首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用ECMWF-interim逐6 h再分析资料、中国气象局台风最佳路径资料和NOAA逐日OISST海表温度等资料,并采用ARW-WRF中尺度数值模式,对1409号台风"威马逊"在南海北部海域急剧增强的原因进行分析和数值敏感性试验。结果表明:低层西南季风气流突然增强和高空东风急流异常偏强的高低空环流的最佳配置,是此次台风在南海北部海域急剧增强的主要动力机制;整层环境风垂直切变较大,而低层环境风垂直切变小,高层出流强、低层水汽充沛,是台风在南海北部海域快速增强过程中所独具的环境特征;南海北部海温异常偏高是造成此次台风猛烈发展并出现登陆极端强度的决定性因子。  相似文献   

2.
利用NECP的FNL再分析资料,对1522号强台风"彩虹"在近海急剧增强的特征及机理进行分析。结果表明:"彩虹"强度变化与南亚高压、副热带高压的环流配置存在密切的联系,南亚高压由西部型调整为东部型,并且在我国东部沿海台风中心上方形成一个很强的高压中心,有利于高空辐散的增强,同时500 h Pa副热带高压西伸北抬海上水汽输送加强,为"彩虹"的发展提供有利的环境条件;介于-4~4 m/s弱的200 h Pa和850 h Pa高低层环境风垂直切变是"彩虹"急剧增强的必要条件,并且"彩虹"强度的急剧变化与低层弱的垂直风切变存在显著的滞后相关;台风的暖心结构在台风急剧增强的过程中迅速加强,暖心结构维持较好也是其强度维持的重要因素之一。  相似文献   

3.
利用中国气象局的热带气旋最佳路径资料和NCEP/NCAR再分析资料,对1109号超强台风"梅花"在急剧增强、超强和减弱阶段的大尺度环境、高低层涡散分布和能量场演变配比特征进行分析。结果表明:超强台风"梅花"强度变化与南亚高压、副热带高压的强度变化有明显关系;急剧增强前24 h,伴随有风垂直切变明显减弱,急剧减弱前24 h风垂直切变存在突然增强。中心附近对流层高层辐散的增强、正涡度的增大和正涡度柱向对流层中上层伸展导致超强台风"梅花"急剧增强,对流层低层辐散和高层辐合的增大与强度的减弱密切相关。急剧增强过程中涡旋风动能的增加远大于辐散风动能,涡旋风动能增量主要集中在大气层低层,总位能增量在大气低层和高层配比相当。  相似文献   

4.
利用多种卫星观测资料和NCEP/NCAR提供的风场资料等,分析了环境垂直风切变对0509号台风“麦莎”的强度、对流和降水结构的影响。结果表明:在台风“麦莎”整个生命史中,垂直风切变与其强度之间关系非常密切,但垂直风切变不是影响其强度变化的唯一因素;“麦莎”登陆前及登陆后在垂直风切变作用下,强对流和强降水均位于顺切变方向及其左侧,对流和降水呈1阶非对称分布。  相似文献   

5.
7507号台风中水汽收支的研究   总被引:10,自引:0,他引:10  
丁一汇  刘月贞 《海洋学报》1986,8(3):291-301
本文研究了1975年7号台风的水汽收支。结果发现,对降水贡献最大的项是由辐散风造成的质量场辐合,尤其是在低层,约占总降水的70%。平流项的作用很小。垂直输送项把低层的水汽向中上层输送,增加该处的水汽累积。蒸发项对降水也起重要作用,约占总降水的13%。蒸发项为水汽水平辐合的23%。台风的主要水汽来源于台风的南边界,其次是西和东边界,这三个边界的流入层都很深厚,达到300hPa,但最强的流入在700hPa以下。在台风北边界整层为流出。对整个台风而言,由于输入的水汽量远大于流出的,从而使台风得到大量的水汽供应。 用三种方法计算的台风降水区分布都与台风的云雨区很一致,但量值有明显的差别。  相似文献   

6.
项素清 《海洋预报》2005,22(1):67-73
2003年第14号台风"鸣蝉"朝西北方向移到24°N以北时,中心气压下降到920hPa,近中心最大风速达60m/s,在沿125°E北上时,强度减弱很缓慢.本文对该台风的移动路径和强度变化进行分析,发现台风主要是在副热带高压和高空槽的引导下移动,路径比较规则.来自热带辐合带的深厚水汽输送通道为台风强度的维持提供了丰沛的水汽和能量.200hPa高空槽前西南急流为台风提供强流出流场.涡度场的对称分布,使水汽和能量向台风中心旋转,低层辐合加强,涡动动能得以维持,有利于台风强度的加强.弱的水平风速垂直切变和暖洋面的加热作用,也是台风维持的原因.  相似文献   

