首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates (SFRs) and the chemical and ionization properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disc galaxies with   MB ≲−20  , in clusters with redshifts in the range  0.31 ≲ z ≲ 0.59  , with a median of  〈 z 〉= 0.42  . We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al., and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al.
From our optical spectra, we measure the equivalent widths of  [O  ii ]λ3727, Hβ  and [O  iii ]λ5007 emission lines to determine diagnostic line ratios, oxygen abundances and extinction-corrected SFRs. The star-forming galaxies in intermediate-redshift clusters display emission-line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the SFRs per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.  相似文献   

2.
We search for the maximum oxygen abundance in spiral galaxies. Because this maximum value is expected to occur in the centres of the most luminous galaxies, we have constructed the luminosity – central metallicity diagram for spiral galaxies, based on a large compilation of existing data on oxygen abundances of H  ii regions in spiral galaxies. We found that this diagram shows a plateau at high luminosities  (−22.3 ≲ M B ≲−20.3)  , with a constant maximum value of the gas-phase oxygen abundance  12 + log (O/H) ∼ 8.87  . This provides strong evidence that the oxygen abundance in the centres of the most luminous metal-rich galaxies reaches the maximum attainable value of oxygen abundance. Since some fraction of the oxygen (about 0.08 dex) is expected to be locked into dust grains, the maximum value of the true gas + dust oxygen abundance in spiral galaxies is 12 + log(O/H) ∼ 8.95. This value is a factor of ∼2 higher than the recently estimated solar value. Based on the derived maximum oxygen abundance in galaxies, we found the oxygen yield to be about 0.0035, depending on the fraction of oxygen incorporated into dust grains.  相似文献   

3.
We present long-slit observations in the optical and near-infrared of 14 H  ii regions in the spiral galaxies NGC 628, 925, 1232 and 1637, all of them reported to have solar or oversolar abundances according to empirical calibrations. For seven of the observed regions, ion-weighted temperatures from optical forbidden auroral to nebular line ratios are obtained and, for six of them, the oxygen abundances derived by standard methods turn out to be significantly lower than solar. The other one, named CDT1 in NGC 1232, shows an oxygen abundance of     , and constitutes, to the best of our knowledge, the first high-metallicity H  ii region for which accurate line temperatures, and hence elemental abundances, have been derived.
For the rest of the regions no line temperature measurements could be made, and the metallicity has been determined by means of both detailed photoionization modelling and the sulphur abundance parameter S 23. Only one of these regions shows values of O 23 and S 23 implying a solar or oversolar metallicity.
According to our analysis, only two of the observed regions can therefore be considered as of high metallicity. These two fit the trends previously found in other high-metallicity H  ii regions, i.e., N/O and S/O abundance ratios seem to be higher and lower than solar respectively.  相似文献   

4.
We present a statistical study of a very large sample of H  ii galaxies taken from the literature. We focus on the differences in several properties between galaxies that show the auroral line [O  iii ]λ4363 and those that do not present this feature in their spectra. It turns out that objects without this auroral line are more luminous, are more metal-rich and present a lower ionization degree. The underlying population is found to be much more important for objects without the [O  iii ]λ4363 line, and the effective temperature of the ionizing star clusters of galaxies not showing the auroral line is probably lower. We also study the subsample of H  ii galaxies whose properties most closely resemble the properties of the intermediate-redshift population of luminous compact blue galaxies (LCBGs). The objects from this subsample are more similar to the objects not showing the [O  iii ]λ4363 line. It might therefore be expected that the intermediate- redshift population of LCBGs is powered by very massive, yet somewhat aged, star clusters. The oxygen abundance of LCBGs would be greater than the average oxygen abundance of local H  ii galaxies.  相似文献   

