首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Despite the presence of numerous active volcanoes in the northern half of Ecuador, few, if any, distal tephras have been previously recognized in the southern one third of the country. In this article, we document the presence of thin (0.1–1.0-cm-thick) distal tephras comprising glass and/or phenocrysts of hornblende and feldspar in sediment cores from five glacial lakes and one bog in Las Cajas National Park (2°40′–3°00′S, 79°00′–79°25′W). The lake cores contain from 5 to 7 tephras, and each has a diagnostic major element geochemistry as determined from electron microprobe analysis of 710 glass shards and 440 phenocrysts of feldspar and hornblende. The loss of sodium with exposure to the electron microbeam causes a 10±7 wt.% (±1σ) reduction in Na content, which we empirically determined and corrected for before correlating tephras among the sediment cores. We use a similarity coefficient to correlate among the sediment cores; pair-wise comparison of all tephras generally yields an unambiguous correlation among the cores. Six tephras can be traced among all or most of the cores, and several tephras are present in only one or two of the cores. Twenty-six accelerator mass spectrometry 14C dates on macrofossils preserved in the sediment cores provide the basis for establishing a regional tephrochronology. The widespread tephras were deposited 9900, 8800, 7300, 5300, 2500, and 2200 cal yr B.P. The oldest tephras were deposited 15,500 and 15,100 cal yr B.P., but these are not found in all cores. Two of the tephras appear correlative with volcaniclastic strata on the flanks of Volcán Cotopaxi and one tephra may correlate with strata on the flanks of Volcán Ninahuilca; both volcanoes are in central Ecuador. The absence of tephras in sediment cores correlative with the numerous eruptions of active volcanoes of the past two millennia implies that the earlier eruptions, which did deposit tephras in the lakes, must have been either especially voluminous, or southerly winds must have prevailed at the time of the eruption, or both.  相似文献   

2.
A 467-cm-long core from the inner shelf of the eastern Laptev Sea provides a depositional history since 9400 cal yr. B.P. The history involves temporal changes in the fluvial runoff as well as postglacial sea-level rise and southward retreat of the coastline. Although the core contains marine fossils back to 8900 cal yr B.P., abundant plant debris in a sandy facies low in the core shows that a river influenced the study site until 8100 cal yr B.P. As sea level rose and the distance to the coast increased, this riverine influence diminished gradually and the sediment type changed, by 7400 cal yr B.P., from sandy silt to clayey silt. Although total sediment input decreased in a step-like fashion from 7600 to 4000 cal yr B.P., this interval had the highest average sedimentation rates and the greatest fluxes in most sedimentary components. While this maximum probably resulted from middle Holocene climate warming, the low input of sand to the site after 7400 cal yr B.P. probably resulted from further southward retreat of the coastline and river mouth. Since about 4000 cal yr B.P., total sediment flux has remained rather constant in this part of the Laptev Sea shelf due to a gradual stabilization of the depositional regime after completion of the Holocene sea-level rise.  相似文献   

3.
Analyses of sediment cores from two lakes in the central Brooks Range provide temperature and moisture balance information for the past 8500 cal yr at century-scale resolution. Two methods of oxygen isotope analysis are used to reconstruct past changes in the effective moisture (precipitation minus evaporation) and temperature. Effective moisture is inferred from oxygen isotope ratios in sediment cellulose from Meli Lake (area 0.13 km2, depth 19.4 m). The lake has a low watershed-to-lake-area ratio (7) and significant evaporation relative to input. Summer temperature shifts are based on oxygen isotope analyses of endogenic calcite from Tangled Up Lake (area 0.25 km2, depth 3.5 m). This basin has a larger watershed-to-lake-area ratio (91) and less evaporation relative to input. Sediment oxygen isotope analyses from the two sites indicate generally more arid conditions than present prior to 6000 cal yr B.P. Subsequently, the region became increasingly wet. Temperature variability is recorded minimally at centennial scale resolution with values that are generally cool for the past 6700 cal yr. The timing and direction of climate variability indicated by the oxygen isotope time series from Meli and Tangled Up lakes are consistent with previously established late Holocene glacier advances at 5000 cal yr B.P. in the central Brooks Range, and high lake-levels at Birch Lake since 5500 cal yr B.P. This unique use of oxygen isotopes reveals both moisture balance and temperature histories at previously undetected high-resolution temporal scales for northern Alaska during the middle to late Holocene.  相似文献   

