首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid urbanization, industrialization, modernization, and the frequent Middle Eastern dust storms have negatively impacted the ambient air quality in Bahrain. The objective of this study is to identify the most critical atmospheric air pollutants with emphasis on their potential risk to health based on calculated AQI (air quality index) values using EPA approach. The air quality datasets of particulate matters (PM10 and PM2.5), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) were measured in January 2012 and August 2012 using five mobile air quality monitoring stations located at different governorates. The results of this study demonstrated that PM10 and PM2.5 are the most critical air pollutants in Bahrain with PM2.5 prevailing during January 2012 and PM10 prevailing during August 2012. The corresponding AQI categories were utilized to evaluate spatial variability of particulate matters in five governorates. The impact of meteorological factors such as ambient air temperature, wind speed, relative humidity, and total precipitation on ambient air quality were discussed. The analysis demonstrated that the highest PM10 concentrations were observed in the Northern Governorate while the highest PM2.5 concentrations were observed in the Capital, Central, and Northern Governorates during August 2012. It was observed that the levels of PM2.5 pollution were higher within proximity of the industrial zone. The results suggested that the average PM2.5/PM10 ratio in August 2012 was lower than in January 2012 due to the Aeolian processes. This study concludes that higher wind speed, total precipitation, relative humidity rates, and lower ambient air temperature in January 2012 assisted with the dissipation of particulate matter thus lowering the pollution levels of both PM10 and PM2.5 in comparison to August 2012.  相似文献   

2.
Temporal variation of PM10 using 2-year data (January, 2007–December, 2008) of Delhi is presented. PM10 varied from 42 to 200 μg m−3 over January to December, with an average 114.1 ± 81.1 μg m−3. They are comparable with the data collected by Central Pollution Control Board (National Agency which monitors data over the entire country in India) and are lower than National Ambient Air Quality (NAAQ) standard during monsoon, close to NAAQ during summer but higher in winter. Among CO, NO2, SO2, rainfall, temperature, and wind speed, PM10 shows good correlation with CO. Also, PM10, PM2.5, and PM1 levels on Deepawali days when fireworks were displayed are presented. In these festive days, PM10, PM2.5, and PM1 levels were 723, 588, and 536 μg m−3 in 2007 and 501, 389, and 346 μg m−3 in 2008. PM10, PM2.5, and PM1 levels in 2008 were 1.5 times lower than those in 2007 probably due to higher mixing height (446 m), temperature (23.8°C), and winds (0.36 ms−1).  相似文献   

3.
Outdoor PM2.5 easily flows into indoor and seriously influences indoor air quality due to its characteristics of flow, diffusion and penetration. It is a proper ‘gas’ tracer similar to CO2 to study building ventilation. Therefore, in this paper, a model for calculating air change rates by removing indoor PM2.5 was deduced. Also, some factors influencing the air change rate were qualitatively analyzed and the expression of possible air change rate error was given. The comparison between the results from PM2.5 removal method and the data from CO2 decay method validated the model. The relative error between the results of the two methods is less than 10%. On the basis of validating the model, this paper presented the research of air change rates in ten naturally ventilated house rooms in three Chinese cities. It is found that the rooms with the ventilation rates of 1.15–6.75 m3/h/person have inadequate ventilation.  相似文献   

4.
Aeolian (wind) erosion is most common in arid regions. The resulted emission of PM10 (particulate matter that is smaller than 10 μm in diameter) from the soil has many environmental and socioeconomic consequences such as soil degradation and air pollution. Topsoil resistance to aeolian transport highly depends on the surface composition. The study aim was to examine variations in PM10 fluxes in a desert-dust source due to surface composition and topsoil disturbance. Aeolian field experiments using a boundary layer wind tunnel alongside soil composition analysis were integrated in this study. The results show variations in PM10 fluxes (ranging from 9.5 to 524.6 mg m?2 min?1) in the studied area. Higher wind velocity increased significantly the PM10 fluxes in all surface compositions. A short-term natural disturbance caused changes in the aggregate soil distribution (ASD) and increased significantly PM10 emissions. Considering that PM10 contains clays, organic matter, and absorbed elements, the recorded PM10 fluxes are indicative of the potential soil loss and degradation by wind erosion in such resource-limited ecosystems. The findings have implications in modeling dust emission from a source area with complex surfaces.  相似文献   

