首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Thermodynamic calculations, modified after Nicholls et al. (1971), which relate the activity of silica in a lava to the temperature and pressure conditions at which the lava could be in equilibrium with a mantle mineral assemblage, have been extended to H2O-bearing magmas by using published experimental data to derive the dependence of on the weight fraction of H2O dissolved in a magma. A petrogenetic grid has been calculated which gives the P-T conditions under which a magma with a given at its liquidus at 1 atm could equilibrate with a mantle mineral assemblage containing olivine (ol) and orthopyroxene (opx) for different amounts of H2O in the magma at its source. This grid is in good agreement with the results of experimental studies as summarized by Green (1971) and Brey and Green (1975). The results show that the pressure at which a given magma composition can equilibrate with ol + opx increases for increasing amounts of H2O dissolved in the magma at depth.In addition, experimental data have been used to calculate the effect of olivine crystallization and removal on the in the residual liquid to assess the effect of low-pressure differentiation on . The results show that if 20 % olivine is added to a basalt magma, its calculated pressure of equilibration with ol+opx increases by 4–5 kbar for a given temperature. The calculated effects of olivine removal and H2O addition on are reasonably consistent with the silicate mixing model of Burnham (1975).Thermodynamic calculations of this type may be useful for assessing the internal consistency of certain experimental data, and in extrapolating the results to other magma compositions. The application of these calculations to determining the possible depth of origin of natural lavas appears to be limited primarily by the difficulty in determining in a lava at its liquidus temperature.  相似文献   

2.
Genesis of the calc-alkaline igneous rock suite   总被引:11,自引:1,他引:11  
A high pressure experimental study of the partial melting fields of synthetic high-alumina olivine tholeiite, high-alumina quartz tholeiite, basaltic andesite, andesite, dacite and rhyodacite under dry and wet conditions has been conducted in order to investigate possible origins of the calc-alkaline series from the upper mantle. Detailed analyses of crystallizing phases using the electron microprobe has enabled calculation of the liquid line of descent in these compositions at various pressures.At 27–36 kb garnet and clinopyroxene are the liquidus or near-liquidus phases in dry tholeiite, basaltic andesite and andesite, while quartz is the liquidus phases in dry dacite and rhyodacite. Under wet conditions at 27 kb garnet, not quartz, is the liquidus phase in the dacite. Qualitatively these results show that the low melting fraction of a quartz eclogite at 27–36 kb under dry conditions is of andesitic composition whereas under wet conditions it is rhyodacitic or granodioritic. At these pressures under dry conditions the andesite liquidus lies in a marked low temperature trough between the more basic and more acid compositions. Quantitatively, the calculated compositions of liquid fractionates for varying degrees of melting of the quartz eclogite bulk composition broadly follow the calc-alkaline trend.At 9–10 kb under wet conditions sub-silicic amphibole and pyroxenes are the near-liquidus phases in tholeiite and basaltic andesite compositions. Calcic plagioclase and garnet occur nearer the solidus. The calculated liquid fractionates follow the calc-alkaline trend and demonstrate that the calc-alkaline series may be derived by the partial melting of amphibolite at lower crustal depths under wet conditions , Or by the fractional crystallization of a hydrous basalt magma at similar depths.These experimental results support two complementary hypotheses for the derivation of the calc-alkaline igneous rock suite from the mantle by a two stage igneous process. In the first stage of both hypotheses large piles of basalt are extruded on the earth's surface. Subsequently this pile of basalt may, under dry conditions, transform to quartz eclogite, sink into the mantle and finally undergo partial melting at 100–150 kms depth. This partial melting gives rise to the calc-alkaline magma series leaving a residuum of clinopyroxene and garnet. Alternatively, if wet conditions prevail in the basalt pile and the geotherms remain high, partial melting of the basalt may take place near the base of the pile, at about 10 kb pressure . The liquids so formed constitute the calc-alkaline suite and the residuum consists of amphibole, pyroxenes and possibly minor garnet and calcic plagioclase. Both models may be directly linked to the hypothesis of sea-floor spreading.  相似文献   