5.
We study the gas emission of galaxies with active star formation, consisting mostly of H  ii and starburst galaxies, as well as some Seyfert 2 galaxies, and determine chemical and physical parameters. The data consist of 19 high signal-to-noise ratio optical templates, a result of grouping 185 emission-line galaxy spectra. Underlying stellar population models (from Raimann et al.) were subtracted from the templates in order to isolate the pure emission component.
We analyse the distribution of these improved signal-to-noise ratio emission spectra in diagnostic diagrams and find that the H  ii templates show a smaller spread in log([O  iii ]/H β ) values than the individual galaxies, apparently as a result of the population subtraction and a better signal-to-noise ratio. We thus suggest the template sequence as a fiducial observational locus for H  ii galaxies which can be used as reference for models. The sequence of line ratios presented by the H  ii galaxies in the diagram log([O  iii ] λ 5007/H β ) versus log([N  ii ] λ 6584/H α ) is primarily owing to the gas metallicity, of which the log([N  ii ]/H α ) ratio is a direct estimator. We also study the properties of the starburst galaxies and those intermediate between H  ii and starburst galaxies, which are more metal rich and sit on more massive galaxies.
We discuss the present results in the frame of a recently proposed equivalent-width diagnostic diagram for emission-line galaxies (by Rola et al.) and conclude that the observed ranges in W ([O  ii ])/ W (H β ) and W (H β ) are mostly owing to the non-ionizing stellar population contribution. We propose that W (H β ) be used as an estimator of this contribution to the continuum, and briefly discuss implications to the cosmological use of H  ii galaxies.  相似文献   

6.
We present high signal-to-noise ratio spectrophotometric observations of seven luminous H  ii galaxies. The observations have been made with the use of a double-arm spectrograph which provides spectra with a wide wavelength coverage, from 3400 to 10 400 Å free of second-order effects, of exactly the same region as that of a given galaxy. These observations are analysed applying a methodology designed to obtain accurate elemental abundances of oxygen, sulphur, nitrogen, neon, argon and iron in the ionized gas. Four electron temperatures and one electron density are derived from the observed forbidden line ratios using the five-level atom approximation. For our best objects, errors of 1 per cent in t e([O  iii ]), 3 per cent in t e([O  ii ]) and 5 per cent in t e([S  iii ]) are achieved with a resulting accuracy of 7 per cent in total oxygen abundances, O/H.
The ionization structure of the nebulae can be mapped by the theoretical oxygen and sulphur ionic ratios, on the one side, and the corresponding observed emission line ratios, on the other – the η and η' plots. The combination of both is shown to provide a means to test photoionization model sequences presently applied to derive elemental abundances in H  ii galaxies.  相似文献   

7.
We study the stellar population of galaxies with active star formation, determining ages of the stellar components by means of spectral population synthesis of their absorption spectra. The data consist of optical spectra of 185 nearby ( z 0.075) emission-line galaxies . They are mostly H  ii galaxies, but we also include some starbursts and Seyfert 2s, for comparison purposes. They were grouped into 19 high signal-to-noise ratio template spectra, according to their continuum distribution, absorption- and emission-line characteristics. The templates were then synthesized with a star cluster spectral base.
The synthesis results indicate that H  ii galaxies are typically age-composite stellar systems, presenting important contributions from generations up to as old as 500 Myr. We detect a significant contribution of populations with ages older than 1 Gyr in two groups of H  ii galaxies. The age distributions of stellar populations among starbursts can vary considerably despite similarities in the emission-line spectra. In the case of Seyfert 2 groups we obtain important contributions from the old population, consistent with a bulge.
From the diversity of star formation histories, we conclude that typical H  ii galaxies in the local Universe are not systems presently forming their first stellar generation.  相似文献   

8.
We have carried out an investigation of the environments of low redshift H  ii galaxies by cross-correlating their positions on the sky with those of faint field galaxies in the Automatic Plate Measuring Machine (APM) catalogues. We address the question of whether violent star formation in H  ii galaxies is induced by low-mass companions by statistically estimating the mean space density of galaxies around them. We argue that even if low-mass companions were mainly intergalactic H  i clouds, their optical counterparts should be detectable at faint limits of the APM scans.
A significantly positive signal is detected for the H  ii galaxy–APM galaxy angular cross-correlation function, but the amplitude is poorly determined. The projected cross-correlation function has a higher signal-to-noise ratio, and suggests that the amplitude is slightly lower than for normal field galaxies. This implies that these bursting dwarf galaxies inhabit slightly lower density environments than those of normal field galaxies, consistent with other studies of emission-line galaxies. This suggests that in these dwarf starburst galaxies, star formation is not always triggered by tidal interactions, and a significant fraction must have a different origin.  相似文献   

