首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present paper, results of a parametric study conducted on the Local Joint Flexibility (LJF) of two-planar tubular DK-joints under In-Plane Bending (IPB) loads are presented. DK-joints are among the most common joint types in jacket substructure of Offshore Wind Turbines (OWTs). A total of 324 finite element (FE) analyses were carried out on 81 FE models under four types of IPB loading in order to investigate the effect of the DK-joint’s geometrical parameters on the LJF factor (fLJF). Based on the results of parametric study, the factors leading to the LJF reduction were introduced. Generated FE models were verified using the existing experimental data, FE results, and parametric equations. The effect of the weld profile was also considered. The fLJF in two-planar DK- and uniplanar K-joints were compared. Results indicated that the effect of multi-planarity on the LJF is quite significant and consequently the use of the equations already available for uniplanar K-joints to calculate the fLJF in two-planar DK-joints may lead to highly under-/over-predicting results. To handle this issue, the FE results were used to derive a set of parametric equations for the prediction of the fLJF in IPB-loaded two-planar DK-joints. The proposed equations were checked against the acceptance criteria recommended by the UK DoE and can be reliably used for the analysis and design of tubular joints in OWTs.  相似文献   

2.
A novel stiffened joint called bulge formed joint was put forward. Compared with the unstiffened joint, an additional bulge plate is utilized to connect the chord and braces. Based on the finite element (FE) and experimental method, stress concentration factors (SCFs) were investigated for both a bulge formed K-joints and the corresponding unstiffened joint. By the verification of experimental data, the FE models were used to investigate the SCFs of the bulge formed joints. The maximum SCF of the bulge formed K-joint under balanced axial loads is located at the position φ = 105°, which is close to but not exactly the saddle. The SCFs around the intersection weld can decrease remarkably compared with the unstiffened joint by the change of geometrical parameters of the bulge plate. Then 2117 FE analyses were conducted to investigate the geometrical effects on SCFs of the bulge formed joint. These dimensionless geometrical parameters include τs, η1, η2, θ, β, γ, τ, among which, the first three parameters are typical of the bulge formed joints, while the others are same as the definitions in the unstiffened joints. Finally, a set of SCF parametric formulas were obtained by nonlinear regression analyses.  相似文献   

3.
Phytoplankton fluorescence has been used historically as a means of assessing phytoplankton biomass, rates of primary production (PP) and physiological status in laboratory, in situ, and satellite based investigations. Assumptions about the quantum yield of phytoplankton fluorescence, φf, are often overlooked and can become problematic when fluorescence based methods are applied. A time series of φf observations from the northwestern Sargasso Sea is presented with the goal of understanding the controls on fluorescence and its applicability for assessing upper ocean biological processes. Accurate estimates of φf require accounting for Raman scattering and the conversion of planar to scalar irradiance. Variability in φf occurs on both seasonal and episodic time scales. Seasonal variations show maxima in the surface layer during summer months while lower, more uniform values are found throughout the winter when deep mixing occurs. Large episodic variations in φf are observed throughout the record which dwarf seasonal changes. Predictions of depth-dependent and depth-integrated PP rates using φf and natural fluorescence fluxes are only marginally successful (r2∼50%), although comparable with results from global bio-optical models for the Sargasso Sea. Improvements in PP predictions are hindered by weak statistical relationships with other parameters. φf is largely decoupled from the quantum yield of carbon assimilation, φc, indicating that an inverse relationship between fluorescence and photosynthesis does not exist. Consequently, variability in the quantum yield of thermal de-excitation, φh, is found to be of similar magnitude as φf on the timescales observed. These observations show that assumptions about photochemical energy flow through the phytoplankton community must be made carefully and that the fluorescence–photosynthesis relationship is not straightforward.  相似文献   