3.
Late Pleistocene or Recent lavas from San Quintin, Baja California are basanitoids and alkali basalts. The surface quench temperatures of the lavas average 1 005° C with log =–11.4, as deduced from the groundmass Fe-Ti oxides. Spinel lherzolite xenoliths and megacrysts of augite and andesine have been found in lava flows and cinder deposits. Using analytical data on the rocks and minerals and simple thermodynamic expressions, the pressures and temperatures of equilibration of lavas and xenoliths, megacrysts and phenocrysts have been calculated. The lavas could have been in equilibrium with lherzolite at 1 330–1 410° C and 27.5–31.6 kb, the more silica-poor liquid having the higher values. The basanitoid could have equilibrated with the megacrysts at about 10.5 kb and with phenocrysts at about 1.4 kb and 1130° C. The variation in composition of the lavas may be explained by a rising zone of melting within the mantle, the most silica-poor liquid having the deepest source. The source of the San Quintin basalts is probably related to spreading of the ocean floor in the Gulf of California.  相似文献   

4.
The Lower Eocene lavas of northern Skye are preserved over anarea of approximately 1500 km2 in a shallow faulted oval basin.Seventy-four new major element chemical analyses have been madeof specimens showing minimal post-consolidation alteration.These demonstrate that the early volcanics vary from hypersthene-tonepheline-normative basalts; the former containing less TiO2and P2O5 but more K2O than the latter. The compositions of thesebasalts straddle the low-pressure thermal divide near the criticalplane of silica under-saturation, the normative ‘join’OI–Pl–Cpx; implying that their variation was causedby high-pressure, upper mantle processes. The unusual incompatibleelement pattern of the lavas suggests that a K-rich mantle phase,tentatively taken to be phlogopite, was involved in their genesis.At subvolcanic pressures the spectrum of basaltic magmas wassplit by the join olivine-plagioclase-augite, producing twodivergent trends; from alkali basalts, via relatively Si- andK-poor and Fe- and Ti-rich hawaiites and mugearites to benmoreite,and from hypersthene-normative basalts, via relatively Si- andK-rich and Fe- and Ti-poor intermediates to trachyte. One-atmospheremelting experiments on 21 lavas are used to supplement the chemicalinvestigation of these low-pressure trends. Two flows of aphyric, low-alkali tholeiitic basalt, with compositionsquite distinct from all other Skye lavas, have been discoveredinterleaved among the alkali-rich rocks near the top of thevolcanic pile, at present exposure level. The almost patternlesschemical variation of all the lavas with time suggests thatmagma chambers, as conventionally envisaged, did not exist beneaththe Skye volcanic field, but rather that fissure eruptions werefed from a sponge-like plexus of conduits and small reservoirs,within which magma, affected to varying extents by upper mantleprocesses, remained for varying periods, pursuing low-pressurefractionation trends. The chemistry of the main Skye basaltsand the low-alkali tholeiites, plus available data on otherpost-lava Skye basic igneous rocks, such as the Cuillin LayeredIntrusion, other gabbros in the central complexes, and late-stagealkali dolerite dykes, are all combined in an attempt to ascribethe variation of the basic magmas which approached or reachedthe surface of Skye to the growth, culmination, and waning stagesof a thermal event in the upper mantle beneath that area.  相似文献   

5.
Ignimbrites from the central North Island consist mainly of glass or its devitrified product (70–95%); their phenocryst mineralogy is varied and includes plag., hyp., ti-mag., ilm., aug., hblende, biot., san., qtz, ol., with accessory apatite, zircon and pyrrhotite. The Fe-Mg minerals can be used to divide the ignimbrites into four groups with hyp.+aug. reflecting high quench temperatures and biot.+hblende +hyp.+aug., low quench temperatures. Oxygen fugacities lie above the QMF buffer curve and even in ignimbrites with low crystal contents the solid phases apparently buffered fO2. Some ignimbrites contain the assemblage actinolite, gedrite, magnetite and hematite, reflecting post-eruption oxidation. The mineralogy also allows estimation of using pyrrhotite and thence , . The assemblage biotite-sanidine can be used to estimate and thence . Water fugacity is calculated in a variety of ways using both biotite and hornblende as well as the combining reaction . It is high and approaches P total in most ignimbrites (~4kb) but is lower in unwelded pumice breccias. Comparison of temperature estimates using mineral geothermometers for the various phenocryst phases suggests that the ignimbrite magmas showed temperature differences of 60–100 °C and pressure differences of several kilobars. Individual magma chambers therefore, would have extended over several kilometres vertically. The chemical potential of water may have been constant through the magma.  相似文献   

