首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height, relative berm width, method of armour stone placement, and hydraulic parameters. The formulae should cover the structure range from statically stable berm breakwaters to conventional double layer armoured breakwaters.  相似文献   

2.
《Ocean Engineering》2004,31(11-12):1577-1589
The basic principle involved in the design of S-shaped breakwater is the provision of a wide berm at or around the water level with smaller size armor stones than that used in conventional design, which are allowed to reshape till an equilibrium slope is achieved. An attempt is made to assess the influence of wave height, wave period, and berm width on the stability of S-shaped breakwater with reduced (30% reduction in armor stone weight) armor unit weight. From the investigation, it is found that the berm breakwater with 30% reduced armor weight would be stable for the design wave height if the berm width is 60 cm and wave period 1.2 s. For higher wave periods studied, zero damage wave height reduces by 20–40% of the design wave height. Wave period has large influence on the stability of berm breakwaters. The runup increases with decrease in weight up to Wo/W=0.9.  相似文献   

3.
The main idea concerned with the design of berm breakwaters is to construct a less expensive structure with reshaping berm. An experimental study on the front slope stability of homogeneous berm breakwaters has been carried out in a large number of 2D model tests at Tarbiat Modares University. In this paper, the results of this experimental study are presented conjointly with a formula for estimation of berm recession as the most important parameter for describing the reshaping. This includes the influence of wave height and period, storm duration, berm width and elevation variations on the stability of berm breakwater with different armor stone sizes. A total of 222 tests have been performed to cover the impact of these parameters. According to the present research, one can observe that considering different armor stone sizes, berm width is a significant parameter concerning reshaping of a berm breakwater that has not been covered in previous works, so that as the berm width increases the amount of berm recession decreases. To assess the validity of the present formula, comparisons are made between the estimated berm recessions by this formula and formulae given by other researchers, showing that the estimation procedure foretells berm recession well according to the present data. It is observed that the recession estimated by the present formula has comparatively better correlation with the present experimental data, and also with other experimental results within the range of parameters tested.  相似文献   

4.
波浪对斜坡堤护面结构的冲刷破坏作用受诸多因素的影响,如波浪要素、水深条件、坡面角度、护面块体型式等。在进行某项有关斜坡堤护面块体的课题研究中发现,当防波堤断面结构确定后,护面人工块体的稳定性主要取决于波高及波周期的变化。在进行这方面内容设计计算中,通常波高的取值都能给予足够的重视,但波周期对护面块体稳定性的影响容易被忽视。本研究通过物理模型试验,针对波浪周期对斜坡堤护面块体稳定性的影响进行了总结分析,为防波堤设计提供参考。  相似文献   

5.
A series of laboratory experiments was carried out to investigate the strong reflection of regular water waves over a train of submerged breakwaters. Rectangular and trapezoidal shapes of submerged breakwaters are employed and compared for reflecting capability of incident waves. Measured reflection coefficients of regular waves over impermeable submerged breakwaters are verified by comparing with those of the eigenfunction expansion method. A very good agreement is observed. Reflection coefficients of permeable submerged breakwaters are less than those of impermeable breakwaters. The trapezoidal shape is recommended for a submerged breakwater in terms of reflecting capability and practical application.  相似文献   

6.
An integral method is described which is capable of computing the diffraction field produced by waves incident on a breakwater connected to or placed near a straight coastline. Some simple configurations are studied: a straight breakwater protruding normally from the coast, a straight breakwater parallel to the coast, an ‘elbow-shaped’ breakwater with one end connected to the coast, a pair of straight breakwaters protruding normally from the coast and a series of three equal straight breakwaters parallel to the coast. In all cases the water depth is assumed to be constant, while both the breakwater and the coastline walls are supposed to be perfectly reflective. Within the limits of these hypotheses the method is rather general, because breakwaters of arbitrary shape can be considered.  相似文献   

7.
This paper provides a stochastic method by which the two-dimensional onshore scour characteristics along the base of submerged breakwaters exposed to normally incident random waves on both sloping and horizontal sandy seabed can be derived. Here the formulas for the regular wave-induced scour characteristics provided by Young and Testik (2009) are used. These formulas are combined with describing the waves as a stationary Gaussian narrow-band random process to derive the random wave-induced onshore scour characteristics; the maximum scour depth, the scour length, and the distance of the maximum scour depth location from the onshore breakwater face. An example of calculation is also provided.  相似文献   

8.
Most previous investigations related to composite breakwaters have focused on the wave forces acting on the structure itself from a hydrodynamic aspect. The foundational aspects of a composite breakwater under wave-induced cyclic loading are also important in studying the stability of a composite breakwater. In this study, numerical simulations were performed to investigate the wave-induced pore water pressure and flow changes inside the rubble mound of the composite breakwater and seabed foundation. The validity and applicability of the numerical model were demonstrated by comparing numerical results with existing experimental data. Moreover, the present model clearly has shown that the instantaneous directions of pore water flow motion inside the seabed induced by surface waves are in good agreement with the general wave-induced pore water flow inside the seabed. The model is further used to discuss the stability of a composite breakwater, i.e., the interaction among nonlinear waves, composite breakwater and seabed. Numerical results suggest that the stability of a composite breakwater is affected by not only downward shear flow generating on the seaward slope face of the rubble mound but, also, a high and dense pore water pressure gradient inside the rubble mound and seabed foundation.  相似文献   

