首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
A modified three‐dimensional discontinuous deformation analysis (3D‐DDA) method is derived using four‐noded tetrahedral elements to improve the accuracy of current 3D‐DDA algorithm in practical applications. The analysis program for the modified 3D‐DDA method is developed in a C++ environment and its accuracy is illustrated through comparisons with several analytical solutions that are available for selected problems. The predicted solutions for these problems using the modified 3D‐DDA approach all show satisfactory agreement with the corresponding analytical results. Results presented in this paper demonstrate that the modified 3D‐DDA method with discontinuous modeling capabilities offers a useful computational tool to determine stresses and deformations in practical problems involving fissured elastic media with reasonable accuracy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Nodal-based three-dimensional discontinuous deformation analysis (3-D DDA)   总被引:2,自引:0,他引:2  
This paper presents a new numerical model that can add a finite element mesh into each block of the three-dimensional discontinuous deformation analysis (3-D DDA), originally developed by Gen-hua Shi. The main objectives of this research are to enhance DDA block’s deformability. Formulations of stiffness and force matrices in 3-D DDA with conventional Trilinear (8-node) and Serendipity (20-node) hexahedral isoparametric finite elements meshed block system due to elastic stress, initial stress, point load, body force, displacement constraints, inertia force, normal and shear contact forces are derived in detail for program coding. The program code for the Trilinear and Serendipity hexahedron elements have been developed, and it has been applied to some examples to show the advantages achieved when finite element is associated with 3-D DDA to handle problems under large displacements and deformations. Results calculated for the same models by use of the original 3-D DDA are far from the theoretical solutions while the results of new numerical model are quite good in agreement with theoretical solutions; however, for the Trilinear elements, more number of elements are needed.  相似文献   

3.
Over the last decade, researchers in the discontinuous deformation analysis (DDA) community have dedicated a great deal of effort to document the accuracy of the method by performing validation studies. This paper contains a summary of more than 100 published and unpublished validation studies which comprise the body of DDA validation information to which the authors have access. The studies are grouped into three general categories: (a) validation with respect to analytical solutions, (b) validation with respect to results of other numerical techniques, and (c) validation with respect to laboratory and field data. Three general techniques for validation are described: qualitative assessment visually examining runtime behaviour of simulations, semi‐quantitative assessment comparing numerical results of simulations, and quantitative where numerical simulation results are evaluated in detail with respect to similar analytical, laboratory or field results. We find that for many of the problems addressed by the papers in this review, DDA performs more than adequately for engineering analysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Rockfall is the most frequent major hazard in mountainous areas. For hazard assessment and further countermeasure design, realistic and accurate prediction of rockfall trajectory is an important requirement. Thus, a modeling method to represent both geometrical parameters of slope and falling rock mass is required. This study, suggests taking the advantages of discontinues deformation analysis (DDA) and geographical information system (GIS). In this study, after developing a three dimensional (3D) DDA program, firstly a special element named contact face element (CFE) was introduced into 3D DDA; secondly, effectively modeling tools with GIS support were developed. The implementation of CFE also improves the efficiency of both the contact searching and solution process. Then a simple impact model was devised to compare the 3D DDA implemented directly with a sliding model with theoretical analysis to verify the reliability of the modified 3D DDA program and investigate the parameter settings. Finally, simulations concerning rock shapes and multi-rocks were carried out to show the applicable functions and advantages of the newly developed rockfall analysis code. It has been shown that the newly developed 3D DDA program with GIS support is applicable and effective.  相似文献   

