首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glacial changes in the Gangdisê Mountains from 1970 to 2016   总被引:1,自引:1,他引:0  
Liu  Juan  Yao  Xiaojun  Liu  Shiyin  Guo  Wanqin  Xu  Junli 《地理学报(英文版)》2020,30(1):131-144
Based on the revised First Chinese Glacier Inventory(FCGI), the Second Chinese Glacier Inventory(SCGI) and Landsat OLI images for 2015–2016, we analyzed the spatial-temporal variation characteristics of glaciers in the Gangdisê Mountains from 1970 to 2016. The results showed that there were 3953 glaciers with a total area of 1306.45 km~2 and ice volume of ~58.16 km~3 in the Gangdisê Mountains in 2015–2016. Glaciers with sizes of 0.1–5 km~2 and 0.5 km~2 accounted for the largest area and the most amounts of glaciers in the Gangdisê Mountains, respectively. Over the past five decades, the area of glaciers in the Gangdisê Mountains decreased by 854.05 km~2(-1.09%·a~(-1)), accounting for 39.53% of the total glacier area in 1970. The increase in temperature during the ablation period was the most important cause for glacier retreat. Compared to other mountains in western China, the Gangdisê Mountains have experienced the strongest glacial retreat, and the rate of recession has increased in recent years. The decrease of glacier area was mainly concentrated at elevations of 5600–6100 m, and no change in glacier area was observed at elevations above 6500 m. The number and area of glaciers decreased in all orientations in the Gangdisê Mountains except for south-and southeast-oriented glaciers. Among them, north-oriented glaciers suffered the largest loss of glacier area, while glacier retreat saw the fastest in northwest-oriented glaciers. The rate of glacier retreat increased from west to east in the Gangdisê Mountains. The relative rate of glacier area change was the highest in the eastern section of the Gangdisê Mountains(-1.72%·a~(-1)), followed by the middle section(-1.67%·a~(-1)) and the western section(–0.83%·a~(-1)).  相似文献   

2.
Glaciers and snow are major constituents of solid water bodies in mountains; they can regulate the stability of local water sources. However, they are strongly affected by climate change. This study focused on the Tianshan Mountains, using glacier and snow datasets to analyse variations in glaciers, snow, water storage, and runoff. Three typical river basins(Aksu, Kaidou, and Urumqi Rivers) were selected to interpret the impacts of glacier and snow changes on regional water resources in the Tianshan Mountains. The results exhibited a nonlinear functional relationship between glacial retreat rate and area, demonstrating that small glacial retreat is more sensitive under climate change. Further, the glacial retreat rate at the low-middle elevation zone was seen to be faster than that at the high elevation zone. The regional average terrestrial water storage(TWS) decrease rate in the Tianshan Mountains was –0.7±1.53 cm/a during 2003–2015. The highest TWS deficit region was located in the central part of the Tianshan Mountains, which was closely related to sharp glacial retreats. The increases in glacier and snow meltwater led to an increase in runoff in the three typical river basins, especially that of the Aksu River(0.4×10~8 m~3/a). The decreasing and thinning of areas, and increasing equilibrium line altitude(ELV) of glaciers have been the major causes for the decrease in runoff in the three river basins since the mid-1990 s. Therefore, the results reveal the mechanisms causing the impacts of glaciers and snow reduction in mountains on regional water resources under climate change, and provide a reference for water resources management in the mountainous river basins.  相似文献   