9.
Deformation of rubble-mound breakwaters under cyclic loads   总被引:1,自引:0,他引:1  
Rubble-mound breakwaters usually consist of a core of small quarry-run rock protected by one or more intermediate layers or underlayers that separate the core from the cover layers, which are composed of large armor units. Failure of rubble-mound breakwaters may be due to effects such as removal or damage of the armor units, overtopping leading to scouring, toe erosion, loss of the core material, or foundation problems under waves. However, whether rubble mounds fail under seismic loads is unknown. High seismic activity can lead to large settlements and even to failure of the breakwaters. The design of coastal structures should take into account the most relevant factors in each case, including seismic loading. The objective of this study is to understanding the failure mechanisms of conventional breakwater structures under seismic loads on rigid foundations. Hence, an experimental study was carried out on conventional breakwater structures with and without toes, subjected to different dynamic loadings of variable frequencies and amplitudes, in a shaking tank. A shaking tank with a single degree of freedom was developed to study the simple responses of conventional rubble-mound breakwaters under cyclic loads. For each test, an automatic raining crane system was used to achieve the same relative density and porosity of the core material. The input motion induced horizontal accelerations of different magnitudes during the tests. The accelerations and the deformation phases of the model were measured by a data acquisition system and an image processing system. The experiments on the conventional rubble-mound type breakwater model were performed under rigid-bottom conditions. The model's scale was 1:50. Cyclic responses of breakwaters with toes and without toes were examined separately, and their behaviors were compared. The results were compared with a numerical study, and the material properties and failure modes were thus defined.  相似文献   

10.
试验研究表明 ,不规则波对斜坡堤护脚棱体稳定性的威胁大于波高对应于Hs 的规则波 ,斜坡堤护面形式对护脚块石的稳定也有影响。Gerding公式虽然准确地描述了棱体在波浪作用下的稳定性规律 ,但由于护面糙率、透水率等因素的影响在工程上应用仍需进一步修正。文章指出在中低水位 ,Gerding公式计算的护脚棱体稳定重量有可能偏小 ,并给出了不同类型护面下护脚棱体稳定计算的修正系数  相似文献   

11.
The paper describes the results of an experimental study on the behaviour of a submerged rock berm in liquefied backfill soil. The soil is liquefied by waves, and the rock berm is subject to the orbital motion of the liquefied soil. The soil used in the experiments was silt with d50=0.075 mm. Various berm materials were used, stones of size 0.74-2.5 cm, plastic balls of size 3.6 cm, brass of size 2.5 cm and steel of size 1.0 cm. The experiments show that rock berms that are stable under very large waves can be unstable when they are exposed to the motion of liquefied soil. The limited data obtained in the study were plotted as a function of the mobility number versus the Keulegan-Carpenter number for the range of the Reynolds number of the tests. The critical mobility number corresponding to the incipient motion of the berm stones is determined. Recommendations are made as to how the present findings can be implemented in practice.  相似文献   

12.
Wave-induced seabed instability, either momentary liquefaction or shear failure, is an important topic in ocean and coastal engineering. Many factors, such as seabed properties and wave parameters, affect the seabed instability. A non-dimensional parameter is proposed in this paper to evaluate the occurrence of momentary liquefaction. This parameter includes the properties of the soil and the wave. The determination of the wave-induced liquefaction depth is also suggested based on this non-dimensional parameter. As an example, a two-dimensional seabed with finite thickness is numerically treated with the EFGM meshless method developed early for wave-induced seabed responses. Parametric study is carried out to investigate the effect of wavelength, compressibility of pore fluid, permeability and stiffness of porous media, and variable stiffness with depth on the seabed response with three criteria for liquefaction. It is found that this non-dimensional parameter is a good index for identifying the momentary liquefaction qualitatively, and the criterion of liquefaction with seepage force can be used to predict the deepest liquefaction depth.  相似文献   

13.
This study employed direct numerical simulation to simulate the fully nonlinear interaction between the water waves, the submerged breakwater, and the seabed under differing wave conditions. In the numerical simulation, the laminar flow condition in the seabed was applied to evaluate the more exact fluid resistance acting on the porous media. Varying incident wave conditions were applied to the flow field resulting from the wave–structure–seabed interaction, and the variation in the pore water pressure beneath the submerged breakwater was investigated along the cross-section of the submerged breakwater. Structural safety and scouring were also considered on the basis of the numerical results for the flow field around the structure and the variation of the pore water pressure.  相似文献   