4.
Postglacial climatic conditions were inferred from cores taken from Big Lake in southern British Columbia. Low concentrations of nonarboreal pollen and pigments near the base of the core suggest that initial conditions were cool. Increases in both aquatic and terrestrial production suggest warmer and moister conditions until 8500 cal yr B.P. Hyposaline diatom assemblages, increases in nonarboreal pollen, and increased concentrations of pigments suggest the onset of arid conditions from 8500 to 7500 cal yr B.P. Slightly less arid conditions are inferred from 7500 until 6660 cal yr B.P. based on the diatoms, small increases and greater variability in biogenic silica and pigments, and higher percentages of arboreal pollen. At 6600 cal yr B.P., changes in diatoms, pigments, biogenic silica, and organic matter suggest that Big Lake became fresh, deep, and eutrophic until 3600 cal yr B.P., when water levels and nutrients decreased slightly. Our paleoclimatic inferences are similar to pollen-based studies until 6600 cal yr B.P. However, unlike these studies, our multiple lines of evidence from Big Lake imply large changes in effective moisture since 6000 cal yr B.P.  相似文献   

5.
High-resolution lithostratigraphy, mineral magnetic, carbon, pollen, and macrofossil analyses, and accelerator mass spectrometry 14C measurements were performed in the study of a sediment sequence from Lake Tambichozero, southeastern Russian Karelia, to reconstruct late-glacial and early Holocene aquatic and terrestrial environmental changes. The lake formed ca. 14,000 cal yr B.P. and the area around the lake was subsequently colonized by arctic plants, forming patches of pioneer communities surrounded by areas of exposed soil. A minor rise in lake productivity and the immigration of Betula pubescens occurred ca. 11,500 cal yr B.P. The rise in summer temperatures probably led to increased melting of remnant ice and enhanced erosion. The distinct increase in lake productivity and the development of open Betula-Populus forests, which are reconstructed based on plant macrofossil remains, indicate stable soils from 10,600 cal yr B.P. onward. Pinus and Picea probably became established ca. 9900 cal yr B.P.  相似文献   

6.
Luminescence geochronology, especially infrared stimulated luminescence analyses on marsh mud, shows that a relatively deep lake reached its peak (1340 m above sea level) in the Bonneville basin 59,000±5000 yr ago. The age is consistent with nonfinite 14C ages and with amino acid geochronology on ostracodes. The Cutler Dam Alloformation was deposited during this lake cycle, which, like the subsequent Bonneville lake cycle, appears to have reached its maximum highstand following the peak of a global glacial stage (marine oxygen-isotope stage 4) but at a time when other records from North America show evidence for cold climate and expanded glacier ice.  相似文献   

7.
Paleoecological records from two Holocene peat bogs in northern Germany are linked by two microscopic volcanic ash layers, correlated by petrology and geochemistry to explosive volcanism on Iceland. The younger “Microlite tephra” cannot be correlated to any known eruption, while the older tephra layer is identified as a deposit of the Hekla 3 eruption. The tephra layers are dated by an age–depth regression of accelerator mass spectrometry 14C ages that have been calibrated and combined in probability distributions. This procedure gives an age of 730–664 cal yr B.C. for the “Microlite tephra” event and 1087–1006 cal yr B.C. for the Hekla 3 event. Accordingly, the tephra layers were deposited during the late Bronze Age. At this time, human settlement slowly increased pressure on the environment, as indicated by changes in woodland pollen composition at the two bogs. The tephra-marker horizons further show that the palynologically defined transition from the Subboreal to the Subatlantic Period is synchronous in the investigated area. However, the macroscopic visible marker in peat, the change from fibrous to sapric peat, the “Schwarztorf-Weißtorf-Kontakt,” is asynchronous. Bog vegetation did not immediately react in unison to a climatic change at this pollen zone boundary; instead, the timing of vegetation change depended on the location within the bog.  相似文献   