6.
Euhedral crystals of ulvöspinel are found in many of the native-iron-bearing xenoliths from the basalt of Bühl near Kassel (West Germany) and Ovifak on Disko Island (West Greenland). The typical assemblage of these xenoliths at both localities is: native Fe, troilite, cohenite, ulvöspinel, ilmenite, olivine, and plagioclase, as well as silicate glass containing droplets of former Fe and troilite melt. The ulvöspinel subsolidus textures and intergrowths also indicate identical cooling histories for the xenoliths in both cases. Ulvöspinel crystallized after the formation of iron, but still above the Fe-FeS eutectic at 988° C. A subsequent strong drop in oxygen fugacity revealed partial breakdown of ulvöspinel according to the reaction .Microprobe analyses of a Bühl xenolith indicate that ulvöspinel contains up to 4.7 w.t.% MnO, while olivine compositions correspond to Fa64–74Fo12–24Te12–15. The entire xenolith contains 1.9 w.t.% MnO. This fact, together with the geological evidence and the occurrence of corroded quartz relicts within some of the xenoliths provides clear evidence for reduction under near-surface conditions in a blast-furnace-like process. The reducing agent was coal from the Tertiary seams cut by the erupting basalt, while the xenolith source material most probably was spherosiderite, which is very common in the coals and would explain the high MnO content. Consequently, the presence of cohenite is not necessarily an indicator of high pressure.The analogies between the Bühl and Ovifak localities and their xenoliths strongly suggest a similar formation through near surface reduction and not derivation from the mantle.  相似文献   

7.
Quaternary lavas of the normal island-arc basalt—andesite—dacite association in the islands of Java and Bali range from those belonging to tholeiitic series over Benioff-zone depths of ~ 150 km to high-K calc-alkaline series over Benioff-zone depths of 250 km. More abundant and diverse calc-alkaline lavas are found over intermediate Benioff-zone depths. On average, basaltic lavas become slightly more alkaline (largely due to increased K contents) with increasing depth to the Benioff zone. Levels of incompatible minor and trace elements (K, Rb, Cs, Ba, Nb, U, Th, light REE) show a corresponding increase of almost an order of magnitude.Low average Mg-numbers (~ 0.52) and Ni and Cr abundances (15–25 and 35–60 ppm, respectively) of basaltic lavas suggest that few lavas representing primary mantle-derived magma compositions are present. Calculated primary basaltic magma compositions for most tholeiitic and calc-alkaline volcanic centres are olivine tholeiites with 15–30% ol. The single high-K calc-alkaline centre considered yielded transitional alkali olivine basalt—basanite primary magma compositions. These calculated magma compositions suggest that the percentage of mantle melting decreases with increasing depth to the Benioff zone (from >25 to <10%), while the corresponding depth of magma separation increases from ~ 30 to 60 km.Calculation of REE patterns for basaltic magmas on the basis of peridotitic mantle sources with spinel lherzolite, amphibole lherzolite or garnet lherzolite mineralogy, and model REE levels of twice chondritic abundances, indicates that change in the conditions of magma genesis alone cannot explain the observed change in light-REE abundances of basaltic lavas with increasing depth to the Benioff zone. Complementary calculations of the REE levels of mantle sources required to yield the average tholeiitic, calc-alkaline and high-K calc-alkaline basaltic magma indicate that light-REE abundances must increase from 2–3 to 7–8 times chondrites with increasing depth to the Benioff zone. The percentages of mantle melting favoured on REE evidence are lower than those indicated by major-element considerations.The observed variation in incompatible element geochemistry of mantle magma sources is thought to be related directly or indirectly to dehydration and partial-melting processes affecting subducted oceanic crust. The possible nature of this relationship is discussed.  相似文献   