7.
基于FVCOM海洋数值模式,模拟了1409号超强台风"威马逊"和1415号台风"海鸥"的风暴潮过程,并通过数值试验,定量的研究了台风移动方向和移动速度对湛江市沿海风暴潮的影响,分析了1409号和1415号台风产生的风暴潮相差较大的原因。结果表明:台风以180°角(正西向)移动并登陆湛江时,所产生的风暴潮最大,其次是157.5°,当台风以180°角登陆时,湛江海域的最大风暴潮较台风以135°登陆时大60—90 cm;台风移动速度越快,对湛江海域造成的风暴潮越大,两者呈对数关系,台风以20 km/h和30 km/h的移速并以180°角登陆湛江时,后者对湛江海域3个站点造成的最大风暴潮较前者大将近100 cm。"海鸥"以接近157.5°的角度和30 km/h的速度登陆湛江,是导致其增水远大于"威马逊"的其中两个重要因素。  相似文献   

8.
利用常规天气图、卫星云图和雷达回波图及NCEP再分析资料,对1010号台风"莫兰蒂"近海强度突然加强的原因进行诊断分析。结果表明:充足的水汽补充和温暖的下垫面、高空槽东移和副高减弱、台风中心附近增强的正涡度平流、强的低层辐合和高层辐散及适宜的环境风垂直切变是"莫兰蒂"台风近海强度突然加强的主要原因。  相似文献   

9.
强热带风暴“莲花”(0903)非对称降水结构分析   总被引:1,自引:0,他引:1  
利用雷达回波和NCEP分析资料,本文从水汽条件、环境风垂直切变和风暴移动状态等方面诊断分析了0903号强热带风暴"莲花"非对称降水结构形成的可能机制。结果表明:"莲花"南侧充足的水汽输送为强降水的发生提供了基本的水汽条件,同时水汽通量在水平空间上的非对称分布也在一定程度上导致了降水的非对称分布。环境风垂直切变是导致"莲花"降水结构改变并最终形成一波非对称降水结构的主要动力因子。随着垂直切变的增强,同时配合风暴南侧充足的水汽条件,一波非对称降水结构逐渐形成,在较强垂直切变长时间的作用下,强降水最终集中于顺切变方向左侧。在较强垂直切变的作用下,逆切变一侧的下沉运动抑制了陆地摩擦和地形抬升所形成的对流的发展。相对于较强的垂直切变而言,"莲花"相对稳定的移速和移向条件难以主导强热带风暴降水的空间分布。  相似文献   

10.
利用NCEP/NCAR 1°×1°的FNL再分析资料、CMORPH(CPC MORPHing technique)卫星-地面自动站融合降水数据以及FY-2G卫星反演的TBB(black-body temperature,云顶亮温)对1822号台风"山竹"在华南造成强降水过程进行了分析。结果表明:西北太平洋副热带高压和南亚高压的稳定维持有利于台风残涡持续影响华南地区;低层来自孟加拉湾的低空急流与西北太平洋副热带高压南侧偏东风汇合后建立起一条连接华南的水汽通道;在登陆台风影响下,大气视热源和视水汽汇主要来自于垂直运动释放的凝结潜热;湿位涡诊断分析表明强的水平风垂直切变导致低层大气斜压性增强,出现显著的对流不稳定。  相似文献   

11.
利用NCEP 1°×1°资料,卫星雷达资料,对相似路径台风"山神"和"海燕"降水进行对比分析,结果表明:(1)地面观测资料表明"山神"的降水强度大于"海燕";TRMM卫星3B42降水率资料揭示台风发展过程中,"山神"降水偏向于台风北侧,"海燕"较均匀分布在台风南北两侧;(2)通过分析台风南北两侧的水汽通量和垂直风速发现,"山神"水汽和垂直速度配合较好,能很好解释其降水分布;"海燕"水汽与垂直速度均呈现出明显的非对称性,可能原因是"海燕"水汽含量小,垂直速度超过一定强度后对降水产生的作用一样,导致其降水分布较均匀;(3)台风"山神""海燕"动能输入区与水汽大值区,及潜热能显热能输入区与上升运动对应较好。动能输入区水汽通量偏强。能量输入的区域,随着能量累积,大气稳定度变弱,易导致不稳定能量的释放,使得该区域降水偏多;(4)从台风"山神""海燕"基本反射率因子场可见,"山神"有台前飑线;两台风靠近海南岛期间,强回波长时间维持在海南岛的中部和南部;当台风移出海南岛时,"山神"后部的强回波带造成的"列车效应"位于东方市;而"海燕"的分布在五指山东侧。雷达径向速度场显示两台风靠近海南岛时,中部和南部局地地形造成"逆风区",使得该区域气流辐合抬升。最后,"山神"受海南岛地形抬升作用比"海燕"明显。  相似文献   