8.
The benches and risers at Mormon Point, Death Valley, USA, have long been interpreted as strandlines cut by still-stands of pluvial lakes correlative with oxygen isotope stage (OIS) 5e/6 (120,000–186,000 yr B.P.) and OIS-2 (10,000–35,000 yr B.P.). This study presents geologic mapping and geomorphic analyses (Gilbert's criteria, longitudinal profiles), which indicate that only the highest bench at Mormon Point (90 m above mean sea level (msl)) is a lake strandline. The other prominent benches on the north-descending slope immediately below this strandline are interpreted as fault scarps offsetting a lacustrine abrasion platform. The faults offsetting the abrasion platform most likely join downward into and slip sympathetically with the Mormon Point turtleback fault, implying late Quaternary slip on this low-angle normal fault. Our geomorphic reinterpretation implies that the OIS-5e/6 lake receded rapidly enough not to cut strandlines and was 90 m deep. Consistent with independent core studies of the salt pan, no evidence of OIS-2 lake strandlines was found at Mormon Point, which indicates that the maximum elevation of the OIS-2 lake surface was −30 m msl. Thus, as measured by pluvial lake depth, the OIS-2 effective precipitation was significantly less than during OIS-5e/6, a finding that is more consistent with other studies in the region. The changed geomorphic context indicates that previous surface exposure dates on fault scarps and benches at Mormon Point are uninterpretable with respect to lake history.  相似文献   

9.
High-resolution charcoal and pollen analyses were used to reconstruct a 4600-yr-long history of fire and vegetation near Taylor Lake in the wettest forests of coastal Oregon. Today, fires in these forests are rare because the season of ignition does not coincide with months of dry fuels. From ca. 4600 to 2700 cal yr B.P. fire episodes occurred at intervals of 140±30 yr while forest vegetation was dominated by disturbance-adapted taxa such as Alnus rubra. From ca. 2700 cal yr B.P. to the present, fire episodes have become less common, occurring at intervals of 240±30 yr, and fire-sensitive forest taxa, such as Tsuga heterophylla and Picea sitchensis, have become more prominent. Fire occurrence during the mid-Holocene was similar to that of the more xeric forests in the eastern Coast Range and suggests that summer drought was widespread. After ca. 2700 cal yr B.P., a decrease in fire episode frequency suggests that cooler conditions and possibly increased summer fog allowed the establishment of present-day Picea sitchensis forests within the watershed. These results provide evidence that fire has been an important disturbance agent in the Coast Range of Oregon, and variations in fire frequency and climate have led to the establishment of present-day forests.  相似文献   

10.
Geological, geomorphological, and morphotectonic studies at the Gesher Benot Ya'aqov Acheulean site, Northern Jordan Valley, provide: 1) a unique opportunity to establish the ecological background of hominid behavior during the early stages of widespread human occupation; 2) crucial data for understanding the paleo-environment and the various processes that affected the area near the Gesher Benot Ya'aqov site; and 3) a basis for further comprehensive research in the region.Quaternary tectonic activity near the Acheulean archeological site has produced a complex local setting that controls the surrounding landscape. Tectonic activity formed the Benot Ya'aqov embayment, which attracted hominids and a variety of other fauna. Sediments of the Benot Ya'akov formation deposited in the embayment facilitated excellent preservation of the remnants of Acheulean hominid activities and of abundant floral and faunal remains. The formation was subsequently affected by faulting and folding. Local uplift ended the deposition of lacustrine sediments in the embayment of Hula Valley Basin and caused erosion and vertical incision of the Jordan River that resulted in the capture of the Rosh Pinna River and the exposure of the Benot Ya'akov formation. These deposits are found in different structural positions along the north–south oriented morphotectonic embayment. The outcrops contain numerous archeological sites, giving the study area an unusually high potential for future hominid discoveries.  相似文献   

11.
Sedimentological, faunal, and archaeological investigations at the Sunshine Locality, Long Valley, Nevada reveal a history of human adaptation and environmental change at the last glacial–interglacial transition in North America's north-central Great Basin. The locality contains a suite of lacustrine, alluvial, and eolian deposits associated with fluvially reworked faunal remains and Paleoindian artifacts. Radiocarbon-dated stratigraphy indicates a history of receding pluvial lake levels followed by alluvial downcutting and subsequent valley filling with marsh-like conditions at the end of the Pleistocene. A period of alluvial deposition and shallow water tables (9,800 to 11,000 14C yr B.P.) correlates to the Younger Dryas. Subsequent drier conditions and reduced surface runoff mark the early Holocene; sand dunes replace wetlands by 8,000 14C yr B.P. The stratigraphy at Sunshine is similar to sites located 400 km south and supports regional climatic synchroneity in the central and southern Great Basin during the terminal Pleistocene/early Holocene. Given regional climate change and recurrent geomorphic settings comparable to Sunshine, we believe that there is a high potential for buried Paleoindian features in primary association with extinct fauna elsewhere in the region yet to be discovered due to limited stratigraphic exposure and consequent low visibility.  相似文献   