8.
Trace element analyses of 1-atm and high-pressure experiments show that in komatiite and peridotite, the olivine (OL)/liquid (L) distribution coefficient for Al2O3 ( ) increases with pressure and temperature. Olivine in equilibrium with liquid accepts as much as 0.2 wt% Al2O3 in solution at 6 GPa. Convergence to equilibrium compositions at this high level is shown by cation diffusion of Al into synthetic forsterite crystals of low-Al contents in the presence of melt. Convergence to low-Al equilibrium compositions at lower P and T is shown by diffusion of Al out of synthetic forsterite with high initial Al content. Isobaric and isothermal experimental data subsets reveal that temperature and pressure variations both have real effects on . Variation in silicate melt composition has no detectable effect on within the limited range of experimentally investigated mixtures. Least-squares regression for 24 experiments, using komatiite and peridotite, performed at 1 atm to 6 GPa and 1300 to 1960°C, gives the best fit equation: Increase in with increasingly higher-pressure melting is consistent with incorporation of a spinel-like component of low molar volume into olivine, although other substitutions possibly involving more complex coupling cannot be ruled out. High P-T ultrabasic melting residues, if pristine, may be recognized by the high calculated from microprobe analyses of Al2O3 concentrations in residual olivines and estimated Al2O3 concentration in the last liquid removed. In general the low levels of Al in natural olivine from mantle xenoliths suggest that pristine residues are rarely recovered.  相似文献   

9.
Titanite and rutile are a common mineral pair in eclogites, and many equilibria involving these phases are potentially useful in estimating pressures of metamorphism. We have reversed one such reaction,
  相似文献   

10.
We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, \(D_{\text{Ni}}^{\text{ol/liq}}\). Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite–Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition (~12, ~15, and ~21 wt% MgO). Previously, we used a similar approach to show that \(D_{\text{Ni}}^{\text{ol/liq}}\) for a liquid with ~18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni–Mg exchange reaction, which yields \(\ln \left( {D_{\text{Ni}}^{\text{molar}} } \right) = \frac{{ -\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{RT} + \frac{{\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{R} - \ln \left( {\frac{{X_{\text{MgO}}^{\text{liq}} }}{{X_{{{\text{MgSi}}_{ 0. 5} {\text{O}}_{ 2} }}^{\text{ol}} }}} \right).\) Each subset of constant composition experiments displays roughly the same temperature dependence of \(D_{\text{Ni}}^{\text{ol/liq}}\) (i.e.,\(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\)) as previously reported for liquids with ~18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with ~18 wt% MgO in the silicate liquid) to the above expression gives \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 3641 ± 396 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 1.597 ± 0.229. Adding data from the literature yields \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 4505 ± 196 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for \(D_{\text{Ni}}^{\text{ol/liq}}\) applicable to a wide range of melt compositions. We use the results of our work to model the melting of peridotite beneath lithosphere of varying thickness and show that: (1) a positive correlation between NiO in magnesian olivine phenocrysts and lithospheric thickness is expected given a temperature-dependent \(D_{\text{Ni}}^{\text{ol/liq}} ,\) and (2) the magnitude of the slope for natural samples is consistent with our experimentally determined temperature dependence. Alternative processes to generate the positive correlation between NiO in magnesian olivines and lithospheric thickness, such as the melting of olivine-free pyroxenite, are possible, but they are not required to explain the observed correlation of NiO concentration in initially crystallizing olivine with lithospheric thickness.  相似文献   

11.
The crystallization of plagioclase-bearing assemblages in mantle rocks is witness of mantle exhumation at shallow depth. Previous experimental works on peridotites have found systematic compositional variations in coexisting minerals at decreasing pressure within the plagioclase stability field. In this experimental study we present new constraints on the stability of plagioclase as a function of different Na2O/CaO bulk ratios, and we present a new geobarometer for mantle rocks. Experiments have been performed in a single-stage piston cylinder at 5–10 kbar, 1050–1150?°C at nominally anhydrous conditions using seeded gels of peridotite compositions (Na2O/CaO?=?0.08–0.13; X Cr = Cr/(Cr?+?Al)?=?0.07–0.10) as starting materials. As expected, the increase of the bulk Na2O/CaO ratio extends the plagioclase stability to higher pressure; in the studied high-Na fertile lherzolite (HNa-FLZ), the plagioclase-spinel transition occurs at 1100?°C between 9 and 10 kbar; in a fertile lherzolite (FLZ) with Na2O/CaO?=?0.08, it occurs between 8 and 9 kbar at 1100?°C. This study provides, together with previous experimental results, a consistent database, covering a wide range of PT conditions (3–9 kbar, 1000–1150?°C) and variable bulk compositions to be used to define and calibrate a geobarometer for plagioclase-bearing mantle rocks. The pressure sensitive equilibrium:
$$\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{4}}}^{{\text{Ol}}}}\limits_{{\text{Forsterite}}} +\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{8}}}^{{\text{Pl}}}}\limits_{{\text{Anorthite}}~} =\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{6}}}^{{\text{Cpx}}}}\limits_{{\text{Ca-Tschermak}}} +{\text{ }}\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{6}}}^{{\text{Opx}}}}\limits_{{\text{Enstatite}}} ,$$
has been empirically calibrated by least squares regression analysis of experimental data combined with Monte Carlo simulation. The result of the fit gives the following equation:
$$P=7.2( \pm 2.9)+0.0078( \pm 0.0021)T{\text{ }}+0.0022( \pm 0.0001)T{\text{ }}\ln K,$$
$${R^2}=0.93,$$
where P is expressed in kbar and T in kelvin. K is the equilibrium constant K?=?a CaTs × a en/a an × a fo, where a CaTs, a en, a an and a fo are the activities of Ca-Tschermak in clinopyroxene, enstatite in orthopyroxene, anorthite in plagioclase and forsterite in olivine. The proposed geobarometer for plagioclase peridotites, coupled to detailed microstructural and mineral chemistry investigations, represents a valuable tool to track the exhumation of the lithospheric mantle at extensional environments.
  相似文献   