9.
We present results of a search for giant H  ii regions in southern galaxies. Using high-resolution spectra, obtained with the Magellan Inamori Kyocera Echelle (MIKE) at the Las Campanas Magellan II telescope, we were able to resolve the emission-line profiles and determine the intrinsic velocity dispersion of the ionized gas. Out of four observed regions, selected from previous CCD narrow-band photometry, we detected three H  ii regions showing supersonic velocity dispersion, characteristic of giant H  ii regions, and their location in diagnostic diagrams suggests that a powerful starburst is the source of ionization energy.  相似文献   

10.
We present the first results of an ongoing spectroscopic survey of galaxies selected in the rest frame ultraviolet (UV). The source catalogue has been constructed from a flux-limited sample of stars, galaxies and QSOs imaged at 2000 Å in Selected Area 57 with the FOCA balloon-borne imaging camera. Accurate positions for the UV sources have been obtained by matching with optical counterparts using APM scans of the Palomar Sky Survey limited at B   20.5. Here we present results derived from optical spectroscopy conducted with the WIYN telescope and the WHT for 142 faint sources. The redshift distribution for this UV-selected sample extends over 0 <  z  < 0.5, and a high fraction of the sources show intense nebular emission lines and UV–optical colours bluer than normal Hubble sequence galaxies. Such UV-selected surveys are thus a very efficient way to locate and study intermediate-redshift galaxies undergoing intense star formation. Although our sample is currently small, we derive a rest frame UV luminosity function with a steep faint-end slope consistent with that found for late-type galaxies in optical samples. However, the integrated luminosity density derived implies a volume-averaged star formation rate higher than other recent estimates, assuming a normal initial mass function. If representative of other UV fields, as suggested by UV number count studies, our data imply that the local abundance of star-forming galaxies may have been underestimated, and consequently claims for strong evolution in the global star formation rate in the range 0 <  z  < 1 overstated. An intensive study of a large UV-selected sample is likely to reveal important information on the declining population of star-forming galaxies of all types.  相似文献   

11.
In general, H  ii regions do not show clear signs of self-enrichment in products from massive stars  ( M ≥ 8 M)  . In order to explore why I modelled the contamination with Wolf–Rayet star ejecta of metal-poor  ( Z = 0.001)  H  ii regions, ionized either by a  106 M  cluster of coeval stars (cluster 1) or by a cluster resulting from continuous star formation at a rate of  1 M yr−1  (cluster 2). The clusters have   Z = 0.001  and a Salpeter initial mass function from 0.1 to  120 M  . Independent one-dimensional constant density simulations of the emission-line spectra of unenriched H  ii regions were computed at the discrete ages 1, 2, 3, 4 and 5 Myr, with the photoionization code cloudy , using as input, radiative and mechanical stellar feedbacks predicted by the evolutionary synthesis code starburst99 . Each H  ii region was placed at the outer radius of the adiabatically expanding superbubble of Mac Low & McCray. For models with thermal and ionization balance time-scales of less than 1 Myr, and with oxygen emission-line ratios in agreement with observations, the volume of the superbubble and the H  ii region was uniformly and instantaneously polluted with stellar ejecta predicted by starburst99 . I obtained a maximum oxygen abundance enhancement of 0.025 dex, with cluster 1, at 4 Myr. It would be unobservable.  相似文献   

12.
We have measured central line strengths for a complete sample of early-type galaxies in the Fornax cluster, comprising 11 elliptical and 11 lenticular galaxies, more luminous than M B  = −17. In contrast to the elliptical galaxies in the sample studied by González (and recently revisited by Trager) we find that the Fornax ellipticals follow the locus of galaxies of fixed age in Worthey's models and have metallicities varying from roughly solar to three times solar. The lenticular galaxies, however, exhibit a substantial spread to younger luminosity-weighted ages, indicating a more extended star formation history. We present measurements of the more sensitive indices: C4668 and HγA; these confirm and reinforce the conclusions that the elliptical galaxies are coeval and that only the lenticular galaxies show symptoms of late star formation. The inferred difference in the age distribution between lenticular and elliptical galaxies is a robust conclusion as the models generate consistent relative ages using different age and metallicity indicators even though the absolute ages remain uncertain. The young luminosity-weighted ages of the S0s in the Fornax cluster are consistent with the recent discovery that the fraction of S0 galaxies in intermediate-redshift clusters is a factor of 2–3 lower than found locally, and suggest that a fraction of the cluster spiral galaxy population has evolved to quiescence in the 5-Gyr interval from z  = 0.5 to the present. Two of the faintest lenticular galaxies in our sample have blue continua and strong Balmer-line absorption, suggesting starbursts ≲2 Gyr ago. These may be the low-redshift analogues of the starburst or post-starburst galaxies seen in clusters at z  = 0.3, similar to the Hδ-strong galaxies in the Coma cluster.  相似文献   