3.
The Heihe River Basin is the second largest inland river basin in Northwest China and it is also a hotspot in arid hydrology, water resources and other aspects of researches in cold regions. In addition, the Heihe River Basin has complete landscape, moderate watershed size, and typical social ecological environmental problems. So far, there has been no detailed assessment of glaciers change information of the whole river basin. 1:50,000 topographic map data, Landsat TM/ETM+ remote sensing images and digital elevation model data were used in this research. Through integrated computer automatic interpretation and visual interpretation methods, the object-oriented image feature extraction method was applied to extract glacier outline information. Glaciers change data were derived from analysis, and the glacier variation and its response to climate change in the period 1956/1963–2007/ 2011 were also analyzed. The results show that:(1) In the period 1956/1963–2007/2011, the Heihe River Basin's glaciers had an evident retreat trend, the total area of glaciers decreased from 361.69 km2 to 231.17 km~2; shrinking at a rate of 36.08%, with average single glacier area decrease 0.14 km~2; the total number of the glaciers decreased from 967 to 800.(2) Glaciers in this basin are mainly distributed at elevations of 4300–4400 m, 4400–4500 m and 4500–4600 m; and there are significant regional differences in glaciers distribution and glaciers change.(3) Compared with other western mountain glaciers, glaciers retreat in the Heihe River Basin has a higher rate.(4) Analysis of the six meteorological stations' annual average temperature and precipitation data from 1960 to 2010 suggests that the mean annual temperature increased significantly and the annual precipitation also showed an increasing trend. It is concluded that glacier shrinkage is closely related with temperature rising, besides, glacier melting caused by rising temperatures greater than glacier mass supply by increased precipitation to some extent.  相似文献   

4.
Glaciers in the upstream Manla Reservoir in the Nianchu River Basin are crucial for agriculture and hydropower in the "One River and Two Streams" area. Rising temperature has caused widespread retreat of glaciers on the Tibetan Plateau during the last few decades. In this study, glacier variations under climate change in the Nianchu River Basin are quantified and their influence are evaluated by analyzing 1980 aerial topographic maps, 1990 Landsat TM, 2000 Landsat ETM+, and 2005 CBERS remotely sensed images. It is found that from 1980 to 2005, the debris-free glacier area shrank by 7.3% (13.42 km2). Glacier shrinkage will have a positive effect on agriculture, hydropower and eco-environment in the near future. However, because the large number of small glaciers (<2 km2) will rapidly retreat and disappear in future years, melt water will decrease, ultimately resulting in a long term water shortage. Glacial lakes exhibited rapid expansion due to accelerating glacier retreat during 1980–2005, increasing the possibility of glacial lake outburst floods.  相似文献   

5.
Glaciers are the most important fresh-water resources in arid and semi-arid regions of western China. According to the Second Chinese Glacier Inventory(SCGI), primarily compiled from Landsat TM/ETM+ images, the Qilian Mountains had 2684 glaciers covering an area of 1597.81±70.30 km~2 and an ice volume of ~84.48 km~3 from 2005 to 2010. While most glaciers are small(85.66% are 1.0 km~2), some larger ones(12.74% in the range 1.0–5.0 km~2) cover 42.44% of the total glacier area. The Laohugou Glacier No.12(20.42 km~2) located on the north slope of the Daxue Range is the only glacier 20 km~2 in the Qilian Mountains. Median glacier elevation was 4972.7 m and gradually increased from east to west. Glaciers in the Qilian Mountains are distributed in Gansu and Qinghai provinces, which have 1492 glaciers(760.96 km~2) and 1192 glaciers(836.85 km~2), respectively. The Shule River basin contains the most glaciers in both area and volume. However, the Heihe River, the second largest inland river in China, has the minimum average glacier area. A comparison of glaciers from the SCGI and revised glacier inventory based on topographic maps and aerial photos taken from 1956 to 1983 indicate that all glaciers have receded, which is consistent with other mountain and plateau areas in western China. In the past half-century, the area and volume of glaciers decreased by 420.81 km~2(–20.88%) and 21.63 km~3(–20.26%), respectively. Glaciers with areas 1.0 km~2 decreased the most in number and area recession. Due to glacier shrinkage, glaciers below 4000 m completely disappeared. Glacier changes in the Qilian Mountains presented a clear longitudinal zonality, i.e., the glaciers rapidly shrank in the east but slowly in the central-west. The primary cause of glacier recession was warming temperatures, which was slightly mitigated with increased precipitation.  相似文献   