12.
Microphenocrystic pyrrhotites were observed in the glassy groundmass of two dacite rocks from Satsuma-Iwojima, southwest Kyushu, Japan. It suggests that the dacite magma was saturated with respect to pyrrhotite at the time of eruption, and thus the sulfur contents in the groundmass can be taken as the solubility of sulfur in the dacite magma. The solubility of sulfur in the dacite rocks thus calculated is 65 to 72 ppm sulfur at the estimated conditions of T=900±50°C, and atm.  相似文献   

13.
The proportions of species in a C-O-H-S fluid in equilibrium with graphite, pyrite and pyrrhotite were calculated for a range of pressure, temperature and conditions, using the equilibrium constants and mass balance method, for ideal and non-ideal mixing in the fluid. Under typical metamorphic conditions, H2O, CO2, CH4 and H2S are the principal fluid species with H2S favored by higher temperatures, lower pressures and lower conditions. The dominance of H2S in the fluid at high temperatures leads to values of becoming significantly less than 1, and causes hydrous minerals to dehydrate at lower temperatures than the case when . The production of H2S-bearing fluids provides a mechanism for the selective transfer of sulfur from a graphite-pyrite-pyrrhotite bearing pelite into a pluton via a fluid phase, without requiring wholesale melting and assimilation of rocks. Such a process is feasible if a magma is intruded by stoping, which allows a significant volume of pelite country rock to be raised rapidly to temperatures approaching that of the magma. H2S-bearing fluids produced from graphite-pyrite-pyrrhotite pelites (due either to magmatic intrusion or regional metamorphism) may also mobilize ore-forming metals as sulfide complexes.  相似文献   

14.
Because of the controversy over the nature of the parental magma for MORBs, experiments have been performed at 10 kbar in order to assess the effect of modal variations in the source peridotite and the effect of temperature (degree of partial melting) on the composition of partial melts. A peridotite-basalt sandwich method was used and a run duration of 72 h was found to be necessary to equilibrate basalt and peridotite. A range of melt compositions, coexisting with olivine, orthopyroxene, clinopyroxene and spinel, was produced at 10 kbar, indicating that partial melting of peridotite cannot be regarded as isobarically pseudoinvariant. On projections in the normative tetrahedron OL-PL-CPX-SIL, the liquids obtained in this study define an area, rather than a point or narrow band. The compositions of some liquids in this study are similar to magnesian MORBs (MgO>9.5 wt%), providing evidence in support of the derivation of magnesian MORBs by partial melting of mantle lherzolite at about 10 kbar.  相似文献   