4.
Submarine pipelines are the primary component of an offshore oil transportation system. Under operating conditions, a pipeline is subjected to high temperatures and pressures to improve oil mobility. As a result, additional stress accumulates in pipeline sections, which causes global buckling. For an exposed deep-water pipeline, lateral buckling is the major form of this global buckling. Large lateral displacement causes a very high bending moment which may lead to a local buckling failure in the pipe cross-section. This paper proposes a lateral global buckling failure envelope for deep-water HT/HP pipelines using a numerical simulation analysis. It analyzes the factors influencing the envelope, including the thickness t, diameter D, soil resistance coefficient μ, calculating length Lf, imperfection length L and imperfection amplitude V. Equations to calculate the failure envelope are established to make future post-buckling pipeline failure assessment more convenient. The results show that (1) the limit pressure difference pmax (the failure pressure difference for a post-buckling pipeline when it suffers no difference in temperature) is usually below the burst pressure difference pb (which is the largest pressure difference a pipeline can bear and is determined from the strength and sectional dimensions of the pipeline) and is approximately 0.62–0.75 times the value of pb and (2) thickness t has little influence on the normalized envelopes, but affects pmax. The diameter D, soil resistance coefficient μ, and calculating length Lf influence the maximum failure temperature difference Tmax (the failure temperature difference for a pipeline suffering no pressure difference). The diameter D also significantly affects the form of the normalized envelope.  相似文献   

5.
Yearlong 75 kHz acoustic Doppler current profiler (ADCP) data were obtained well above Reykjanes Ridge (northern extension of the Mid-Atlantic Ridge (MAR)). The area is characterized by relatively large semidiurnal tidal (‘D2’) currents that have (at lunar M2) more than half a decade larger variance than inertial (f) currents. However, despite the relatively weak near-inertial kinetic energy, its vertical current shear shows larger magnitudes than at M2 in an otherwise flat fD2 band limited between frequencies 0.74 and 1.35f, which equals the inertio-gravity wave bounds [σmin, σmax](N=f). N represents the buoyancy frequency. The shear in this band dominates all shear computed at 20 m effective vertical scale. As the kinetic energy spectrum peaks at M2, but not (significantly) at S2 and N2, a difference in tidal (and inertial) scales and hence sources is observed. M2-tides contribute mostly to large-scale coherent motions. The dominant incoherent fD2 shear is highly variable in time (∼2-day periodicity). Furthermore, inertial and tidal shear are more or less completely separated in space and time, each occurring in different layers in the vertical. The thin shear layers reflect the rapidly varying short vertical scale Ns profile, to within the ∼20 m limitation of ADCP data, rather than the large-scale smooth NL. In each of large-Ns layers Ri≈1, probably. The yearlong smoothed shear magnitude follows NL, but only as stable Ri≈5. The shear polarization is more circular than rectilinear, albeit varying with time, and highly symmetric around f. During transitions, e.g., between stratified and homogeneous layers and between waves from varying sources, near-circular motions can generate near-rectilinear shear in the direction of wave propagation (in the direction of the minor axis of the current ellipse). This contrasts with the possibility of near-rectilinear barotropic oscillatory motions generating near-circular shear under viscosity in shallow seas.  相似文献   

6.
斜向波浪作用下双层水平板式防波堤波浪荷载试验研究   总被引:1,自引:0,他引:1  
In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.  相似文献   

7.
In engineering practice,tubular X-joints have been widely used in offshore structures.The fatigue failure of tubular X-joints in offshore engineering is mainly caused by axial tensile stress.In this study,the stress concentration factor distribution along the weld toe in the hot spot stress region for tubular X-joints subject to axial loads have been analyzed by use of finite element method.Through numerical analysis,it has been found that the peak stress concentration factor is located at the saddle position.Thereafter,80 models have been analyzed,and the effect of the geometric parameters of a tubular X-joint on the stress concentration factor has been investigated.Based on the experimental values of the numerical stress concentration factor,a parametric equation to calculate the stress concentration factor of tubular X-joints has been proposed.The accuracy of this equation has been verified against the requirement of the Fatigue Guidance Review Panel,and the proposed equation is found capable of producing reasonably accurate stress concentration factor values for tubular X-joints subject to axial loads.  相似文献   

8.
变截面劲性水泥土桩承载特性室内模型试验研究   总被引:1,自引:0,他引:1  
研究变截面劲性水泥土桩的几何特征对承载特性的影响,结果表明:具有1个扩大盘或2个扩大盘间距较大的变截面桩,盘下部的土体发生压缩和局部剪切破坏现象,上部的土体则发生梨形滑落;盘间距较小时,上下两盘之间的土体与两盘成为一体;变截面桩的桩侧荷载分担值均远大于桩端荷载分担值,盘的数量及间距对桩侧及桩端荷载分担值影响不大;1个盘时,其位置对承载力有一定的影响;2个等间距盘的变截面桩,盘位置越高承载力越高;盘间距对承载力影响不显著;3个盘的承载力大于2个盘的承载力,但结果相差不大;变截面桩的承载力得到显著提高,其承载力不小于与扩大盘直径相等的等截面桩;随着桩顶荷载的增大,盘承担的荷载增加显著,盘以下桩身的轴力因盘承担大部分而骤减,其降低幅度与盘的数量、位置及间距有关.  相似文献   