5.
Ambient air and coarse, fine and particulate-bound mercury (Hg(p)) pollutants were collected and analyzed from March 17 to May 22 and September 3, 2009 to March 5, 2010 at a highway traffic site located in Sha-Lu, central Taiwan. This study has the following objectives: (1) to measure the coarse and fine particulates concentrations and the particulate-bound mercury Hg(p) which was attached to these particulate; (2) to determine the average Hg(p) compositions in coarse and fine particulates and (3) to compare the Hg(p) concentrations and compositions particulate in this study to the those obtained in other studies. The results obtained in this study indicated that the average ambient air PM2.5, PM2.5–10 and PM10 were 18.79 ± 6.71, 11.22 ± 4.93 and 30.01 ± 10.27 μg/m3, respectively. The ranges of concentrations for Hg(p) in PM2.5 were from 0.0016 to 0.0557 ng/m3, from 0.0006 to 0.0364 ng/m3 in PM2.5–10 and from 0.0022 to 0.0862 ng/m3 in PM10. In addition, the highest particle-bound mercury compositions in PM2.5 were 16.85 ng/g and the lowest particle-bound mercury concentrations were 0.55 ng/g. The highest particle-bound mercury compositions in PM2.5–10 were 13.88 ng/g and the lowest particle-bound mercury in PM2.5–10 were 0.22 ng/g.  相似文献   

6.
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 µg m?3 (mean ± standard deviation) with a range of 17–128 µg m?3 and a nighttime average of 55 ± 32 µg m?3 with a range of 4–186 µg m?3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 µg m?3, with a mean value of 53 ± 25 µg m?3, which exceeded the 24-h PM2.5 standard of 35 µg m?3 set by USEPA, but was below the standard of 75 µg m?3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) > zinc (Zn) > manganese (Mn) > lead (Pb) > arsenic (As) > chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 µg m?3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.  相似文献   

7.
The objective of the study is to investigate spatio-temporal variations of PM10, PM2.5, and PM1 concentrations at seven residential sites, located in the vicinity of opencast coal projects, Basundhara Garjanbahal Area (BGA), India. Meteorological parameters such as wind speed, wind direction, relative humidity, and temperature were collected simultaneously with PM concentrations. Mean concentrations of PM10 in the range 215 ± 169–526 ± 412 μg m?3, PM2.5 in the range of 91 ± 79–297 ± 107 μg m?3, PM1 in the range of 68 ± 60–247 ± 84 μg m?3 were obtained. Coarse fractions (PM2.5–10) varied from 27 to 58% whereas fine fractions (PM1–2.5 and PM1) varied in the range of 51–73%. PM2.5 concentration was 41–74% of PM10 concentration, PM1 concentration was 31–62% of PM10 concentration, and PM1 concentration was 73–83% of PM2.5 concentration. Role of meteorology on PM concentrations was assessed using correlation analysis. Linear relationships were established among PM concentrations using least square regression analysis. With the aid of principal component analysis, two components were drawn out of eight variables, which represent more than 75% of variance. The results indicated that major sources of air pollutants (PM10, PM2.5, PM1, CO, CO2) at the residential sites are road dust raised by vehicular movement, spillage of coal generated during transportation, spontaneous combustion of coal, and biomass burning in village area.  相似文献   

