首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The chemical and thermal evolution of the baryon component in the gravitational field of low-mass primordial dark-matter halos during their virialization is studied. We consider low-mass halos to be those for which the characteristic baryon cooling time can appreciably exceed the comoving Hubble time, so that the cooling process can continue to the current epoch (z~0). The virialization process is described in two scenarios: “quiet” virialization, in which the establishment of the virial state is assumed to be homogeneous over the entire volume considered, and “violent” virialization, in which the establishment of the virial state is assumed to be realized via the action of shock waves. In this second case, the efficiency of the formation of molecular hydrogen grows substantially, and can reach H2/H~0.01 in some cases, which exceeds current estimates by at least an order of magnitude. This eases the condition for the birth of the first gravitationally bound objects with comparatively low masses (M ? 2 × 105M), possibly leading to an appreciable increase in the fraction of the mass contained in Population III objects, and also to a shift in the onset of the formation of the first stars toward higher redshifts.  相似文献   

2.
We have carried out a search for low-surface-brightness dwarf galaxies in the region of the Leo-I Group (M96) in images of the second Palomar Sky Survey. We found a total of 36 likely dwarf members of the group with typical magnitudes B t ~18m–19m in an area of sky covering 120 square degrees. Half of these galaxies are absent from known catalogs and lists of galaxies. The radial-velocity dispersion calculated for 19 galaxies is 130 km/s. The Leo-I Group has a mean distance from the Sun of 10.4 Mpc, a mean projected radius of 352 kpc, an integrated luminosity of 6.7 × 1010L, a virial mass-to-luminosity ratio of 107 M/L, and a mean crossing time of 2.7 Gyr. The group shows evidence for a radial segregation of the galaxies according to morphological type and luminosity, suggesting that the group is in a state of dynamical relaxation. The subsystem of bright galaxies in the Leo-I Group is smaller in size (250 kpc) and has a lower velocity dispersion (92 km/s), resulting in a lower virial mass-to-luminosity ratio (34 M/L), as is typical of the Local Group and other nearby groups of galaxies.  相似文献   

3.
Results of a detailed spectroscopic and photometric study of the four Shakhbazian compact galaxy groups ShCG 254, ShCG 257, ShCG 351, and ShCG 371 are reported. The redishifts of the member galaxies and radial velocity dispersions in these groups have been determined. The R surface brightness distributions of the member galaxies have been studied. The morphological types of the galaxies have been determined based on the profiles of the surface brightness, μ, as functions of the semimajor axis α1/4 or α. Some members of the groups are in the process of interacting. Curves of isophotal twisting and the Fourier parameter α4 have been plotted. The physical parameters of the groups (radial velocity dispersions, virial radii and masses, luminosities, mass-to-luminosity ratios, and crossing times) have also been derived. Original Russian Text ? H.M. Tovmassian, H. Tiersch, V.O. Chavushyan, G.H. Tovmassian, S.I. Neizvestnyĭ J.P. Torres-Papaqui, G.M. Rudnitskii. 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 11, pp. 963–975.  相似文献   

4.
We consider the main population of cosmic voids in a heirarchical clustering model. Based on the Press-Schechter formalism modified for regions in the Universe with reduced or enhanced matter densities, we construct the mass functions for gravitationally bound objects of dark matter occupying voids or superclusters. We show that the halo mass functions in voids and superclusters differ substantially. In particular, the spatial density of massive (M ~ 1012 M ) halos is appreciably lower in voids than in superclusters, with the difference in the mass functions being greater for larger masses. According to our computations, an appreciable fraction of the mass of matter in voids should be preserved to the present epoch in the form of primordial gravitationally bound objects (POs) with modest masses (to 10% for M PO < 109 M ) keeping baryons. These primordial objects represent “primary blocks” in the heirarchical clustering model. We argue that the oldest globular clusters in the central regions of massive galaxies are the stellar remnants of these primordial objects: they can form in molecular clouds in these objects, only later being captured in the central regions of massive galaxies in the process of gravitational clustering. Primordial objects in voids can be observed as weak dwarf galaxies or Lyα absorption systems.  相似文献   