6.
1960年以来中国天山冰川面积及气候变化   总被引:11,自引:3,他引:8  
Based on the statistics of glacier area variation measured in the Chinese Tianshan Mountains since 1960,the response of glacier area variation to climate change is discussed systematically.As a result,the total area of the glaciers has been reduced by 11.5% in the past 50 years,which is a weighted percentage according to the glacier area variations of 10 drainage basins separated by the Glacier Inventory of China (GIC).The annual percentage of area changes (APAC) of glaciers in the Chinese Tianshan Mountains is 0.31% after the standardization of the study period.The APAC varies widely for different drainage basins,but the glaciers are in a state of rapid retreat,generally.According to the 14 meteorological sta-tions in the Chinese Tianshan Mountains,both the temperature and precipitation display a marked increasing tendency from 1960 to 2009 at a rate of 0.34℃·(10a)-1 and 11 mm·(10a) -1,respectively.The temperature in the dry seasons (from November to March) increases rapidly at a rate of 0.46℃·(10a)-1,but the precipitation grows slowly at 2.3 mm·(10a)-1.While the temperature in the wet seasons (from April to October) grows at a rate of 0.25℃·(10a)-1,but the precipitation increases at 8.7 mm·(10a)-1.The annual and seasonal climatic trends ac-celerate the retreat of glaciers.  相似文献   

7.
The Heihe River Basin is the second largest inland river basin in Northwest China and it is also a hotspot in arid hydrology, water resources and other aspects of researches in cold regions. In addition, the Heihe River Basin has complete landscape, moderate watershed size, and typical social ecological environmental problems. So far, there has been no detailed assessment of glaciers change information of the whole river basin. 1:50,000 topographic map data, Landsat TM/ETM+ remote sensing images and digital elevation model data were used in this research. Through integrated computer automatic interpretation and visual interpretation methods, the object-oriented image feature extraction method was applied to extract glacier outline information. Glaciers change data were derived from analysis, and the glacier variation and its response to climate change in the period 1956/1963–2007/ 2011 were also analyzed. The results show that:(1) In the period 1956/1963–2007/2011, the Heihe River Basin's glaciers had an evident retreat trend, the total area of glaciers decreased from 361.69 km2 to 231.17 km~2; shrinking at a rate of 36.08%, with average single glacier area decrease 0.14 km~2; the total number of the glaciers decreased from 967 to 800.(2) Glaciers in this basin are mainly distributed at elevations of 4300–4400 m, 4400–4500 m and 4500–4600 m; and there are significant regional differences in glaciers distribution and glaciers change.(3) Compared with other western mountain glaciers, glaciers retreat in the Heihe River Basin has a higher rate.(4) Analysis of the six meteorological stations' annual average temperature and precipitation data from 1960 to 2010 suggests that the mean annual temperature increased significantly and the annual precipitation also showed an increasing trend. It is concluded that glacier shrinkage is closely related with temperature rising, besides, glacier melting caused by rising temperatures greater than glacier mass supply by increased precipitation to  相似文献   

