首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
This study is part of a basin-wide re-evaluation of Irish Sea glacigenic deposits which aims to test whether diamicts, collectively known as Irish Sea Tills, represent in situ glacimarine sediments or sediments that have been reworked or deformed by the Last Glacial Maximum Irish Sea Glacier. New results are presented for two key localities at Abermawr and Traeth y Mwnt in Wales. Unlike previous studies in the Irish Sea region that have focused on macro-scale sedimentology and structural analyses, this study combines macro-scale and micro-scale sedimentary analyses. This approach reveals that the dominant diamict facies at Abermawr are subglacially deformed primary (glaci)marine deposits, emplaced by the Irish Sea Glacier. An inland glacial source is unlikely. The Traeth y Mwnt diamicts are likely to be subaqueous in origin, possibly formed in an ice-dammed lake in the Mwnt embayment. There are no indications of subglacial deformation or shearing at Mwnt; deformation structures are related to gravity-driven or density-driven mechanisms.  相似文献   

2.
《Quaternary Science Reviews》2005,24(1-2):123-140
The glacial coastal exposures of north Norfolk are a type site for subglacial glaciotectonic deforming bed sediments. This investigation of the lower stratified diamict within the North Sea Drift at West Runton reveals two distinct lamina types. Type 1 laminae are the product of primary extensional glaciotectonism, with ductile, intergranular pervasive shear predominating over brittle shear. Type 2 laminae also exhibit structures that can be attributed to ductile, intergranular pervasive shear and brittle shear, but the lateral continuity of Type 2 laminae and the presence of dropstone—like structures supports a primary subaqueous origin with secondary subglacial deformation.When coupled with micromorphological analysis, these findings show that ductile, viscous creep mechanisms control sedimentary architecture, and that ‘shear stratification’ in particular, has the potential to affect the rheological properties of the sediment pile and the hydraulic routing of basal water, ultimately influencing critical effective pressure fluctuations and the thresholds controlling the subglacial drainage system.  相似文献   

3.
In glacial sedimentology there has been a recent improvement in the understanding of both progressive and polyphase deformation of glacigenic sequences, and the role played by water during these complex deformation histories. However, the processes occurring during the detachment and transport of sediment blocks during ice-marginal glaciotectonic thrusting remain poorly understood. This lack of understanding is addressed in detail through a macro- and microscale study of the deformation structures in the glacigenic sequence exposed at Hayberries, Teesdale, County Durham (UK), where esker sands and gravels and associated tills truncate and overlie a sequence of rhythmically bedded glacilacustrine sands, silts and clays. Thrusts within the glacilacustrine and glacifluvial sediments appear to be relatively sharp, planar structures. However, orientated thin sections reveal that these bedding-parallel detachments are marked by a thin layer of massive to foliated sand. The geometry of both meso and small-scale folds and sense of displacement on the thrusts is consistent with both brittle and ductile structures having formed in response to ice-push from the N/NW. Detailed analysis of the thin sections reveals that initial folding and thrusting was followed by the liquefaction and injection of a massive, matrix poor sand along the propagating thrust. Evidence for liquefaction and injection (sand-filled veins) increases towards the NW consistent with fluid flow and sediment injection accompanying SE-directed ice-push. These results suggest that the introduction of pressurised meltwater and sediment along the thrusts during deformation may facilitate decoupling and displacement along these detachments by thrust gliding.  相似文献   

4.
Recent work in modern and ancient glacial environments has demonstrated the ability of cold-based glaciers to interact with permafrost. Geological evidence for glacier–permafrost interactions is revealed in Arctic regions where permafrost has persisted since deglaciation. Whilst similar interactions probably occurred near the margins of former ice sheets in the mid-latitudes, this interpretation is rarely applied to unfrozen glacigenic sequences. This review considers the extent to which this alternative hypothesis can explain two key aspects of the glaciotectonic sequences of North Norfolk that have traditionally been attributed to the deformation of unfrozen sediment. The substantial thickness (>10 m) of the pervasively deformed sequences and the preservation of stratified sand intraclasts within them are consistent with deformation at temperatures slightly below the pressure melting point (warm permafrost). Such deformation is also consistent with the pre-glacial environment, which was characterised by continuous permafrost. The hypothesis of deformation at sub-freezing temperatures should be considered more widely when interpreting glaciotectonically deformed, ice-marginal sequences in the mid-latitudes. The application of geological evidence to reconstruct basal thermal regimes beneath former glaciers would complement existing geomorphological inverse models and provide additional information to improve the parameterisation of subglacial processes in numerical ice-sheet models.  相似文献   