9.
A numerical study was undertaken in order to assess the capability of an unsteady RANS code to predict the seakeeping characteristics of a high-speed multi-hull vessel in high sea states. Numerical analysis includes evaluation of ship motions, effects of wave steepness on ship response, catamaran natural frequency and added resistance in waves. Computations were performed for the DELFT 372 catamaran by the URANS solver CFDSHIP-Iowa V.4. The code was validated with encouraging results for high ship speeds (0.3≤Fn≤0.75) and high wave amplitudes (0.025≤Ak≤0.1). Comparison with strip theory solutions shows that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. Current computations evidence that heave peaks occur at resonance for all Fn, and reach the absolute maximum at Fn=0.75. Maximum pitch occurs at frequencies lower than resonance, for each speed, and absolute maximum occurs at medium Fn=0.6. Maximum added resistance, Raw, was computed at Fn=0.45, which, interestingly, is near the catamaran Fncoincidence. Overall, we found similar results as Simonsen et al. (2008) for KCS containership, though, herein, a multi-hull geometry and higher speeds were tested. Also, our results are useful to further evaluate the exciting forces and their correlation with fe and λ/Lpp.  相似文献   

10.
Through the flexural behavior test of coral aggregate reinforced concrete beams (CARCB) and ordinary Portland reinforced concrete beams (OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment (Mcr) and ultimate bending moment (Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width (w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.  相似文献   

11.
In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.  相似文献   

12.
In order to study the propulsion mechanism of the bionic flapping hydrofoil (BFH), a 2-DoF (heave and pitch) motion model is formulated. The hydrodynamic performance of BFH with a series of kinematical parameters is explored via numerical simulation based on FLUENT. The calculated result is compared with the experimental value of MIT and that by the panel method. Moreover, the effect of inlet velocity, the angle of attack, the heave amplitude, the pitch amplitude , the phase difference, the heave biased angle, the pitch biased angle and the oscillating frequency are investigated. The study is useful for guiding the design of bionic underwater vehicle based on flapping propulsion. It is indicated that the optimal parameters combination is v=0.5m/s, θ0=40°.θ0=30°,Ψ=90°,Фbias=0°,θbias=0°and f=0.5Hz .  相似文献   

13.
The deviations of the marine surface slope spectra (measured using an array of wave gauge sensors) from the theoretical estimates obtained using the linear spectral model of the wave field are analyzed. It has been indicated that the average measured full slope spectra (the sum of the slope component spectra in the orthogonal directions) is higher than the theoretical estimates by 6% at frequencies from the surface wave spectral peak (f m ) to 4.5 f m . The difference between the measured and theoretical estimates of the full slope spectrum rapidly increases at frequencies of f < f m . At f m ≈ 0.75 f m , the average measured full slope spectrum is higher than the theoretical estimate by a factor of more than 5.  相似文献   

14.
A criterion for the stability of plankton patchiness is developed using a Liapunov function. Plankton growth, advection and diffusion in a closed area are considered. A critical length scale for the stability does not exist but a more common criterion which contains the growth rateα, diffusion coefficientA l and arbitrary function of growthf can be introduced in an integral form.  相似文献   

15.
To date no analytical solution of the pile ultimate lateral capacity for the general cφ soil has been obtained. In the present study, a new dimensionless embedded ratio was proposed and the analytical solutions of ultimate lateral capacity and rotation center of rigid pile in cφ soils were obtained. The results showed that both the dimensionless ultimate lateral capacity and dimensionless rotation center were the univariate functions of the embedded ratio. Also, the ultimate lateral capacity in the cφ soil was the combination of the ultimate lateral capacity (f c ) in the clay, and the ultimate lateral capacity (f φ ) in the sand. Therefore, the Broms chart for clay, solution for clay (φ=0) put forward by Poulos and Davis, solution for sand (c=0) obtained by Petrasovits and Awad, and Kondner’s ultimate bending moment were all proven to be the special cases of the general solution in the present study. A comparison of the field and laboratory tests in 93 cases showed that the average ratios of the theoretical values to the experimental value ranged from 0.85 to 1.15. Also, the theoretical values displayed a good agreement with the test values.  相似文献   