8.
In this study, we analyzed glacier changes in the Aksu River Basin during the period 1975–2016, based on Landsat MSS/TM/ETM+/OLI imagery analysis and the Chinese Glacier Inventory(CGI). The results showed that the total number, area, and volume of the studied glaciers in the Aksu River Basin decreased by 202(7.65%), 965.7 km~2(25.88%), and 74.85–78.52 km~3(23.72%–24.3%), respectively. The rate of glacier retreat in the basin was slower in the north, northwest and west, but reached the highest in the east(measuring 0.86% yr~(-1)). Furthermore, there were significant regional differences in the distribution and change of glaciers, the Kumalak River Basin had the largest glacier number and area, about 63.15% and 76.47% of the studied basin, and the rate of glacier retreat in the Kumalak River Basin was 0.65% yr~(-1), it was higher than the Toxkan River Basin which reached 0.57% yr~(-1). We found the shrinkage rate of glacier for different periods in the past 41 years, during 1975–1990 the glaciers showed the greatest retreat, while the rate of glacier area retreat slowed down significantly from 1990 to 2000. In recent 16 years since 2000, the rate of glacier retreat in the Toxkan River Basin was higher compared with 1990–2000. The RGI50~(-1)3.04920 glacier of Kumalak River Basin had been in a state of retreat since 1990. Over the past 41 years, the temperature and precipitation in the Aksu River Basin increased obviously, and the warming temperatures were clearly the main reason for glacier retreat in the region, while the increased precipitation in the mountain area may have a direct relation with the retreating rate of glaciers.  相似文献   

9.
The Qinling Mountains, located at the junction of warm temperate and subtropical zones, serve as the boundary between north and south China. Exploring the sensitivity of the response of vegetation there to hydrothermal dynamics elucidates the dynamics and mechanisms of the main vegetation types in the context of changes in temperature and moisture. Importance should be attached to changes in vegetation in different climate zones. To reveal the sensitivity and areal differentiation of vegetation responses to hydrothermal dynamics, the spatio-temporal variation characteristics of the normalized vegetation index(NDVI) and the standardized precipitation evapotranspiration index(SPEI) on the northern and southern slopes of the Qinling Mountains from 2000 to 2018 are explored using the meteorological data of 32 meteorological stations and the MODIS NDVI datasets. The results show that: 1) The overall vegetation coverage of the Qinling Mountains improved significantly from 2000 to 2018. The NDVI rise rate and area ratio on the southern slope were higher than those on the northern slope, and the vegetation on the southern slope improved more than that on the northern slope. The Qinling Mountains showed an insignificant humidification trend. The humidification rate and humidification area of the northern slope were greater than those on the southern slope. 2) Vegetation on the northern slope of the Qinling Mountains was more sensitive to hydrothermal dynamics than that on the southern slope. Vegetation was most sensitive to hydrothermal dynamics from March to June on the northern slope, and from March to May(spring) on the southern slope. The vegetation on the northern and southern slopes was mainly affected by hydrothermal dynamics on a scale of 3–7 months, responding weakly to hydrothermal dynamics on a scale of 11–12 months. 3) Some 90.34% of NDVI and SPEI was positively correlated in the Qinling Mountains. Spring humidification in most parts of the study area promoted the growth of vegetation all the year round. The sensitivity of vegetation responses to hydrothermal dynamics with increasing altitude increased first and then decreased. Elevations of 800 to 1200 m were the most sensitive range for vegetation response to hydrothermal dynamics. The sensitivity of the vegetation response at elevations of 1200–3000 m decreased with increasing altitude. As regards to vegetation type, grass was most sensitive to hydrothermal dynamics on both the northern and southern slopes of the Qinling Mountains; but most other vegetation types on the northern slope were more sensitive to hydrothermal dynamics than those on the southern slope.  相似文献   