5.
The north–south-trending upper reaches of the Minjiang River run along the Longmen Shan–Min Shan fault zone, a zone of abrupt topographic change along the eastern margin of the Tibetan Plateau. Multiple levels of well-preserved soft-sediment deformation structures (seismites) occur in sediments deposited in paleo-dammed lakes in the upper part of the Minjiang River Valley. These deformation structures include liquefied convolute deformation, water-escape structures, flame structures, pseudonodules, ball-and-pillow structures, sedimentary dykes, mud lenses, and large-scale folds. Several kilometers from the barrier bar of the Diexi paleo-dammed lakes, seven deformed structural layers were identified at different heights in late Quaternary stratigraphic sequences near Shawan Village, Maoxian County. Analyses of the deformation structures, landforms, and the structural environment indicate that these deformation structures were caused by earthquakes, slumps, and landslides.OSL (optical stimulated luminescence) and 14C dating of soft-sediment layers from the Shawan site indicate that intense earthquakes occurred during the period 25–20 ka B.P. Therefore, accurate geological dating of deformed features in dammed lake deposits in high mountains and canyons enables the record of moderate- to large-magnitude earthquakes to be extended to the late Pleistocene–Holocene upon the eastern Tibetan Plateau.  相似文献   

6.
The studied area, built up by silty clayey and partly sandy sediments and paleosols, lies on the tectonically active Northern margins of the Pannonian Basin. Wavy, sagging load casts can be observed in the upper part of the Late Miocene alluvial complex and larger scale sagging load casts, flame structures, drops and pillows detected in its Quaternary cover were studied in detail, in order to understand the origins of soft sediment deformation which characterized this young sedimentary suite. Sedimentological, paleopedological and mineralogical observations suggest that:
1. One of the reasons for the soft-sediment deformation might have been the relatively low cohesive strength of the predominantly smectitic sediment covering a gentle slope similar to the actual landscape.

2. On such a surface, the down-slope gravitational component of the mud-blanket might easily have been sufficient to overcome its cohesive strength.

3. Frost action traceable in the studied formations might also have contributed to the observed deformation, particularly along the eroded top of the Late Miocene sediments.

Combined evidence from field observations and laboratory analyses support the idea that liquefaction–fluidization was of prime importance in bringing about the observed structures. In conclusion two alternative Quaternary/Holocene scenarios are proposed, which might have resulted in the unusual behaviour of the sediments/paleosols. One is a seismic event, the other is the combined effect of freeze–thaw cycles and of the sloping foothill position, which might have resulted in episodic downslope transport and the associated deformation of the eroded soil material when its water content surpassed a certain threshold. We accept that the anomalous abundance of soft-sediment deformation in this marginal position may be causally related to paleo-earthquakes, but the obvious complexity of the phenomenon requires caution. In case the proposed scenarios would not have been alternatives but acted simultaneously, the analysed phenomena were to be interpreted as the joint results of tectonics and climate change.  相似文献   


7.
The development of soft‐sediment deformation structures in clastic sediments is now reasonably well‐understood but their development in various deltaic subenvironments is not. A sedimentological analysis of a Pleistocene (ca 13·1 to 15 10Be ka) Gilbert‐type glaciolacustine delta with gravity‐induced slides and slumps in the Mosty‐Danowo tunnel valley (north‐western Poland) provides more insight, because the various soft‐sediment deformation structures in these deposits were considered in the context of their specific deltaic subenvironment. The sediments show three main groups of soft‐sediment deformation structures in layers between undeformed sediments. The first group consists of deformed cross‐bedding (inclined, overturned, recumbent, complex and sheath folds), large‐scale folds (recumbent and sheath folds) and pillows forming plastic deformations. The second group comprises pillar structures (isolated and stress), clastic dykes with sand volcanoes and clastic megadykes as examples of water‐escape structures. The third group consists of faults (normal and reverse) and extensional fissures (small fissures and neptunian dykes). Some of the deformations developed shortly after deposition of the deformed sediment, other structures developed later. This development must be ascribed to hydroplastic movement in a quasi‐solid state, and due to fluidization and liquefaction of the rapidly deposited, water‐saturated deltaic sediments. The various types of deformations were triggered by: (i) a high sedimentation rate; (ii) erosion (by wave action or meltwater currents); and (iii) ice‐sheet loading and seasonal changes in the ablation rate. Analysis of these triggers, in combination with the deformational mechanisms, have resulted – on the basis of the spatial distribution of the various types of soft‐sediment deformation structures in the delta under study – in a model for the development of soft‐sediment deformation structures in the topsets, foresets and bottomsets of deltas. This analysis not only increases the understanding of the deformation processes in both modern and ancient deltaic settings but also helps to distinguish between the various subenvironments in ancient deltaic deposits.  相似文献   