5.
Displacement boundary constraints in discontinuous deformation analysis (DDA) are applied using stiff penalty springs. A co‐ordinate‐free formulation for displacement boundary constraints is presented here for DDA, which unifies previous derivations for points of fixity, and for points constrained to induce or prohibit block motion in specified directions as a function of location or time. Examples for each type of constraint are used to illustrate the behaviour of the algorithm and provide a link with previous formulations for each case. The new, unified formulation has five benefits: (1) simple to express algorithmically; (2) easy to program and verify; (3) penalty values in different directions may be chosen to allow fixed points, lines, curves or planes; (4) formulation works for 2D and 3D; (5) displacement constraint may be a function of time or location or both. Feedback in the algorithm may induce internal resonance in homogeneously deformable discrete elements used in DDA, and resonance in block‐to‐block contact interactions. Consequently, high mass problems with insufficient damping may suffer from excessive ‘vibrational hammering’, inducing physically implausible behaviour such as elastic rebound. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Large‐scale engineering computing using the discontinuous deformation analysis (DDA) method is time‐consuming, which hinders the application of the DDA method. The simulation result of a typical numerical example indicates that the linear equation solver is a key factor that affects the efficiency of the DDA method. In this paper, highly efficient algorithms for solving linear equations are investigated, and two modifications of the DDA programme are presented. The first modification is a linear equation solver with high efficiency. The block Jacobi (BJ) iterative method and the block conjugate gradient with Jacobi pre‐processing (Jacobi‐PCG) iterative method are introduced, and the key operations are detailed, including the matrix‐vector product and the diagonal matrix inversion. Another modification consists of a parallel linear equation solver, which is separately constructed based on the multi‐thread and CPU‐GPU heterogeneous platforms with OpenMP and CUDA, respectively. The simulation results from several numerical examples using the modified DDA programme demonstrate that the Jacobi‐PCG is a better iterative method for large‐scale engineering computing and that adoptive parallel strategies can greatly enhance computational efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The discontinuous deformation analysis (DDA) is a discontinuum‐based method, which employs a penalty method to represent the contact between blocks. The penalty method is easy to be implemented in the program, but the contact constraint is only approximately satisfied. Penetrations between contacting blocks are unavoidable even if the penalty value is very large. To improve the contact precision in the DDA, an augmented Lagrangian method is introduced, which can make use of advantages of both the Lagrangian multiplier method and the penalty method. This paper provides a detailed implementation of the augmented Lagrangian method in the DDA program and compares it with the standard DDA on the computational efficiency and contact precision. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The role of interface friction is studied by slow direct shear tests and rapid shaking table experiments in the context of dynamic slope stability analysis in three dimensions. We propose an analytical solution for dynamic, single and double face sliding and use it to validate 3D‐DDA. Single face results are compared with Newmark's solution and double face results are compared with shaking table experiments performed on a concrete tetrahedral wedge model, the interface friction of which is determined by constant velocity and velocity stepping, direct shear tests. A very good agreement between Newmark's method on one hand and our 3D analytical solution and 3D‐DDA on the other is observed for single plane sliding with 3D‐DDA exhibiting high sensitivity to the choice of numerical penalty value. The results of constant and variable velocity direct shear tests reveal that the tested concrete interface exhibits velocity weakening. This is confirmed by shaking table experiments where friction degradation upon multiple cycles of shaking culminated in wedge run out. The measured shaking table results are fitted with our 3D analytical solution to obtain a remarkable linear logarithmic relationship between friction coefficient and sliding velocity that remains valid for five orders of magnitude of sliding velocity. We conclude that the velocity‐dependent friction across rock discontinuities should be integrated into dynamic rock slope analysis to obtain realistic results when strong ground motions are considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
付晓东  盛谦  张勇慧 《岩土力学》2014,35(8):2401-2407
非连续变形分析(DDA)方法严格满足平衡要求和能量守恒,具有完全的运动学及数值可靠性,但对大规模岩土工程问题的数值模拟耗时太长,尤其是线性方程组求解,并行计算可以很好地解决该问题。首先基于DDA方法的基本理论,阐述了适用于DDA方法中的基于块的行压缩法和基于“试验-误差”迭代格式的非零位置记录;其次,引入块雅可比迭代法并行求解DDA方法的线性方程组,并改进了相应的非零存储方法;最后,基于OpenMP实现了DDA线性方程组求解并行计算,并将其应用于地下洞室群的破坏过程分析,以加速比为并行效率的指标评价,结果表明,该并行计算策略可以极大提高DDA的计算效率,而且适合各种规模的问题。  相似文献   

10.
An extensive examination of the discontinuous deformation analysis (DDA) in block dynamic sliding modeling is carried out in this paper. Theoretical solutions for a single block sliding on an arbitrarily inclined plane by applying the horizontal/vertical seismic loadings to the sliding block as acceleration time histories or to the base as constraint displacement time histories are derived. As compared with the theoretical solutions, for a single block sliding, the DDA predicts the sliding displacements and block interaction forces accurately under various base incline angles and friction angles under both the harmonic loadings and a real seismic loading. The vertical seismic component may influence the block sliding displacements to different extent, and the DDA can capture these phenomena successfully and give accurate results. For the calculation of the single block relative sliding, both the theoretical and the DDA solutions indicate that applying the seismic accelerations as constraint displacement time histories (derived by integrating the seismic accelerations twice) to the base is equivalent to applying the seismic accelerations as volume forces to the sliding block in the opposite directions. The DDA modeling also demonstrates that this conclusion still stands for the case of multi‐block sliding. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
刘君  黄盛铨  孔宪京 《岩土力学》2006,27(Z2):286-290
在自行研制的非连续变形分析(discontinuous deformation analysis,DDA)程序中实现了自动强度折减法以模拟边坡的稳定性和安全系数。通过锦屏高边坡和某重力坝深层滑动的计算分析以及与刚体极限平衡法和有限元方法的比较研究可以看出,强度折减DDA法可以较高精度求出岩石高边坡的安全系数,但求得的重力坝深层抗滑稳定安全系数要低于刚体极限平衡法的结果。基于强度折减技术的DDA与FEM的耦合方法,可以较准确地求出重力坝深层抗滑稳定安全系数。  相似文献   