10.
Mountain glaciers, which perform a unique and irreplaceable ecological service, provide the material basis and characteristic cultural foundation of the ecological environment and sustainable socio-economic development in arid areas. However, few studies have estimated the service value of glaciers in regulating ecological environment and providing human welfare. According to the statistics of the First and Second Chinese Glacier Inventory(FCGI/SCGI), this study analyzed the variations in glacier area and ice volume in the Tianshan Mountains in China and modeled the ecosystem service function of mountain glaciers. The service value per unit area and equivalent factor methods were combined to determine the annual value of the ecological service provided by glaciers in the study area. The results show that:(1) In the period 1970–2010, the glacier area decreased by 1274 km~2(the ratio of area shrinkage was 13.9%) and the annual average decrease in ice volume was 4.08′10~9 m~3. The increase in glacier area at high altitudes( 5200 m) may be due to the fact that glacier accumulation caused by increasing precipitation is greater than glacier melting caused by rising temperatures.(2) The annual value of the ecological service provided by glaciers in the study area is 60.2 billion yuan. The values of climate regulation, hydrological regulation, and freshwater resource supply account for 66.4%, 21.6%, and 9.3% of the total value respectively. The annual value of the ecological service provided by hydroelectric power is 350 million yuan.(3) From a comparative analysis of the glaciers, forest, grassland and wetland ecosystems, the supply of freshwater resources/physical production and ecological regulation represent the main contributions of the four types of system, and the ecosystem service value of glaciers per unit area is higher than that of other types of ecosystem. This research will improve the understanding of the impact of glaciers on human welfare and maintenance of the ecological environment and will promote the ecological security of the cryosphere, environmental protection, and the sustainable use of resources.  相似文献   

11.
近40年天山冰川变化的遥感监测   总被引:3,自引:0,他引:3  
Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.  相似文献   

12.
Glaciers are a reliable freshwater resource in arid regions of West China and the vulnerability of its changes is closely related to regional ecosystem services and economic sustainable development. Here, we took the Qilian Mountains as an example and analyzed the spatiotemporal characteristics of glacier changes from 1998 to 2018, based on remote sensing images and the Second Chinese Glacier Inventory. We estimated the basic organizational framework and evaluation index system of glacier change vulnerability from exposure, sensitivity and adaptability, which covered the factors of physical geography, population status and socio-economic level. We analyzed the spatial and temporal evolutions of glacier change vulnerability by using the vulnerability evaluation model. Our results suggested that:(1) Glacier area and volume decreased by 71.12±98.98 km2 and 5.59±4.41 km3, respectively, over the recent two decades, which mainly occurred at the altitude below 4800 m, with an area shrinking rate of 2.5%. In addition, glaciers in the northern aspect(northwest, north and northeast) had the largest area reduction. Different counties exhibited remarkable discrepancies in glacier area reduction, Tianjuan and Minle presented the maximum and minimum decrease, respectively.(2) Glacier change vulnerability level showed a decreasing trend in space from the central to the northwestern and southeastern regions with remarkable differences. Vulnerability level had increased significantly over time and was mainly concentrated in moderate, high and extreme levels with typical characteristics of phases and regional complexity. Our study can not only help to understand and master the impacts of recent glacier changes on natural and social aspects but also be conducive to evaluate the influences of glacier retreat on socio-economic developments in the future, thus providing references for formulating relevant countermeasures to achieve regional sustainable development.  相似文献   

13.
Based on various data,it can be concluded that eight monsoonal temperate glaciers in China were in stationary or ad-vancing between 1900s~1930s and 1960s~1980s,and were in retreating during 1930s~1960s and 1980s~present under the background of climate warming.The total glacier area has reduced by 3.11 km2 with a mean front altitude rise of 3.2 m/yr and 4 glaciers have disappeared in Mt.Yulong during 1957~1999.Mass balance records indicated that glaciers had suf-fered a constant mass loss of snow and ice during the last several decades,and the accumulated mass balance in Hailuogou basin in Mt.Gongga was 10.83 m water equivalent in the past 45 years with a annual mean value of-0.24 m,and the value at Baishui glacier No.1 was-11.38 m water equivalent in the past 52 years with-0.22 m/yr.The inverse variation between mass balance and temperature in China and the Northern Hemisphere reflected that climate warming is mainly corresponding to constant ice and snow mass loss in the past 50 years.The change of the glaciers’ surface mor-phology has occurred since the 1980s,such as enlargement of glacier-lake and ice falls,resulted from the accelrative cli-mate warming.  相似文献   