14.
The evaluation of seabed response under wave loading is important for prediction of stability of foundations of offshore structures. In this study, a stochastic finite element model which integrates the Karhunen-Loève expansion random field simulation and finite element modeling of wave-induced seabed response is established. The wave-induced oscillatory response in a spatially random heterogeneous porous seabed considering cross-correlated multiple soil properties is investigated. The effects of multiple spatial random soil properties, correlation length and the trend function (the relation of the mean value versus depth) on oscillatory pore water pressure and momentary liquefaction are discussed. The stochastic analyses show that the uncertainty bounds of oscillatory pore water pressure are wider for the case with multiple spatially random soil properties compared with those with the single random soil property. The mean pore water pressure of the stochastic analysis is greater than the one obtained by the deterministic analysis. Therefore, the average momentary liquefaction zone in the stochastic analysis is shallower than the deterministic one. The median of momentary liquefaction depth generally decreases with the increase of vertical correlation length. When the slope of the trend function increases, the uncertainty of pore water pressure is greatly reduced at deeper depth of the seabed. Without considering the trend of soil properties, the wave-induced momentary liquefaction potential may be underestimated.  相似文献   

15.
基于开源程序REEF3D,通过建立高精度二维数值波浪水槽,系统研究了聚焦波浪在浅堤上传播变形的规律,着重分析了聚焦波浪通过浅堤的水动力过程及能量变化规律,讨论了不同波浪要素对聚焦波浪传播特性的影响。除此之外,还考虑了双浅堤布置对聚焦波浪传播变形的影响。研究结果表明:极端波浪通过浅堤时,堤顶水深越小,波浪主频能量衰减越显著。在给定堤顶水深条件下,聚焦点与浅堤的相对位置对聚焦波浪能量的衰减影响较小。在双浅堤布置条件下,随着浅堤间距的增加,上下游浅堤的相互影响逐渐减弱,高频段的波浪能量也随之减小。  相似文献   

16.
Wave transformation over submerged permeable breakwater on porous bottom   总被引:1,自引:0,他引:1  
A numerical model is presented in this study to investigate the wave transformation over a submerged permeable breakwater on a porous slope seabed. For this purpose, the time-dependent mild-slope equation is newly derived for waves propagating over two layers of porous medium. This new mild-slope equation involves the parameters of the porous medium, and it is a type of hyperbolic differential equation, therefore numerically efficient. The validity of the present model is verified based on the comparisons with the previous experiments. The effects of the permeable properties of both the porous seabed and the submerged permeable breakwater are discussed in detail. The geometry of the submerged permeable breakwater to the wave transformation is also investigated based on the numerical solutions.  相似文献   

17.
Response of a porous seabed around breakwater heads   总被引:1,自引:0,他引:1  
J. Li  D.-S. Jeng   《Ocean Engineering》2008,35(8-9):864-886
The evaluation of wave-induced pore pressures and effective stresses in a porous seabed near a breakwater head is important for coastal engineers involved in the design of marine structures. Most previous studies have been limited to two-dimensional (2D) or three-dimensional (3D) cases in front of a breakwater. In this study, we focus on the problem near breakwater heads that consists of incident, reflected and diffracted waves. Both wave-induced oscillatory and residual liquefactions will be considered in our new models. The mistake in the previous work [Jeng, D.-S., 1996. Wave-induced liquefaction potential at the tip of a breakwater. Applied Ocean Research 18(5), 229–241] for oscillatory mechanism is corrected, while a new 3D boundary value problem describing residual mechanism is established. A parametric study is conducted to investigate the influences of several wave and soil parameters on wave-induced oscillatory and residual liquefactions around breakwater heads.  相似文献   

18.
Breakwaters with a berm can significantly reduce overtopping and reduce the required rock size compared to straight slopes without a berm. Here, the stability of rock slopes with a horizontal berm has been studied by means of physical model tests to provide information on the required rock size. The tests and analysis are focussed on the slope above the berm as well as the slope below the berm. Also the stability of the rock at the berm is addressed. The influence of the slope angle (1:2 and 1:4), the width of the berm, the level of the berm, and the wave steepness has been investigated. Based on the test results prediction formulae have been derived to quantify the required rock size for rubble mound breakwaters with a berm. Especially for the slope above the berm, the rock size can be reduced significantly compared to straight slopes.  相似文献   

19.
柔性水囊潜堤由橡胶制成,内部充水,具有结构简单、造价低廉等优点,能较好满足人工岛、跨海桥梁、海洋平台等基础设施建设工程对简单便携、拆装方便的临时防波堤的需求。为了探究柔性水囊潜堤的消波特性,在溃坝水槽内开展溃坝波与半圆柱形柔性水囊潜堤相互作用的试验研究,重点探究柔性水囊潜堤与溃坝波相互作用过程中水位变化特性,并与半圆柱刚性潜堤的性能进行比较;同时分析柔性水囊潜堤内部初始水压和浸没深度等参数对其消波性能的影响。结果表明:柔性水囊潜堤能够用作临时防波堤来衰减波浪;与半圆柱刚性潜堤相比,柔性水囊潜堤在降低溃坝波无量纲最大水位、提高消波性能方面更具优势;内部初始水压是影响柔性水囊潜堤消波性能的重要因素,适当降低内部初始水压,有利于增强柔性潜堤的变形程度,进而增加波能耗散,可获得更好的消波效果;而增加浸没深度即潜深,会使得柔性水囊潜堤对溃坝波的影响程度降低,消波效果减弱。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号