fjord area of northern Patagonia, Chile (~44–47°S), by studying the elemental (organic carbon, total nitrogen), isotopic (δ13C, δ15N), and biomarker (n-alkanoic acids from vascular plant waxes) composition of surface sediments as well as local marine and terrestrial organic matter. Average end-member values of N/C, δ13C, and δ15N from organic matter were 0.127±0.010, ?19.8±0.3‰, and 9.9±0.5‰ for autochthonous (marine) sources and 0.040±0.018, ?29.3±2.1‰, and 0.2±3.0‰ for allochthonous (terrestrial) sources. Using a mixing equation based on these two end-members, we calculated the relative contribution of marine and terrestrial organic carbon from the open ocean to the heads of fjords close to river outlets. The input of marine-derived organic carbon varied widely and accounted for 13–96% (average 61%) of the organic carbon pool of surface sediments. Integrated regional calculations for the inner fjord system of northern Patagonia covered in this study, which encompasses an area of ~4280 km2, suggest that carbon accumulation may account for between 2.3 and 7.8×104 ton C yr?1. This represents a storage capacity of marine-derived carbon between 1.8 and 6.2×104 ton yr?1, which corresponds to an assimilation rate of CO2 by marine photosynthesis between 0.06 and 0.23×106 ton yr?1. This rate suggests that the entire fjord system of Patagonia, which covers an area of ~240,000 km2, may represent a potentially important region for the global burial of marine organic matter and the sequestration of atmospheric CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号