12.
台风威马逊入侵南海的路径分析   总被引:1,自引:0,他引:1       下载免费PDF全文
1409号台风威马逊是自1973年以来登陆华南地区的最强台风,其在登陆前,临岸急剧增强。每年初夏,尽管南海的海洋环境有利于台风的增长,但是由于西太平洋副热带高压(以下简称副高)的引导作用,大部分台风路径会偏离南海。本文分析结果表明,在2014年初夏,副高的位置相对过去几十年的平均位置更偏向西南方,因此,台风威马逊在副高的引导下穿过菲律宾进入南海海域。南海的高温海水为其强度陡增提供了有利条件,威马逊在短短26 h内急剧增长为超强台风。前人研究结果显示,近些年来副高的位置明显向西延伸,如果这种西向延伸的趋势一直保持或者继续,那么在初夏可能会有更多的热带风暴进入南海并且得以加强,华南地区或将面临更多灾难性台风的袭击。  相似文献   

13.
"珍珠"台风强度及路径异常的分析   总被引:1,自引:1,他引:1  
姜丽萍  夏冠聪  尤红  黄静  马慧 《台湾海峡》2008,27(1):124-128
利用常规观测资料和NCEP 1°×1°格点资料,从能量场、湿度场、辐散场以及西南季风和越赤道气流等多方面对"珍珠"的强度及路径进行分析,发现副高前期在南海的维持以及副高后期环流形势的调整是"珍珠"强度维持和路径突变的关键;南海海域维持高能区、弱水平风垂直切变、对流层上层强大的辐散场、以及充沛的水汽供应、风场动力非对称结构等是"珍珠"强度能维持的重要原因;西南季风、越赤道气流和副高南落而引发的东南风急流形成的季风汇合线是"珍珠"北翘的直接原因.台风风场结构中不对称强风速区的转移对台风路径改变有预示作用.  相似文献   

14.
本文利用东京台风中心(Tokyo-Typhoon Center)发布的热带气旋(Tropical cyclone, TC) best-tracks资料,统计了1979—2019年经过黑潮关键区热带气旋的强度变化特征,并进一步分析了其中的物理机制。统计结果显示,黑潮对不同强度TC的加热效果不同,整体而言,TC外缘靠近黑潮关键区至TC中心进入关键区阶段,TC风速显著增强;TC中心进入关键区后,风速数值的分布范围较集中,黑潮暖水对TC风速的影响与TC当前强度有关,强度较弱的TC风速增强,而强度较强TC的风速下限略增大但其风速均值减小。黑潮暖水通过增加海表面的热通量,造成低层水汽辐合,对流层中层湿度增大,水汽上升至高空释放凝结潜热增多,导致TC暖心增强,垂直速度增大,对流增强,从而增强TC强度。TC暖心变化较低层水汽通量的变化滞后约12 h,导致TC中心移出关键区后强度不会迅速减弱。  相似文献   

15.
“菲特”台风路径和强度预报难点分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料、NOAA海温资料对其进行分析,结果表明:(1)副高突然加强西进,中低层高压带加强,在台风北侧形成高压坝和强盛偏东气流,是台风路径突然西折的主要原因;(2)"丹娜丝"的活动在一定程度上阻止了副热带高压的南落,有利于副高南侧偏东急流的维持和加强,对"菲特"路径的突然西折起一定作用。敏感性数值试验结果表明"双台风"效应对"菲特"登陆前进一步西折具有决定作用;(3)高低空急流的配置,产生了动力场的耦合作用,加强了台风的对流活动,所释放的潜热可以补偿海温降低的影响,对"菲特"在近海强度维持起到了重要作用;(4)"菲特"的强度和环境风垂直切变的演变规律基本一致,较低的环境风垂直切变是"菲特"在近海强度维持的重要原因。  相似文献   