12.
A sediment core from Smorodinovoye Lake (SML), northeastern Siberia (area to the east of the Verkhoyansk Range) spanning the last 24,000 14C yr indicates that vegetational and climatic changes in the upper Indigirka basin resemble those in eastern Siberia (Lena basin and westward). For example, maximum postglacial summer temperatures at SML probably occurred 6000–4000 14C yr B.P., an age more in accordance with eastern than northeastern records. Larix arrived near the lake by 9600 14C yr B.P., approximately when forests expanded in the east but ca. 1500 14C yr later than forests were established in the neighboring upper Kolyma basin. Paleobotanical data further suggest that Larix possibly migrated southward from populations in the arctic lowlands of eastern Siberia and did not originate from interior refugia of the upper Kolyma basin. Although a Younger Dryas cooling has been noted in eastern Siberia, SML provides the first evidence from the northeast for a similar climatic reversal. Climatic variations seemingly have persisted between the Indigirka and Kolyma basins over at least the last 11,000 14C yr, despite the proximity of the two drainages and the occurrence of major changes in boundary conditions (e.g., seasonal insolation, sea levels) that have influenced other regional climatic patterns.  相似文献   

13.
Archaeological investigations in Camels Back Cave, western Utah, recovered a series of small-mammal bone assemblages from stratified deposits dating between ca. 12,000 and 500 14C yr B.P. The cave's early Holocene fauna includes a number of species adapted to montane or mesic habitats containing grasses and/or sagebrush (e.g., Lepus townsendii, Marmota flaviventris, Reithrodontomys megalotis, and Brachylagus idahoensis) which suggest that the region was relatively cool and moist until after 8800 14C yr B.P. Between ca. 8600 and 8100 14C yr B.P. these mammals became locally extinct, taxonomic diversity declined, and there was an increase in species well-adapted to xeric, low-elevation habitats, including ground squirrels, Lepus californicus and Neotoma lepida. The early small-mammal record from Camels Back Cave is similar to the 11,300–6000 14C yr B.P. mammalian sequence from Homestead Cave, northwestern Utah, and provides corroborative data on Bonneville Basin paleoenvironments and mammalian responses to middle Holocene desertification.  相似文献   

14.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada.  相似文献   

15.
A newly identified tephra in stratified deposits in southwestern Utah, dated 14,000 14C yr B.P., may aid in correlating late Pleistocene deposits across parts of the southern Great Basin and west-central Colorado Plateau. Geochemical analyses of the ash suggest the tephra originated from Mono Craters, California, and most probably correlates with Wilson Creek ash #3. Because the ash is 2 mm thick 550 km from its source, the event may have been larger than others correlated to Mono Craters eruptions.  相似文献   

16.
Five Neotoma spp. (packrat) middens are analyzed from Sand Canyon Alcove, Dinosaur National Monument, Colorado. Plant remains in middens dated at approximately 9870, 9050, 8460, 3000, and 0 14C yr B.P. are used to estimate Holocene seasonal temperature and precipitation values based on modern plant tolerances published by Thompson et al. (1999a, 1999b). Early Holocene vegetation at the alcove shows a transition from a cool/mesic to a warmer, more xeric community between 9050 and 8460 14C yr B.P. Picea pungens, Pinus flexilis, and Juniperus communis exhibit an average minimum elevational displacement of 215 m. Picea pungens and Pinus flexilis are no longer found in the monument.Estimates based on modern plant parameters (Thompson et al., 1999a) suggest that average temperatures at 9870 14C yr B.P. may have been at least 1° to 3°C colder in January and no greater than 3° to 10°C colder in July than modern at this site. Precipitation during this time may have been at least 2 times modern in January and 2 to 3 times modern in July. Discrepancies in estimated temperature and precipitation tolerances between last occurrence and first occurrence taxa in the midden record suggest that midden assemblages may include persisting relict vegetation.  相似文献   