8.
In this study the sedimentology, micromorphology and structure of four deformation es in end moraines or near-end moraine settings are presented. Micromorphology has proven be a powerful tool in the interpretation of the sediments. The four sites are related to three of the four major glaciations known from this part of Patagonia: Nahuel Huapi, Anfiteatro and Pichileufú. All four sites are characterised by glaciolacustrine vironments in which sedimentation occurred at least partly on and/or against dead ice. With the exception of one section in the San Martin de los Andes area, where deformation occurred active ice-push, all major disturbances (faults and folds) are the result of dead ice collapse. Comparison with micromorphological observations on basal tills shows that the sediments all lack clear subglacial imprint.  相似文献   

9.
Late Devensian/Midlandian glacial deposits on the southeast Irish coast contain a record of sedimentation at the margins of the Irish Sea ice stream (ISIS). Exposures through the Screen Hills reveal a stratigraphy that documents the initial onshore flow of the ISIS ('Irish Sea Till') followed by ice stream recession and readvances that constructed glacitectonic ridges. Ice-contact fans (Screen Member) were deposited in association with subglacial deformation tills and supraglacial/subaqueous mass flow diamicts. In SE Ireland, the ISIS moved onshore over proglacial lake sediments which were intensely folded, thrust and cannibalized producing a glacitectonite over which laminated and massive diamictons were deposited as glacitectonic slices. Ice marginal recession and oscillations are documented by: (a) ice-proximal, subaqueous diamict-rich facies; (b) isolated ice-contact glacilacustrine deltas; (c) syn-depositional glacitectonic disturbance of glacilacustrine sediments and overthrusting of ice-contact outwash; (d) offshore moraine ridges; and (e) changing ice flow directions and facies transitions. Diagnostic criteria for the identification of dynamic, possibly surging, ice-stream margins onshore include thrust-block moraines, tectonized pitted outwash and stacked sequences of glacitectonites, deformation tills and intervening stratified deposits. In addition, the widespread occurrence of hydrofracture fills in sediments overridden and locally reworked by the ISIS indicate that groundwater pressures were considerably elevated during glacier advance. The glacigenic sediments and landforms located around the terrestrial margins of the ISIS are explained as the products of onshore glacier flow that cannibalized and tectonically stacked pre-existing marine and glacilacustrine sediments. Localized tectonic thickening of subglacially deformed materials at the former margins of glaciers results in zones of net erosion immediately up-ice of submarginal zones of net accretion of subglacial till. The more stable the ice-stream margin the thicker and more complex the submarginal sedimentary stack.  相似文献   

10.
Subglacial and subaqueous sediments deposited near the margin of a Late-glacial ice-dammed lake near Achnasheen, northern Scotland, are described and interpreted. The subglacial sediments consist of deformation tills and glacitectonites derived from pre-existing glaciolacustrine deposits, and the subaqueous sediments consist of ice-proximal outwash and sediment flow deposits, and distal turbidites. Sediment was delivered from the glacier to the lake by two main processes: (1) subglacial till deformation, which fed debris flows at the grounding line; and (2) meltwater transport, which fed sediment-gravity flows on prograding outwash fans. Beyond the ice-marginal environment, deposition was from turbidity currents, ice-rafting and settling of suspended sediments. The exposures support the conclusion that the presence of a subglacial deforming layer can exert an important influence on sedimentation at the grounding lines of calving glaciers.  相似文献   