14.
The study employs slope,aspect,relief degree of land surface,land use,vegetation index,hydrology and climate,as evaluation indexes to set up the Human Settlements Environmental Index(HEI) model to evaluate the environmental suitability for human settlements in the Shiyang River Basin.By using GIS spatial analysis technology,such as spatial overlay analysis,buffer analysis and density analysis,the environmental suitability of the human settlement spatial situation and spatial pattern are established to analyze their spatial distribution.The results show that the index of suitability for human settlements in the Shiyang River Basin is between 17.13 and 84.32.In general,suitability for human settlements decreases from the southwest to the northeast.Seen from an area pattern,the suitable region is mainly distributed in the Minqin oasis,Wuwei oasis and Changning basin,which are about 1080.01 km 2 and account for 2.59% of the total area.Rather and comparatively suitable region is mainly distributed around the counties of Gulang,Yongchang and north of Tianzhu,which is about 1100.30 km 2.The common suitable region is mainly distributed outside the counties of Yongchang,Jinchuan and most parts of Minqin County,which are about 23328.04 km 2,accounting for 56.08% of the total area.The unsuitable region is mainly distributed upstream and to the north of the river,which is about 9937.60 km 2,accounting for 23.89% of the total area.Meanwhile,the least suitable region is distributed around the Qilian Mountains,which are covered by snow and cold desert and lie in the intersecting area between the Tengger Desert and Badain Jaran Desert.The total area is about 6154.05 km 2,accounting for 14.79% of the total area.Suitable regions for human habitation are mainly distributed around rivers in the form of ribbons and batches,while others are scattered.The distribution pattern is identical to the residential spatial pattern.In addition,the relationships between HEI and other factors have been analyzed.There is a clear logarithmic correlation between the residential environment and population,that is,the correlation coefficient between the evaluation value and population density reaches 0.851.There is also a positive correlation between the residential environment and economy,which reaches an evaluation value of 0.845 between the residential environment and GDP.Results also show that the environment is out of bearing with the existing population in Shiyang River Basin.Spatial distribution of population is profoundly affected by severe environmental problems,such as the expanded deserts,the hilly terrain and the changing climate.Surface water shortage and slow economic growth are bottlenecks for suitable human settlement in the Shiyang River Basin.Combining these problems with planning for construction of new country and the exploitation of local land,some residential areas should be relocated to improve the residential environment.  相似文献   

15.
Moraine morphology is a valuable indicator of climate change. The glacial deposits of ten valleys were selected in the Parlung Zangbo River Basin, southeastern Tibetan Plateau, to study the glacial characteristics of the Last Glaciation and the climate change processes as revealed by these moraines. Investigation revealed that a huge moraine ridge was formed by ancient glacier in the Marine Isotope Stage 2 (MIS2), and this main moraine ridge indicates the longest sustained and stable climate. There are at least two smaller moraine ridges that are external extensions of or located at the bottom of the main moraine ridge, indicating that the climate of the glacial stage before MIS2 was severer but the duration was relatively shorter. This distribution may reflect the climate of MIS4 or MIS3b. The glacial valleys show multi-channel, small-scale moraine ridges between the contemporary glacial tongue and the main moraine ridge. Some of these multi-channel mo- raine ridges might be recessional moraine, indicating the significant glacial advance during the Younger Dryas or the Heinrich event. The moraine ridges of the Neoglaciation and the Little Ice Age are near the ends of the contemporary glaciers. Using high-precision system dating, we can fairly well reconstruct the pattern of climate change by studying the shape, extent, and scale characteristics of glacial deposits in southeastern Tibet. This is valuable research to understand the relationship between regional and global climate change.  相似文献   