17.
The 36Cl dating method is increasingly being used to determine the surface-exposure history of Quaternary landforms. Production rates for the 36Cl isotopic system, a critical component of the dating method, have now been refined using the well-constrained radiocarbon-based deglaciation history of Whidbey and Fidalgo Islands, Washington. The calculated total production rates due to calcium and potassium are 91±5 atoms 36Cl (g Ca)−1 yr−1 and are 228±18 atoms 36Cl (g K)−1 yr−1, respectively. The calculated ground-level secondary neutron production rate in air, Pf(0), inferred from thermal neutron absorption by 35Cl is 762±28 neutrons (g air)−1 yr−1 for samples with low water content (1–2 wt.%). Neutron absorption by serpentinized harzburgite samples of the same exposure age, having higher water content (8–12 wt.%), is 40% greater relative to that for dry samples. These data suggest that existing models do not adequately describe thermalization and capture of neutrons for hydrous rock samples. Calculated 36Cl ages of samples collected from the surfaces of a well-dated dacite flow (10,600–12,800 cal yr B.P.) and three disparate deglaciated localities are consistent with close limiting calibrated 14C ages, thereby supporting the validity of our 36Cl production rates integrated over the last 15,500 cal yr between latitudes of 46.5° and 51°N. Although our production rates are internally consistent and yield reasonable exposure ages for other localities, there nevertheless are significant differences between these production rates and those of other investigators.  相似文献   

18.
Approximately 70 km of new decimeter-resolution seismic reflection profile data from Owasco Lake, New York define a middle Holocene (4600 14C yr B.P.) erosion surface in the north end of the lake at water depths as great as 26 m. Beneath the lake, post-glacial sediments are up to 9 m thick and represent about 10% of the total sediment fill. Early to middle Holocene sediments, 6 m thick, contain biogenic gas at the south end of the basin and a large (4 km×300 m×15 m) subaqueous slide deposit along the east-central portion of the lake. Late Holocene sediments are thinner or absent, particularly at the north end of the lake. The middle Holocene erosion surface may have been produced by a drop in lake level. Alternatively, it may represent a change in climate during the transition between the relatively warm Holocene hypsithermal and cool neoglacial. At this time (4600 14C yr B.P.) circulation in Owasco Lake appears to have evolved from sluggish to active. The increased circulation, which persists today, probably resulted from atmospheric cold fronts with strong southwesterly winds that piled up water at the north end of the lake. The increased water circulation may have been ultimately driven by decreasing insolation, which produced an increased pole-to-equator thermal gradient and, thus, stronger global winds that began at the transition between the hypsithermal and neoglacial.  相似文献   

19.
Large glaciers descended western valleys of the Olympic Mountains six times during the last (Wisconsin) glaciation, terminating in the Pacific coastal lowlands. The glaciers constructed extensive landforms and thick stratigraphic sequences, which commonly contain wood and other organic detritus. The organic material, coupled with stratigraphic data, provides a detailed radiocarbon chronology of late Pleistocene ice-margin fluctuations. The early Wisconsin Lyman Rapids advance, which terminated prior to ca. 54,000 14C yr B.P., represented the most extensive ice cover. Subsequent glacier expansions included the Hoh Oxbow 1 advance, which commenced between ca. 42,000 and 35,000 14C yr B.P.; the Hoh Oxbow 2 advance, ca. 30,800 to 26,300 14C yr B.P.; the Hoh Oxbow 3 advance, ca. 22,000–19,300 14C yr B.P.; the Twin Creeks 1 advance, 19,100–18,300 14C yr B.P.; and the subsequent, undated Twin Creeks 2 advance. The Hoh Oxbow 2 advance represents the greatest ice extent of the last 50,000 yr, with the glacier extending 22 km further downvalley than during the Twin Creeks 1 advance, which is correlative with the global last glacial maximum. Local pollen data indicate intensified summer cooling during successive stadial events. Because ice extent was diminished during colder stadial events, precipitation—not summer temperature—influenced the magnitude of glaciation most strongly. Regional aridity, independently documented by extensive pollen evidence, limited ice extent during the last glacial maximum. The timing of glacier advances suggests causal links with North Atlantic Bond cycles and Heinrich events.  相似文献   

20.
Early Holocene sediments from a continental Antarctic lake (Ace Lake, Vestfold Hills, East Antarctica) contained abundant fossil rotifers of the genus Notholca. The fossil is similar to specimens of Notholca sp. present in modern-day Ace Lake and other fresh and brackish lakes of the Vestfold Hills. Cyanobacteria and protists (chrysophyte cysts, dinoflagellate cysts, and rhizopod tests) were also recovered from the core samples. These sediments were deposited early in the freshwater phase of Ace Lake, soon after deglaciation of the area. The occurrence of this trophically diverse assemblage of organisms at an early stage in the evolution of the lake suggests either that they were part of an endemic Antarctic flora and fauna which pre-dated the last glacial maximum and survived in glacial refugia or that efficient intercontinental dispersal had occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号