5.
Observational data on the evolution of quasars and galaxies of various morphological types and numerical simulations carried out by various groups are used to argue that low-redshift (z < 0.5) quasars of types I and II, identified with massive elliptical and spiral galaxies with classical bulges, cannot be undergoing a single, late phase of activity; i.e., their activity cannot be “primordial,” and must have “flared up” at multiple times in the past. This means that their appearance at low z is associated with recurrence of their activity—i.e., with major mergers of gas-rich galaxies (so-called wet major mergers)—since their lifetimes in the active phase do not exceed a few times 107 yrs. Only objects we have referred to earlier as AGN III, which are associated with the nuclei of isolated, late-type spiral galaxies with low-mass, rapidly-rotating “pseudobulges,” could represent primordial AGNs at low z. The black holes in such galaxies have masses M BH < 107 M , and the peculiarities of their nuclear spectra suggest that they may have very high specific rotational angular momenta per unit mass. Type I narrow-line (widths less than 2000 km/s) Seyfert galaxies (NLSyIs) with pseudobulges and black-hole masses M BH < 107 M may be characteristic representatives of the AGN III population. Since NLSyI galaxies have pseudobulges while Type I broad-line Seyfert galaxies have classical bulges, these two types of galaxies cannot represent different evolutionary stages of a single type of object. It is possible that the precursors of NLSyIs are “Population A” quasars.  相似文献   

6.
The conditions required for the expulsion of dust grains from primordial galaxies (dark-matter halos) are considered. The initial configuration is taken to be a dark-matter halo with the profile of a modified isothermal sphere; the baryons are taken to be in equilibrium with the corresponding virial temperature. The baryon density profile is calculated assuming hydrostatic equilibrium. A star-formation rate corresponding to a star-forming efficiency of 10% is assumed. The dust is transported from the galaxy by the radiation of stars concentrated in the central regions. Due to friction via collisions with gas in central regions, a fairly high luminosity is required in order for the radiation pressure to be strong enough to expel dust from the galaxy—the ratio of the luminosity to the total mass of the galaxy can reach unity.  相似文献   

7.
The ejection of stars from spheroidal and disk dwarf galaxies resulting from the decay of OB associations is studied. This has substantial observational consequences for disk galaxies with escape velocities up to 20 km/s, or dynamical masses up to 108 M . The ejection of stars can (i) reduce the abundances of the products of Type Ia supernovae and, to a lesser degree, Type II supernovae, in disk stars, (ii) chemically enrich the galactic halo and intergalactic medium, (iii) lead to the loss of 50% of the stellar mass in galaxies with masses ∼107 M and the loss of all stars in systems with masses ≲105 M , (iv) increase the mass-to-luminosity ratio of the galaxy.  相似文献   

8.
The relationship between the masses of the central, supermassive black holes (M bh) and of the nuclear star clusters (M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar populationM *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. ThemassM nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher massesM bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6–0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106?107 M (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.  相似文献   

9.
The relationship between the masses and metallicities of galaxies could be non-monotonic, due to the outflow of matter in these systems. It is shown using a simple, one-zone, chemical-dynamicalmodel that the metallicity should be a non-monotonic function of the mass for spheroidal dwarf galaxies with low masses of M ≤ 108 M , and a monotonically growing function for galaxies with higher masses. This is consistent with observations.  相似文献   

10.
A model for the formation of supermassive black holes at the center of a cluster of primordial black holes is developed. It is assumed that ~10?3 of the mass of the Universe consists of compact clusters of primordial black holes that arose as a result of phase transitions in the early Universe. These clusters also serve as centers for the condensation of dark matter. The formation of protogalaxies with masses of the order of 2 × 108 M at redshift z = 15 containing clusters of black holes is investigated. The nuclei of these protogalaxies contain central black holes with masses ~105 M , and the protogalaxies themselves resemble dwarf spherical galaxies with their maximum density at their centers. Subsequent merging of these induced protogalaxies with ordinary halos of dark matter leads to the standard picture for the formation of the large-scale structure of the Universe. The merging of the primordial black holes leads to the formation of supermassive black holes in galactic nuclei and produces the observed correlation between the mass of the central black hole and the bulge velocity dispersion.  相似文献   