12.
The frequent use of soils and earth materials for hydraulic capping and for geo‐environmental waste containment motivated our interest in detailed modelling of changes in size and shape of macro‐pores to establish links between soil mechanical behaviour and concurrent changes in hydraulic and transport properties. The objective of this study was to use finite element analysis (FEA) to test and extend previous analytical solutions proposed by the authors describing deformation of a single macro‐pore embedded in linear viscoplastic soil material subjected to anisotropic remote stress. The FEA enables to consider more complex pore geometries and provides a detailed picture of matrix yield behaviour to explain shortcomings of approximate analytical solutions. Finite element and analytical calculations agreed very well for linear viscous as well as for viscoplastic materials, only limited for the case of isotropic remote stress due to the simplifications of the analytical model related to patterns and onset of matrix‐yielding behaviour. FEA calculations were compared with experimental data obtained from a compaction experiment in which pore deformation within a uniform modelling clay sample was monitored using CAT scanning. FEA predictions based on independently measured material properties and initial pore geometry provided an excellent match with experimentally determined evolution of pore size and shape hence lending credence to the potential use of FEA for more complex pore geometries and eventually connect macro‐pore deformation with hydraulic properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The paper presents closed‐form solutions for stress and displacement influence functions for stress discontinuity (SD) and displacement discontinuity (DD) elements, for a two‐dimensional plane‐strain elastic, transversely anisotropic medium. The solutions for SD elements are based on Kelvin's problem and for DD elements on the concept of dipoles. Stress and displacement influence functions are derived for the following elements: constant SD, linear SD, constant DD, linear DD, square root DD, parabolic DD, constant DD surface, and linear DD surface elements. The formulations are incorporated into FROCK, a hybridized boundary element method code, and are validated by providing comparisons between the results from FROCK and the finite element code ABAQUS. A limited parametric analysis shows the effects of slight anisotropy on the stress field around the tip of a crack and of the orientation of the crack with respect to the axes of elastic symmetry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A Boundary Element based Discontinuous Deformation Analysis (BE‐DDA) method is developed by implementing the improved dual reciprocity boundary element method into the open close iterations based DDA. This newly developed BE‐DDA is capable of simulating both the deformation and movement of blocks in a blocky system. Based on geometry updating, it adopts an incremental dynamic formulation taking into consideration initial stresses and dealing with external concentrated and contact forces conveniently. The boundaries of each block in the discrete blocky system are discretized with boundary elements while the domain of each block is divided into internal cells only for the integration of the domain integral of the initial stress term. The contact forces among blocks are treated as concentrated forces and the open–close iterations are applied to ensure the computational accuracy of block interactions. In the current method, an implicit time integration scheme is adopted for numerical stability. Three examples are used to show the effectiveness of the algorithm in simulating block movement, sliding, deformation and interaction of blocks. At last, block toppling and tunnel stability examples are conducted to demonstrate that the BE‐DDA is applicable for simulation of blocky systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The objective of this paper is to introduce the development of a dynamic blasthole expansion model, which is coupled to the discontinuous deformation analysis (DDA) code of Shi (1988). The developed model considers the effects of blast geometry (blasthole shape, angle, and location), the physical properties of the intact rock and existing discontinuities, the distribution and orientation of pre-existing discontinuities, and the blasthole pressure on the processes of burden breakage, fragment throw and muckpile formation. The newly modified DDA code (DDA_BLAST) describes the expansion of the blasthole as a function of blast chamber volume and time. It is assumed in the code that the rock is already fragmented in-situ due to the intersection of pre-existing discontinuities and the passage of stress wave. Hence, the model only considers the gas pressurization phase of the blasting process. Moreover, the proposed model for the blasthole expansion assumes an adiabatic expansion of explosion products and variations in the explosion pressure upon expansion of the blast chamber are calculated from an equation of state. Accordingly, the newly modified DDA_BLAST code was used to simulate typical blasting problems in jointed media and delve into the mechanisms involved (in a macro scale) in the gas pressurization phase of the blasting process, burden breakage, and the effects of the discontinuity properties on the process of rock breakage by blasting.  相似文献   