13.
We present spectra for a sample of radio sources from the FIRST survey, and use them to define the form of the redshift distribution of radio sources at mJy levels. We targeted 365 sources and obtained 46 redshifts (13 per cent of the sample). We find that our sample is complete in redshift measurement to R ∼18.6, corresponding to z ∼0.2. Galaxies were assigned spectral types based on emission-line strengths. Early-type galaxies represent the largest subset (45 per cent) of the sample and have redshifts 0.15≲ z ≲0.5; late-type galaxies make up 15 per cent of the sample and have redshifts 0.05≲ z ≲0.2; starbursting galaxies are a small fraction (∼6 per cent), and are very nearby ( z ≲0.05). Some 9 per cent of the population have Seyfert 1/quasar-type spectra, all at z ≳0.8, and 4 per cent are Seyfert 2 type galaxies at intermediate redshifts ( z ∼0.2).
Using our measurements and data from the Phoenix survey (Hopkins et al.), we obtain an estimate for N ( z ) at S 1.4 GHz≥1 mJy and compare this with model predictions. At variance with previous conclusions, we find that the population of starbursting objects makes up ≲5 per cent of the radio population at S ∼1 mJy.  相似文献   

14.
Oxygen abundances in the spiral galaxies expected to be richest in oxygen are estimated. The new abundance determinations are based on the recently discovered ff relation between auroral and nebular oxygen-line fluxes in high-metallicity H  ii regions. We find that the maximum gas-phase oxygen abundance in the central regions of spiral galaxies is 12+log(O/H) ∼ 8.75. This value is significantly lower (by a factor of ≳5) than the previously accepted value. The central oxygen abundance in the Milky Way is similar to that in other large spirals.  相似文献   

15.
We study the relation between nitrogen and oxygen abundances as a function of metallicity for a sample of emission-line objects for which a direct measurement of the metallicity has been possible. This sample is representative of the very different conditions in ionization and chemical enrichment that we can find in the Universe. We first construct the N/O versus O/H ratio diagram, and discuss its large dispersion at all metallicity regimes. Using the same sample and a large grid of photoionization models covering very different values of the N/O ratio, we then study the most widely used strong-line calibrators of metallicity based on [N  ii ] emission lines, such as N2 and O3N2. We demonstrate that these parameters underestimate the metallicity at low N/O ratios and vice versa. We also investigate the effect of the N/O ratio on different diagnostic diagrams used to discriminate narrow-line active galactic nuclei from star-forming regions, such as the [O  iii ]/Hβ versus [N  ii ]/Hα, and show that a large fraction of the galaxies catalogued as composite in this diagram can be, in fact, star-forming galaxies with a high value of the N/O ratio. Finally, using strong-line methods sensitive to the N/O abundance ratio, like N2O2 and N2S2, we investigate the relation between this ratio and the stellar mass for the galaxies of the Sloan Digital Sky Survey. We find, as in the case of the mass–metallicity relation, a correlation between these two quantities and a flattening of the relation for the most massive galaxies, which could be a consequence of the enhancement of the dispersion of N/O ratio in the high-metallicity regime.  相似文献   

16.
We present new near-infrared J and K imaging data for 67 galaxies from the Universidad Complutense de Madrid (UCM) survey used in the determination of the SFR density of the local Universe by Gallego et al. This is a sample of local star-forming galaxies with redshift lower than 0.045, and they constitute a representative subsample of the galaxies in the complete UCM survey. From the new data, complemented with our own Gunn- r images and long-slit optical spectroscopy, we have measured integrated K -band luminosities, r − J and J − K colours, and H α luminosities and equivalent widths. Using a maximum likelihood estimator and a complete set of evolutionary synthesis models, these observations allow us to estimate the strength of the current (or most recent) burst of star formation, its age, the star formation rate and the total stellar mass of the galaxies. An average galaxy in the sample has a stellar mass of 5×1010 M and is undergoing (or has recently completed) a burst of star formation involving about 2 per cent of its total stellar mass. We identify two separate classes of star-forming galaxies in the UCM sample: low-luminosity, high-excitation galaxies (H  ii like ) and relatively luminous spiral galaxies (starburst disc- like ). The former show higher specific star formation rates (SFRs per unit mass) and burst strengths, and lower stellar masses than the latter. With regard to their specific star formation rates, the UCM galaxies are intermediate objects between normal quiescent spirals and the most extreme H  ii galaxies.  相似文献   