16.
运用天气学和动力诊断方法,结合卫星云图,分析了1211号台风"海葵"在浙江近海移向突然变化、强度爆发性增强的原因。结果发现:大陆暖高东移过程中脊线的转变,西太平洋副高西伸加强北抬,并与大陆暖高合并是促使"海葵"移向转变、移速加快的关键因素。"海葵"进入浙江近海时,弱的环境风垂直切变、强烈的低层辐合和高层辐散、东风急流和西南气流水汽输送的加强、低层正涡度的输入是其得以爆发性增强的主要原因。台风爆发性增强时,卫星云图上表现为:台风环流螺旋度迅速加大,结构密实,有完整清晰的台风眼形成,眼区范围缩小,南北两条水汽输送通道建立,水汽输入云带发展强烈,以及台风水平尺度发展到最大等特征。  相似文献   

17.
9403号强热带风暴水汽通量非对称研究   总被引:2,自引:0,他引:2  
用实测资料对9403号南海强热带风暴(简称TC,以下同)登陆前后的物理结构变化作了分析,对其水汽通量、动力学等特征量进行了计算。研究结果表明:TC的水汽通量分布不对称,辐合主要在边界层中,辐合最大值出现在TC登陆前南半圆边界层附近:风速分布不对称,气旋性切向风大值区位于TC东半圆;风速垂直切变随TC加强而减弱。强流入位于TC南半圆400hPa以下,流入大值区在850hPa附近;高层反气旋流出在150-100hPa层附近,流出主要位于TC北半圆。TC垂直运动分布不对称,上升最大值出现在南半网。TC整个生命期均具有暖心结构,300hPa附近增暖最明显。  相似文献   

18.
利用NCEP/NCAR全球再分析格点资料(空间分辨率1°×1°)、台风实况资料及海南省气象台站观测资料,选取1321号台风"蝴蝶"为研究个例,从天气学原理高低空形势及动力、热力学物理量等多角度分析了"蝴蝶"强度演变特征及影响因素.研究结果表明,副热带高压与高空西风槽是影响此次台风的主要大尺度天气系统,弱冷空气南侵、南海海温偏高及越赤道气流强盛是"蝴蝶"迅速加强的重要原因.西风槽引导弱冷空气南侵使得台风外围环流气压梯度增加,斜压不稳定状态加剧;南海海温达到29℃,海温偏高使台风区域大气层结降低,深热对流发展;105°E越赤道气流强盛为台风提供了充沛水汽和能量.三者共同作用促使台风强度突然增强.另外,低层涡度、高层散度、湿位涡及水汽通量等物理量能够较好地表征"蝴蝶"强度变化特征.低层辐合流入、高层辐散流出为台风的加强提供了动力条件;湿位涡下负上正表明大气热力层结不稳定;水汽通量增加表明水汽条件充足.良好的动力条件、热力条件与水汽条件共同作用,使得"蝴蝶"在短时间内迅速加强为强台风.  相似文献   

19.
为探讨相似路径台风“摩羯”(1814)和“温比亚”(1818)影响南通降水的差异原因,从天气形势、物理量场等方面进行分析,利用水汽通量、假相当位温、湿位涡、垂直螺旋度等物理量对降水进行诊断,得到以下主要结论:1)两台风移动路径主要受副热带高压和冷空气的影响,副热带高压边缘气流为主要引导气流。两台风均有追随200 hPa辐散中心移动的趋势。2)较强冷空气的侵入、鞍形场中的缓慢移动、强正涡度和强盛上升运动、强水汽输送且低空长时间水汽辐合、大气斜压性增强和风垂直切变增大均是台风“温比亚”造成南通更强降水的原因。3)水汽通量辐合增强,低层正涡度中心、强上升运动,低层假相当位温大值区叠加上空假相当位温梯度带,垂直螺旋度增大与正值发展高度均与台风强降水有明显对应。  相似文献   

20.
使用NCAR/NCEP再分析资料和国家气象中心提供的逐时热带气旋资料,分析了台风"天鸽"的路径和强度特征,并在此基础上分析其近海突变原因,结果表明:(1)22日15时—23日13时为"天鸽"突变的关键时间段,突变第一段为22日15时—23日00时,第二段则为23日09—13时;(2)高海温对"天鸽"的加热作用导致了"天鸽"的近海突变;(3)"天鸽"的两次突变增强后,都伴随有更充沛的水汽输送,这有利于"天鸽"的潜热释放作用增强,进而引起"天鸽"强度突然增大。"天鸽"两次强度突变前,伴随着风垂直切变迅速减小,而突变后,高层出流的突然增大带来风垂直切变的增大;(4)涡度场演变特征与"天鸽"强度突变有着较好的对应关系,其中辐散项引起的低层辐合增强,有利于高层辐散气流的发展,而高层辐散的增强同时又有利于中低层辐合的进一步发展。这种正反馈机制促进了低层正涡度和高层负涡度的积累,引起了台风"天鸽"的强度突变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号