16.
Uplift capacity of plate anchors has been the focus of numerous studies, because anchor plates are designed for pull‐out in normal operating conditions. However, the response of plate anchors under 6‐degrees‐of‐freedom loading caused during extreme loading conditions is poorly understood. The purpose of this study is to propose a simple yet sufficiently accurate analytical solution to investigate the behavior of plate anchor under combined in‐plane translation and torsion and to evaluate its effect on the plate uplift bearing capacity. To this end, a modified plastic limit analysis (PLA) approach is introduced and compared with limit equilibrium and simplified upper bound baseline solutions. The proposed method is verified with 3‐dimensional finite element. The variables considered in this study include plate aspect ratio, plate thickness, as well as load direction and eccentricity. Results of analytical solutions indicate the insensitivity of the “shape” of the shear‐torsion yield envelope to plate thickness. This finding facilitates the use of simplified yet reasonable yield envelope for infinitely thin plate obtained from simplified PLA approach for other plate thicknesses. The “size” of the failure envelope (controlled by pure torsional and translational capacity) could be predicted fairly accurately by PLA and limit equilibrium methods. Combination of these analytical methods offers a simple yet reasonably accurate solution to describe shear‐torsion response of anchor plate. The obtained shear‐torsion yield envelope is then fitted in the generalized 6‐degrees‐of‐freedom yield surface which describes the reducing effect of moment, torsion, and planar forces on the uplift capacity of plate.  相似文献   

17.
The scaled boundary finite‐element method is derived for elastostatic problems involving an axisymmetric domain subjected to a general load, using a Fourier series to model the variation of displacement in the circumferential direction of the cylindrical co‐ordinate system. The method is particularly well suited to modelling unbounded problems, and the formulation allows a power‐law variation of Young's modulus with depth. The efficiency and accuracy of the method is demonstrated through a study showing the convergence of the computed solutions to analytical solutions for the vertical, horizontal, moment and torsion loading of a rigid circular footing on the surface of a homogeneous elastic half‐space. Computed solutions for the vertical and moment loading of a smooth rigid circular footing on a non‐homogeneous half‐space are compared to analytical ones, demonstrating the method's ability to accurately model a variation of Young's modulus with depth. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
We present validations and applications of the numerical Discontinuous Deformation Analysis method (DDA) for different cases of dynamic loading in the context of rock mass deformation. Following a review of 2D and 3D-DDA validations against analytical solutions for single and double face sliding, we present dynamic DDA applications in natural rock slopes and underground openings. Modelling dynamic rock slope deformation is demonstrated using the case of Masada rock slopes, with some new findings on the dynamic deformation of overhanging cliffs in general. Modelling underground deformation is demonstrated using the case of an active open pit mine in Israel developed in a rock mass containing multiple karstic caverns. The DDA method is shown here to be a powerful numerical tool for modelling dynamic rock mass deformation when the interaction between multiple discrete elements dictates the expected global deformation.  相似文献   

19.
Disk clusters are developed to represent the shape of granular materials more precisely (compared to circular particles) and to minimise excessive rolling. Investigating the behaviour of dynamic disk-based discontinuous deformation analysis (DDA) with disk clusters is very important to evaluate the applicability of disk-based DDA to dynamic problems in geomechanics. In this paper, the accuracy of disk-based DDA under dynamic conditions is studied by a comprehensive sensitivity analysis. The results obtained by disk-based DDA are compared with the analytical solutions of a disk cluster on an incline subjected to gravitational force only, and three different accelerations of increasing complexity with sinusoidal input functions as well as gravitational load. In this research, the effects of time step size and interface friction angles on the results are studied. Overall, most of the error for both velocity and displacement occurs at the beginning of the solution. With increasing friction angle, the initial perturbation of the solution increases in the case of sliding under gravitational force only, and decreases in the case of sliding under dynamic loads. This study shows that disk-based DDA predicts accurately the velocities and displacements derived with respect to the frictional resistance offered by the inclines.  相似文献   

20.
Discontinuous deformation analysis (DDA), a discrete numerical analysis method, is used to simulate the behaviour of falling rock by applying a linear displacement function in the computations. However, when a block rotates, this linear function causes a change in block size called the free expansion phenomenon. In addition, this free expansion results in contact identification problems when the rotating blocks are close to each other. To solve this problem of misjudgment and to obtain a more precise simulation of the falling rock, a new method called Post‐Contact Adjustment Method has been developed and applied to the program. The basic procedure of this new method can be divided into three stages: using the linear displacement function to generate the global matrix, introducing the non‐linear displacement function to the contact identification, and applying it to update the co‐ordinates of block vertices. This new method can be easily applied to the original DDA program, demonstrating better contact identification and size conservation results for falling rock problems than the original program. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号