11.
The ability of glaciers to detach and transport bedrock as glaciotectonic rafts is widely observed throughout Quaternary sections. However, the glaciological, hydrological and geological parameters controlling rafting are currently poorly constrained. There is a lack of structural and sedimentary evidence concerning rafting, and therefore the processes driving raft detachment, transport and emplacement are poorly understood. This paper contributes to our understanding by presenting a macro‐ and microstructural study of deformation associated with a chalk raft at West Runton, north Norfolk. Detailed thin‐section analysis reveals several discrete micro‐fabric orientations, representing poly‐phase deformation occurring during raft transport and emplacement. A four‐stage conceptual model for raft transport and emplacement is proposed, with deformation being partitioned into the relatively weaker Happisburgh Till member, the latter forming the host to the raft. Stage 1 is the main transport phase of the chalk raft, and was dominated by easterly (down‐ice) directed ductile shearing. During Stage 2 a narrow ductile shear zone within the Happisburgh Till member propagated upwards through the base of the raft, leading to the detachment of an elongate block of chalk. Attenuated lenses of diamicton in this shear zone possess kinematics recording an easterly directed sense of shear. As deformation progressed, during Stage 3, the detached block impinged on the ‘high‐strain’ zone wrapping the base of the raft, influencing the style of deformation partitioning and leading to localized, up‐ice‐directed kinematics. Stage 4 represents the final stages of raft emplacement, when the detachment zone at the base of the raft began to ‘lock‐up’. These results demonstrate the relative importance of the hydrological controls associated with raft transport and emplacement underneath an actively advancing glacier. Furthermore, the model represents an example of how micromorphological analysis can reveal detailed poly‐phase deformation histories in deformed glacial sediments.  相似文献   

12.
Detailed mapping of a coastal platform in Shikoku, SW Japan, provides evidence for progressive deformation in partially lithified sediments. The Eocene sediments involved are interpreted as lower slope basin deposits. An assemblage of listric normal faults, sheath folds, broken formations and late-stage faulting has developed during the sediments' burial and uplift history. These structures are typical of many other areas in the Shimanto Belt of Shikoku. Despite the ‘soft’ sediment style of deformation, the consistency of the fold orientations relative to the regional foliation suggests that they are valid kinematic indicators. A sequence of extensional faulting overprinted by synchronous folding and shearing is recognized. This is interpreted as the response of the sediments to shape changes in the accretionary basement induced by shortening. A general model has been constructed for the evolution of the structures: it is proposed that early listric normal faults are subsequently deformed either by shearing along planar surfaces or by motion over frontal and lateral ramps. Back-rotation of sediments during progressive shortening near the front of the prism tightens the fold hinges and rotates the fold axes towards the local shear direction. Alternative sequences which could account for the observed geometries are also discussed.  相似文献   

13.
The stratigraphy and sedimentology of the glacial deposits exposed along the coast of east Yorkshire are reviewed. Critical sections at Filey Brigg, Barmston and Skipsea are examined to reassess the stratigraphy of Devensian Dimlington Stadial glacial deposits in the light of recent developments in glacial sedimentology. Sedimentary and glaciotectonic structures studied in the field and by using scanning electron microscopy are emphasised. Two hypotheses are considered for the genesis of the interbedded diamictons and stratified sediments. The first involves the deposition of lodgement till and/or deformation till followed by meltout till, which was overridden to produce more deformation till, reflecting periods of ice stagnation punctuated by glacier thickening. The second hypothesis, which is favoured on the basis of field evidence and micromorphology, involves the vertical accretion of a deforming till layer associated with cavity/channel or tunnel valley fills, beneath active ice. At Barmston the upper part of the diamicton contains elongate pendant structures containing gravels, indicating that the diamicton was saturated and able to flow. The diamictons, therefore, represent a complex sequence of tills deposited and deformed by active ice during the Dimlington Stadial. Previously published stratigraphical schemes involving classifications of multiple tills in east Yorkshire should be simplified and it is more appropriate to assign these to a single formation, the Skipsea Till Formation. Rhythmic glaciolacustrine and proglacial glaciofluvial sediments overlie the tills at Barmston and Skipsea. These were deposited in sag basins during deglaciation as the tills settled and deformed under thickening sediment and as buried ice melted out. Extensive sands and gravels cap the succession and were deposited on a sandur during the later stages of deglaciation.  相似文献   