11.
High-accuracy absolute proper motions, radial velocities, and distances have now been measured for a number of dwarf-galaxy companions of the Milky Way, making it possible to study their 3D dynamics. Galactic orbits for 11 such galaxies (Fornax, Sagittarius, Ursa Minor, LMC, SMC, Sculptor, Sextans, Carina, Draco, Leo I, Leo II) have been derived using two previously refined models for the Galactic potential with the Navarro–Frenk–White and Allen–Santillán expressions for the potential of the dark-matter halo, and two different masses for the Galaxy within 200 kpc—0.75 × 1012 M and 1.45 × 1012 M . The character of the orbits of most of these galaxies indicates that they are tightly gravitationally bound to the Milky Way, even with the lower-mass model for the gravitational potential. One exception is the most distant galaxy in the list, Leo I, whose orbit demonstrates that it is only weakly gravitationally bound, even using the higher-mass model of the gravitational potential.  相似文献   

12.
Arguments indicating that galaxies and galaxy clusters should be considered open, forming systems are presented. Galaxies interact with the intergalactic medium, and are not in virial equilibrium (determined by gravitation and rotation). The usual interpretation of the rotation curves of the outer regions of galaxies beyond the visible stellar disk—that they imply the presence of a massive dark-matter halo— could be erroneous in this case: if the intergalactic medium is being accreted in these regions, the orbital speeds of clouds of neutral hydrogen will not be determined purely by the gravitation of the mass inside their orbits. Galaxy clusters accrete matter (intergalactic gas and galaxies) from the filaments of the large-scale structure at whose intersections they are located. Only their inner regions can approach virial equilibrium. Therefore, the high speeds of galaxies and the high temperature of the intergalactic gas in clusters does not necessarily imply the presence of a high mass of dark matter in galaxy clusters.  相似文献   

13.
A new class of metagalactic system—wide triple systems of galaxies with characteristic scale lengths of ~1 Mpc—are analyzed. Dynamical models of such systems are constructed, and the amount of dark mass contained in them is estimated. In principle, kinematic data for wide triplets allow two types of models: with individual galactic halos and with a common halo for the entire system. A choice between the two models can be made based on X-ray observations of these systems, which can determine whether clustering and hierarchical evolution continues on scales of ~1 Mpc or whether systems with such scale lengths are in a state of virial quasi-equilibrium.  相似文献   

14.
We test the hypothesis put forward by Bosma (1981) that the surface density of dark matter is proportional to the surface density of HI, using decompositions of the rotation curves of a number of galaxies according to the THINGS, along with data for the galaxy NGC 6822. The rotation curves of these galaxies can be explained by assuming the existence of a massive gaseous disk in the absence of a dark halo, although the proportionality factor ??dark/??HI between the surface densities of dark matter and HI is different for different galaxies. However, there emerges the problem of the gravitational stability of galaxies whose stellar-velocity dispersions have been estimated, if the thickness of the dark-matter disk is similar to or less than the thickness of the stellar disk. The proportionality between ?? dark and ??HI is probably due to the fact that the radial profiles of ??HI for galaxies with flat rotational curves are close to the critical density of a gravitationally stable gaseous layer (??HI ?? R ?1), and ??dark(R) for a pseudo-isothermal halo obeys the same law.  相似文献   

15.
Seventy-six isolated triple systems of galaxies with declinatiosn δ?3°.  相似文献   

16.
We consider the evolution of galaxies in dense galactic clusters. Observations and theoretical estimates indicate that this evolution may be specified to a large extent by collisions between galaxies, as well as interactions between the gaseous components of disk galaxies and intergalactic gas. We analyze collisions between disk galaxies with gaseous components using a simple model based on a comparison of the duration of a collision and the characteristic cooling time for the gas heated by the collision, and also of the relative masses of stars and gas in the colliding disk galaxies. This model is used to analyze scenarios for collisions between disk galaxies with various masses as a function of their relative velocities. Our analysis indicates that galaxies can merge, lose one or both of their gaseous components, or totally disintegrate as a result of a collision; ultimately, a new galaxy may form from the gas lost by the colliding galaxies. Disk galaxies with mass M G and velocities exceeding ~300 (M G/1010 M )1/2 km/s in intergalactic gas in clusters with densities ~10?27 g/cm3 can lose their gas due to the pressure of inflowing intergalactic gas, thereby developing into E(SO) galaxies.  相似文献   