17.
We present further spectroscopic observations for a sample of galaxies selected in the vacuum ultraviolet (UV) at 2000 Å from the FOCA balloon-borne imaging camera of Milliard et al. This work represents an extension of the initial study by Treyer et al. Our enlarged catalogue contains 433 sources (≃3 times as many as in our earlier study) across two FOCA fields. 273 of these are galaxies, nearly all with redshifts z ≃0–0.4. Nebular emission-line measurements are available for 216 galaxies, allowing us to address issues of excitation, reddening and metallicity. The UV and H α luminosity functions strengthen our earlier assertions that the local volume-averaged star formation rate is higher than indicated from earlier surveys. Moreover, internally within our sample, we do not find a steep rise in the UV luminosity density with redshift over 0< z <0.4. Our data are more consistent with a modest evolutionary trend, as suggested by recent redshift survey results. Investigating the emission-line properties, we find no evidence for a significant number of AGN in our sample; most UV-selected sources to z ≃0.4 are intense star-forming galaxies. We find that the UV flux indicates a consistently higher mean star formation rate than that implied by the H α luminosity for typical constant or declining star formation histories. Following Glazebrook et al., we interpret this discrepancy in terms of a starburst model for our UV-luminous sources. We develop a simple algorithm which explores the scatter in the UV flux–H α relation in the context of various burst scenarios. Whilst we can explain most of our observations in this way, there remains a small population with extreme UV–optical colours which cannot be understood.  相似文献   

18.
We use an 850-μm SCUBA map of the Hubble Deep Field (HDF) to study the dust properties of optically-selected starburst galaxies at high redshift. The optical/infrared (IR) data in the HDF allow a photometric redshift to be estimated for each galaxy, together with an estimate of the visible star-formation rate. The 850-μm flux density of each source provides the complementary information: the amount of hidden, dust-enshrouded star formation activity. Although the 850-μm map does not allow detection of the majority of individual sources, we show that the galaxies with the highest UV star-formation rates are detected statistically, with a flux density of about S 850=0.2 mJy for an apparent UV star-formation rate of 1  h −2 M yr−1. This level of submillimetre output indicates that the total star-forming activity is on average a factor of approximately 6 times larger than the rate inferred from the UV output of these galaxies. The general population of optical starbursts is then predicted to contribute at least 25 per cent of the 850-μm background. We carry out a power-spectrum analysis of the map, which yields some evidence for angular clustering of the background source population, but at a level lower than that seen in Lyman-break galaxies. Together with other lines of argument, particularly from the NICMOS HDF data, this suggests that the 850-μm background originates over an extremely wide range of redshifts – perhaps 1≲ z ≲6.  相似文献   

19.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

20.
We present a simple metallicity estimator based on the logarithmic [N  ii ]   λ 6584/H α   ratio, hereafter N2, which we envisage will become very useful for ranking galaxies in a metallicity sequence from redshift survey-quality data even for moderately low spectral resolution.
We have calibrated the N2 estimator using a compilation of H  ii galaxies having accurate oxygen abundances, plus photoionization models covering a wide range of abundances. The comparison of models and observations indicates that both primary and secondary nitrogen are important for the relevant range of metallicities.
The N2 estimator follows a linear relation with log(O/H) that holds for the whole abundance range covered by the sample, from approximately  1/50th  to twice the Solar value  [7.2<12+log(O/H)<9.1]  . We suggest that the ([S  ii ]   λλ 6717,6731/H α )  ratio (hereafter S2) can also be used as a rough metallicity indicator. Because of its large scatter the S2 estimator will be useful only in systems with very low metallicity, where [N  ii ] λ 6584 is not detected or in low-resolution spectra where [N  ii ] λ 6584 is blended with H α .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号