14.
Recent studies on Neoproterozoic climate change have prompted renewed interest in Neoproterozoic glacial deposits and renewed debate over the criteria used to identify the nature of glacial influence on sedimentation. Analyses of soft sediment deformation structures have provided important clues to distinguish between competing palaeoenvironmental interpretations of Quaternary glacial deposits; a similar approach is presented here in the analysis of Neoproterozoic glacial deposits of the Smalfjord Formation, northern Norway. A detailed sedimentological and structural analysis at several sites in the Varangerfjorden area reveals complex soft sediment deformation at various scales in conglomerate, sandstone and diamictite. Deformation is predominantly ductile and includes anticlinal and synclinal folding, flow noses, flame structures, recumbent folding and shear structures. The deformed sediments are associated predominantly with conglomerate and sandstone, which record glaciofluvial and deltaic depositional conditions. Some deformations can be attributed to rapid deposition and slumping, whereas others appear to record shear stress associated with overriding ice. The scale, style and range of deformation, together with the coarse-grained nature of the deformed sediments and facies associations, suggest that these were unfrozen outwash sediments that were overridden by ice and resedimented in a dynamic ice-proximal setting. Whereas recent studies of diamictite-bearing strata of the Smalfjord Formation had revealed no clear evidence of glacial influence on deposition, deformation structures documented here suggest that glacial conditions prevailed on the basin margin during deposition of Smalfjord Formation sediments, with sedimentary facies and deformation structures typical of temperate ice-proximal settings.  相似文献   

15.
Lithostratigraphical and lithofacies approaches used to interpret glacial sediments often ignore deformation structures that can provide the key to environment of formation. We propose a classification of deformation styles based on the geometry of structures rather than inferred environment of formation. Five styles are recognised: pure shear (P), simple shear (S), compressional (C), vertical (V) and undeformed (U). These dictate the first letter of the codes; the remaining letters conveying the evidence. This information can be used to reconstruct palaeostress fields and to infer physical properties of sediments when they deformed. Individual structures are not diagnostic of particular environments but the suite of structures, their relative scale, stratigraphical relationships, and orientation relative to palaeoslopes and to palaeoice‐flow directions can be used to infer the environment in which they formed. This scheme is applied at five sites in west Wales. The typical succession is interpreted as subglacial sediments overlain by meltout tills, flow tills and sediment flows. Paraglacial redistribution of glacial sediments is widespread. Large‐scale compressional deformation is restricted to sites where glaciers readvanced. Large‐scale vertical deformation occurs where water was locally ponded near the ice margin. There is no evidence for glaciomarine conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Micromorphology can be used in studying a wide range of earth materials. Within the last decades, the technique has been applied across an ever-widening range of sediments and materials. Micromorphology provides insight into sediments from various geological environments. Microstructures and the relationship of matrix (plasma) to skeleton grains offer an understanding of deposition, deformation, and postdepositional diagenesis. Examples from Germany and Antarctica illustrate the value of micromorphology providing a robust method for microstratigraphic interpretation. Micromorphology has proved invaluable in detecting toxic substances with sediments. Likewise, micromorphological examination of concrete has revealed new clues to processes of concrete ‘setting’ and diagenesis.  相似文献   

17.
Knight, J. 2010: Subglacial processes and drumlin formation in a confined bedrock valley, northwest Ireland. Boreas, 10.1111/j.1502‐3885.2010.00182.x. ISSN 0300‐9483. Subglacial processes beneath the Late Weichselian ice sheet in northwest Ireland are deduced from sediments and structures within drumlins in a bedrock valley at Loughros Beg, County Donegal. Here, a glacially smoothed bedrock surface underlies the drumlins, which are composed on their up‐ice side of stacked, angular rafts of local bedrock. Overlying and down‐ice from these rafts are down‐ice‐dipping beds of massive to bedded diamicton that contain sand and gravel interbeds. In a down‐ice direction the diamicton matrix coarsens and the beds become laterally transitional to water‐sorted gravels. The down‐ice end of one drumlin shows a concentrically bedded stratified gravel core aligned parallel to ice flow and resembling the internal structure of an esker. With distance away from this core, the gravels become more poorly sorted with an increase in matrix content, and are transitional to massive to stratified diamicton. A four‐stage model describes the formation of drumlins in this sediment‐poor setting. The sediments that are located directly above the bedrock represent deposition in a semi‐enclosed subglacial cavity. A trigger for this process was the formation of subglacial relief by the thrusting up of bedrock rafts, which created the leeside cavity. Subsequent sediment deposition into this cavity represents a form of feedback (self‐regulation), which may be a typical characteristic of subglacial processes in sediment‐poor settings.  相似文献   