16.
The wave transmission, reflection, and energy dissipation of the double rows of vertical piles suspending horizontal steel C shaped bars are experimentally and theoretically studied under normal regular waves. Different wave and structural parameters are investigated e.g. the wave length, the C shaped bars draft and spacing, the supporting piles diameter and spacing, and the space between the double rows. Also, the theoretical model based on an eigenfunction expansion method is developed to study the hydrodynamic breakwater performance. In order to examine the validity of the theoretical model, the theoretical results are compared with the experimental and theoretical results obtained by different authors. Comparison between experiments and predictions showed that theoretical model provides a good estimate to the different hydrodynamic coefficients when the friction factors of the upper and the lower parts are fU = 1.5 and fL = 0.75. The present breakwater physical model gives efficiency near other similar systems of different shapes.  相似文献   

17.
As a first step towards the development of inundation maps for the northwestern Indian Ocean, we simulated the near-field inundation of two large tsunami in the Makran subduction zone (MSZ). The tsunami scenarios were based on large historical earthquakes in the region. The first scenario included the rupture of about 500 km of the plate boundary in the eastern MSZ, featuring a moment magnitude of Mw 8.6. The second scenario involved the full rupture of the plate boundary resulting from a Mw 9 earthquake. For each scenario, the distribution of tsunami wave height along the coastlines of the region is presented. Also, detailed runup modeling was performed at four main coastal cities in the region for the second scenario. To investigate the possible effect of splay fault branching on tsunami wave height, a hypothetical splay fault was modeled which showed that it can locally increase the maximum wave height by a factor of 2. Our results showed that the two tsunami scenarios produce a runup height of 12-18 m and 24-30 m, respectively. For the second scenario, the modeled inundation distance was between 1 and 5 km.  相似文献   

18.
The failure of a ship hull girder is governed by buckling and plastic collapse of the deck, bottom and side shell steel stiffened plates. The stiffened steel plating in ships is generally subjected to both in-plane and out-of-plane loading and is more important to understand the characteristics of these panels under buckling. Tests are reported on the collapse load of stiffened plates with and without cutout and with reinforced cutout under uniaxial compression. A generalized computer program for the semi-analytical solutions proposed by various investigators based on strut approach and orthotropic plate approach, and a finite element analysis program based on orthotropic plate approach are developed. The panels are also analysed using the finite element analysis software ANSYS. An approximate method based on strut approach is proposed to calculate the collapse load of stiffened plates with cutouts and initial imperfections. The reduction in strength of the panels due to the presence of square cutout, rectangular cutout and increase in strength due to reinforcement around rectangular cutout are calculated based on the test results. Comparisons are made between the test results and predictions based on semi-analytical solutions and finite element analyses, and the uncertainty parameters calculated are discussed. Based on this study it is concluded that the cutout can be reinforced with a maximum increase in strength up to 19% for plate initiated failures.  相似文献   

19.
The results of a simulation of the combined tidal ice drift corresponding to a linear superposition of the M 2, S 2, K 1, and O 1 harmonics of the tidal generating force are discussed. Also, ice-induced maximal (during the tropical month, i.e., over 27.322 mean solar days) values of the dynamic and energy characteristics of combined motions are estimated in the marginal seas of the Siberian continental shelf. Special attention was paid to the revealing of zones of compression-rarefaction and zones of ice floe ridging.  相似文献   

20.
Helical anchors are an effective option to support offshore floating structures with mooring and anchoring systems, where wave and tidal forces are the predominant load components leading to cyclic and inclined loading conditions. In this study, the cyclic and inclined pullout load carrying behavior of helical anchors was investigated. Large-deformation finite element (FE) analysis using the coupled Eulerian–Lagrangian (CEL) method was performed to simulate the cyclic pullout load response of helical anchors. Various configuration conditions of the helical anchor and loading direction, including the number and diameter of helical plate, plate arrangement and load inclination angle (θ), were considered in the analysis. Induced displacements were most significant during the first loading cycle, whereas those for subsequent loading cycles were relatively small. The geometry condition of the helical anchor less affected the pullout load carrying behavior as θ increased. The horizontal displacements (δh) were larger than the vertical displacements (δv) when θ was larger than 30°. When θ was smaller than 30°, δv was more dominant component. It was found that the configuration with top-down increasing diameter was more effective to enhance the pullout load carrying behavior than the conventional bottom-up increasing diameter configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号