17.
Data on about forty virialized galaxy clusters with bright central galaxies, for which both the galactic velocity dispersion (?? gal) and the stellar velocity dispersion in the brightest galaxies (??*) are measured, have been used to obtain several approximate relations between ?? gal, ??*, the absolute B magnitude of the brightest central galaxyM B BCG , and the mass of the central massive black holeM BH: $\begin{gathered} \log \sigma _* = (0.12 \pm 0.14)\log \sigma _{gal} + (2.1 \pm 0.4), \hfill \\ \log \sigma _* = - (0.15 \pm 0.02)M_B^{BCG} + (0.85 \pm 0.5), \hfill \\ \log M_{BH} = 0.51\log \sigma _{gal} + 7.28. \hfill \\ \end{gathered} $ . These relations can be used to derive crude estimates ofMBH in the nuclei of the brightest galaxies using the parameters of the both host galaxies and the host galaxy clusters. The last relation above confirms earlier suggestions of a quadratic relation between the masses of the coronas of the host systems and the masses their central objects: M hg halo ?? M cent 2 . The relations obtained are consistent with the common evolution of subsystems with different scales and masses formed in the process of hierarchical clustering.  相似文献   

18.
A sample of 66 galaxies from the catalog of Bettoni et al. (CISM) with anomalously high molecular-to-atomic hydrogen mass ratios (M mol/M HI > 2) is analyzed. The sample galaxies do not differ systematically from the other galaxies in the catalog with the same morphological types, in terms of their photometric parameters, rotational velocities, dust contents, or the integrated masses of gas (for galaxies with the same linear sizes and disk angular momenta). This suggests that the overabundances of H2 are due to the molecularization of HI. Galaxies with bars and active nuclei are found more frequently among galaxies with M mol estimates in CISM. In a small fraction of cases, high M mol/M HI ratios are due to overestimation of M mol due to overstimating of the conversion factor for the translation of CO-line intensities into the number of H2 molecules along the line of sight. It is argued that the molecularization of the bulk of the gas mass could be due to the concentration of gas in the inner regions of the galactic disks and the resulting high gas pressures and relative low star-formation efficiencies, as is indeed observed in galaxies with high M mol/M HI ratios.  相似文献   

19.
The formation and evolution of supermassive (102?1010 M ) black holes (SMBHs) in the dense cores of globular clusters and galaxies is investigated. The raw material for the construction of the SMBHs is stellar black holes produced during the evolution of massive (25?150M ) stars. The first SMBHs, with masses of ~1000M , arise in the centers of the densest and most massive globular clusters. Current scenarios for the formation of SMBHs in the cores of globular clusters are analyzed. The dynamical deceleration of the most massive and slowly moving stellar-mass (< 100M ) black holes, accompanied by the radiation of gravitational waves in late stages, is a probable scenario for the formation of SMBHs in the most massive and densest globular clusters. The dynamical friction of the most massive globular clusters close to the dense cores of their galaxies, with the formation of close binary black holes due to the radiation of gravitational waves, leads to the formation of SMBHs with masses ? 103 M in these regions. The stars of these galaxies form galactic bulges, providing a possible explanation for the correlation between the masses of the bulge and of the central SMBHs. The deceleration of the most massive galaxies in the central regions of the most massive and dense clusters of galaxies could lead to the appearance of the most massive (to 1010 M ) SMBHs in the cores of cD galaxies. A side product of this cascade scenario for the formation of massive galaxies with SMBHs in their cores is the appearance of stars with high spatial velocities (> 300 km/s). The velocities of neutron stars and stellar-mass black holes can reach ~105 km/s.  相似文献   

20.
Twenty-eight CS molecular clouds toward HII regions with Galactocentric distances from ~ 4 to 20 kpc have been studied based on observations obtained in the J=2→1 lines of CS and C34S on the 20-meter radio telescope of the Onsala Space Observatory (Sweden) in March 2001. All 28 clouds have been mapped with an angular resolution of ~40″. The peak intensity in the C34S line has been measured for 20 objects. An LTE analysis has been performed and the parameters of the molecular cloud cores derived. The core sizes are dA=0.3–4.8 pc, with a median value of ~1.6 pc. The mean hydrogen densities in the cloud cores are nH2=3.5×102–3.7 × 104 cm?3, with a median value of ~7.2×103 cm?3. The value of nH2 ends to decrease with increasing Galactocentric distance of the cloud. The masses of most clouds are 102?6×103M, with the most probable value being MCS~103M. The data follow the dependence MCSd A (2.4–3.2) . As a rule, the cloud masses are lower than the virial masses for MCS<103M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号