15.
Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.  相似文献   

16.
Near-liquidus melting experiments were performed on a high-K latite at fO2's ranging from iron-wustite-graphite (IWG) to nickel-nickel oxide (NNO) in the presence of a C-O-H fluid phase. Clinopyroxene is a liquidus phase under all conditions. At IWG , the liquidus at 10 kb is about 1,150° C but is depressed to 1,025° C at NNO and . Phlogopite and apatite are near-liquidus phases, with apatite crystallizing first at pressures below 10 kb. Phlogopite is a liquidus phase only at NNO and high . Under all conditions the high-K latites show a large crystallization interval with phlogopite becoming the dominant crystalline phase with decreasing temperature. Increasing fO2 affects phlogopite crystallization but the liquidus temperature is essentially a function of . The chemical compositions of the near-liquidus phases support formation of the high-K latites under oxidizing conditions (NNO or higher) and high . It is concluded from the temperature of the H2O-saturated liquidus at 10 kb, the groundmass: crystal ratio and presence of chilled latite margins around some xenoliths that the Camp Creek high-K latite magma passed thru the lower crust at temperatures of 1,000° C or more.  相似文献   

17.
Three independent Pb isotope homogenizing processes operating on large volumes of rock material during limited intervals in the Phanerozoic have been used to define a unique evolutionary curve for rock and ore lead isotopic compositions of the southern Massif Central, France. The model is
  相似文献   

18.
Near-liquidus phase relationships of a spinel lherzolite-bearing olivine melilitite from Tasmania were investigated over a P, T range with varying , , and . At 30 kb under MH-buffered conditions, systematic changes of liquidus phases occur with increasing ( = CO2/CO2 +H2O+olivine melilitite). Olivine is the liquidus phase in the presence of H2O alone and is joined by clinopyroxene at low . Increasing eliminates olivine and clinopyroxene becomes the only liquidus phase. Further addition of CO2 brings garnet+orthopyroxene onto the liquidus together with clinopyroxene, which disappears with even higher CO2. The same systematic changes appear to hold at higher and lower pressures also, only that the phase boundaries are shifted to different . The field with olivine- +clinopyroxene becomes stable to higher with lower pressure and approaches most closely the field with garnet+orthopyroxene+clinopyroxene at about 27 kb, 1160 °C, 0.08 and 0.2 (i.e., 6–7% CO2+ 7–8% H2O). Olivine does not coexist with garnet+orthopyroxene+clinopyroxene under these MH-buffered conditions. Lower oxygen fugacities do not increase the stability of olivine to higher and do not change the phase relationships and liquidus temperatures drastically. Thus, it is inferred that olivine melilitite 2927 originates as a 5% melt (inferred from K2 O and P2O5 content) from a pyrolite source at about 27kb, 1160 dg with about 6–7% CO2 and 7–8% H2O dissolved in the melt. The highly undersaturated character of the melt and the inability to find olivine together with garnet and orthopyroxene on the liquidus (in spite of the close approach of the respective liquidus fields) can be explained by reaction relationships of olivine and clinopyroxene with orthopyroxene, garnet and melt in the presence of CO2.  相似文献   

19.
Oshima-shima volcano is an endmember of a geochemical variation which is characterized by a low FeO content toward the back-arc side across the NE Japan arc. Analyses of the basalts show primitive characteristics. Variation trends of the chemical compositions indicate initial olivine control then olivine+clinopyroxene control from a picritic to a differentiated basalt. The more magnesian basalts have the more magnesian olivine phenocrysts. The most magnesian (MgO 15%) of all rock samples, contains olivine phenocrysts with a composition of Fo 93.7 as a liquidus phase and is considered a product of a mantle-derived magma. The possible range in FeO and MgO content of source mantle for the Oshima-shima magma can be demonstrated. Ichinomegata lherzolite inclusions, also from the back-arc side of NE Japan, is unlikely to be a candidate for the source mantle for high FeO. The upper mantle beneath the back-arc side is considered to be compositionally zoned; a Fe-rich mantle (Ichinomegata lherzolite) at shallower place and a Fe-poor mantle (the source mantle for back-arc side volcanoes).  相似文献   

20.
Under hydrous conditions the stability field of the assemblage Mg-cordierite+K feldspar+quartz is limited on its low-temperature side by the breakdown of cordierite+K feldspar into muscovite, phlogopite and quartz, whereas the high-temperature limit is given by eutectic melting. The compatibility field of the assemblage ranges from 530° C to 745° C at 1 kbar , from 635 to 725° C at 3 kbars , from 695 to 725° C at 5 kbars and terminates at 5.5 kbars . Most components not considered in the model system will tend to restrict this field even more. However, the condition < P total will increase the range of stable coexistence drastically, making the assemblage common at elevated temperatures from contact metamorphic rocks up to intermediate pressure granulites of appropriate bulk composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号