16.
As one of the most critical impact factors of global change, historical land-use change is an indispensable input in climate and environment simulations. To better understand the cropland change in the Guanzhong area, gazetteers, statistics, and survey data were collected as data sources. Methods of registered tax-paying cropland data collection, selection of time points, and data interpolation and calibration were used to reconstruct changes in the cropland area. The cropland area data at the county level were allocated to 1 km×1 km grid cells. The total cropland area in the Guanzhong area was influenced by changes in population, wars, natural disasters, and land-use types, and it fluctuated from 1650 to 2016. From 1780 to 1830, the cropland expanded in the northern and western parts of Guanzhong area, and the cropland in the north of Qinling Mountains increased slightly. The spatial pattern of cropland reached its maximum range in 1980, and the cropland area declined in the whole study area, especially in the cities of Xi'an and Xianyang in 2016. The comparison between HYDE 3.2 and the data obtained in this study showed that the grid cells of HYDE 3.2 exhibit lower values of cropland area fractions in the Guanzhong Basin and higher values in high-altitude areas around the Guanzhong Basin as compared to those in this study.  相似文献   

17.
The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961-2000,accounts for only 0.13 percent of the Yangtze River’s total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region’s vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region’s glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961-2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June-August;the close correlation between June-August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961-2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.T  相似文献   

18.
From 2008 to 2010,a total of 15 snow pit samples were collected from 13 mountain glaciers in western China.In this study these samples are used to determine the spatial distribution of insoluble particle concentrations and dust deposition fluxes in western China.The results show that the mass concentrations of insoluble particles exhibit high spatial variation and strongly decrease(by a factor of approximately 50) from the north(Tienshan Mountains) to the south(Himalayas).However,the insoluble particles concentrations at the southeastern Tibetan Plateau(TP) sites are also high and approximately 30 times greater than those in the Himalayas.The spatial distribution of the dust flux is similar to that of the mass concentrations;however,the high dust deposition rate in the southeastern TP is very significant as a result of the extensive snow accumulation(precipitation) in this region.The average sizes of the insoluble particles at each site generally exhibit bimodal distributions with peaks at approximately 5 μm and 10 μm,which can be explained as resulting from dust emissions from regional and local sources,respectively.The enrichment factors for most of the elements measured in insoluble particles are less than 10 at all of the study sites,indicating primarily crustal sources.However,the sites located in the peripheral mountains of western China,such as the Tienshan Mountains and the Himalayas,are characterized by high levels of certain enrichment elements(e.g.,Cu,Zn,Cr,and V) indicative of sources related to the long-range transport of pollutants.  相似文献   

19.
Lu  Ying  Sun  Xuefeng  Xu  Xinmin  Liu  Yalin  Yi  Shuangwen 《地理学报(英文版)》2020,30(9):1436-1450
The Lanshanmiao(LSM) Palaeolithic site,which was excavated in the summer of 2017 by the Zhejiang Provincial Institute of Cultural Relics and Archaeology,is the only excavated palaeolithic site in central Zhejiang Province to date.Luminescence dating methods,including optical stimulated luminescence(OSL) and thermal transfer OSL(TT-OSL) for quartz and post-infrared(IR) stimulated luminescence(p IRIR290) for feldspar,were used to determine the age of the LSM site.The results showed that the LSM section developed before 145.5 ± 12.5 ka and ended after 17.1 ± 1.0 ka.The TT-OSL dating of samples NJU2576 and NJU2615 showed that palaeolithic artifact-bearing layer was between 150 and 100 ka in age.The age range of the palaeolithic layer mainly corresponded to the transition between Marine Isotope Stage(MIS) 6 and MIS5.Our study showed that hominins prominently occupied the LSM site during the glacial and interglacial stages,when it exhibited a floodplain environment.  相似文献   

20.
近30年中国东北地区玉米种植体系的时空动态分析(英文)   总被引:5,自引:1,他引:4  
Understanding crop patterns and their changes on regional scale is a critical requirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model(SPAM) has been developed for presenting spatio-temporal dynamics of maize cropping system in Northeast China during 1980–2010. The simulated results indicated that(1) maize sown area expanded northwards to 48°N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation(less than 100 m) as well as higher elevation(mainly distributed between 200 m and 350 m);(2) maize yield has been greatly promoted for most planted area of Northeast China, especially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region;(3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号