18.
Current views on the internal structure of many glacial landforms need further definition. For example, drumlinized Halton till plain near the Scarborough Bluffs, Ontario would traditionally be. viewed as a lodgement till sheet, but it was found to consist of complex sedimentary assemblages including sediment flows, melt-out, deformation and lodgement tills. These facies vary spatially depending on whether deposition occurred beneath grounded ice or within subglacial cavities. Proglacial sediments bury portions of the till plain. Surface Rutings and drumlins clearly indicate the action of subglacial processes on the surface of Halton drift. Sedimentary structures at the contact between stratified sediments and diamictons within the Late Wisconsinan Halton drift are similar to those in older beds exposed at Scarborough Bluffs. The demonstration of the role of grounded ice in Halton drift and the similarity of sedimentary structures to those of the underlying Thorncliffe and Sunnybrook sediments suggests that the action of grounded ice cannot be ruled out in the case of the lower beds, as has been done by Eyles & Eyles ( Geology 11 , 146–152, 1983). Thus, surface Halton drift may be a model for recognition of similar environments of deposition in older beds beneath Halton. This analysis indicates flaws in a recent re-evaluation of Scarborough Bluffs sediment interpreted as solely lacustrine and not directly affected by glaciers.  相似文献   

19.
As mobile diamicton sediments move across already deposited sediments whether on land or into oceans generated by either glaciers/ice sheets or landslides, a series of soft-sediment deformation processes occur. These sediments carry signatures of processes at both macro- and micro scales. The processes occur across thin layers of sediment, it is at the microsedimentological scale that deformation structures are detected and is the subject of this paper. Examination of numerous diamicton thin sections of both known glacigenic and non-glacigenic sediments illustrate a myriad of microstructures. Microstructures can be subdivided into brittle, ductile, porewater induced and plasmic fabrics. These fabrics are part of a spectrum of development from grain stacks, to microshear to rotations and, in addition, domains are likely to occur due to scavenging and are all part of a repeating cycle of deformation as sediment is added, eroded, re-transported into the accumulating sediment pile. Diamictons can be subdivided into several levels of abundance of microstructure types from very common to rare to being absent. In general, other than ‘tile’ structures, all diamictons have all types of microstructures. A table is presented illustrating the differentiation of various type of diamictons in terms of microstructure type abundancies in relation to individual environments in which diamictons occur around the past margins of glaciated continents. A distinction can be successfully drawn that allows diamictons to be distinguished and differentiated.  相似文献   

20.
Saks, T., Kalvans, A. & Zel?s, V. 2012 (January): Subglacial bed deformation and dynamics of the Apri?i glacial tongue, W Latvia. Boreas, Vol. 41, pp. 124–140. 10.1111/j.1502‐3885.2011.00222.x. ISSN 0300‐9483. We evaluate the glacial dynamics and subglacial processes of the Apri?i glacial tongue in western Latvia during the Northern Lithuanian (Linkuva) oscillation of the last Scandinavian glaciation. The spatial arrangement of glacial bedforms and deformation structures are used to reconstruct the ice dynamics in the study area. The relationship between geological structures at the glacier bed and the spatial distribution of drumlins and glacigenic diapirs, on the one hand, and the permeability of sediment and bedrock, on the other, is ascertained. Drumlins are found in the upper part of the Apri?i glacial tongue area and are composed of soft deformable sediments overlying highly permeable Devonian dolomite. The soft deformable clayey silty bed with low hydraulic conductivity is conducive to the development of diapirs. The occurrence of diapirs and drumlins is controlled by the fluctuation of pore‐water pressure at the glacier bed and is considered to be an indicator of fast ice flow of the Apri?i glacial tongue during its reactivation at the end of the Oldest Dryas (18–15 ka BP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号