8.
Santiago, the capital of Chile, suffers from high air pollution levels, especially during winter. An extensive particulate matter (PM) monitoring and analysis program was conducted to quantify elemental concentrations of PM. Size-resolved PM samples (PM2.5 and PM10–2.5) from the La Paz and Las Condes stations in Santiago (2004–2005) were analyzed using ICP-MS. Most trace element concentrations (Cu, Pb, Zn, Mn, V, Sb, Pb and As) were higher during winter than during summer and were also higher at the La Paz station than at the Las Condes station. During the highest pollution events, As concentrations in PM2.5 (16 ng m?3) exceeded the annual average standard value (6 ng m?3). A 10-year time series showed decreasing Pb and As concentrations and slightly increasing Zn, Cu and Mn concentrations. Concentrations of Cr and Ni remained relatively constant. The implementation of new public policies in 1998 may explain the decreasing concentrations of Pb and As. Enrichment factor (EF) calculations identified two principal groups: elements with EF < 10 (Mg, Y, Zr, U Sr, Ca, Ti, and V) and EF > 10 (Rb, K, Cs, Fe, P, Ba, Mn, Ni, Cr, Co, Zn, Sn, Pb, Cu, Mo, Cd, As, Ag, and Sb), which were related to natural and anthropogenic PM sources, respectively. Three main PM sources were identified using factor analysis: a natural source (crustal matter and marine aerosol), combustion and copper smelting. Three other sources were identified using rare earth elements: fluid catalytic crackers, oil-fired power production and catalytic converters.  相似文献   

9.
This paper is concerned with the estimation of the removal efficiency of PM10 by large-scale precipitation under no-wind conditions in a background (rural) and urban areas. The changes in PM10 concentrations before, during and after the presence of rainfall were studied from 2007 to 2013. The study was conducted in two different locations identified with regard to air quality. DAVIS weather stations were used to determine the meteorological conditions. The concentration of PM10 was calculated with the use of the gravimetric reference method. Two hundred and ninety-nine measurement series were carried out. A linear relationship was found between the intensity and duration of rainfall and the value of the removal coefficient (ΔC). It was proved that except light rains, for the near-to-ground troposphere, the effectiveness of the removal of PM10C) did not assume different values at various locations for rainfall with the same intensity and duration. It was found that a temporary interaction of the effect of the purification by wet deposition was being minimised in areas characterised by low air quality. It was confirmed that intense rains resulted in the maintenance of higher values of air quality.  相似文献   

10.
Mass concentrations of PM10, PM2.5, and black smoke (BS) were measured in April 2003 during a 3-week campaign in a small village and at a nearby background location in the central part of the Czech Republic. In a pilot analysis, concentrations of selected trace elements (Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Cs, Pb) in the collected aerosol were determined by means of ICP-MS. Average concentrations of both PM fractions and BS were higher in the village (37, 26 and 26 μg m−3) than at the background location (26, 19 and 11 μg m−3) for PM10, PM2.5 and BS, respectively. Both PM10 and PM2.5 were reasonably correlated in the village (r = 0.80) and also at the background location (r = 0.79). Correlation between same fractions from the village and from the background site were even higher (r = 0.97 and r = 0.95 for the PM10 and PM2.5, respectively) suggesting that most of the aerosol in both locations may be influenced by similar sources. The ratio between PM10 and PM2.5 showed that sources in the village contributed about 33% and 35% to local aerosol concentration for PM10 and PM2.5, respectively. When the data from the two rural locations were compared with corresponding 24-h averages of PM10 concentrations obtained for the period of the campaign from fixed site monitors situated near larger towns, the highest concentration was found in Prague the Czech capital (49 μg m−3) followed by a district town Beroun (41 μg m−3) and the village (37 μg m−3). The lowest PM10 concentration was found in the village background (26 μg m−3). Elemental analysis revealed higher concentrations for most of the elements characteristic of combustion aerosol (namely Zn, Pb, As, Mn and Ti) in the PM collected in the village. The results support the idea that traditional heating in villages may contribute a great extent to local air pollution and may represent an important problem.  相似文献   

11.
For the first time, chemical characterization of PM10 aerosols was attempted over the Bay of Bengal (BoB) and Arabian Sea (AS) during the ICARB campaign. Dominance of SO 4 2? , NH 4 + and NO 3 ? was noticed over both the regions which indicated the presence of ammonium sulphate and ammonium nitrate as major water soluble particles playing a very important role in the radiation budget. It was observed that all the chemical constituents had higher concentrations over Bay of Bengal as compared to Arabian Sea. Higher concentrations were observed near the Indian coast showing influence of landmass indicating that gaseous pollutants like SO2, NH3 and NO x are transported over to the sea regions which consequently contribute to higher SO 4 2? , NH 4 + and NO 3 ? aerosols respectively. The most polluted region over BoB was 13°?19°N and 70°?90°E while it was near 11°N and 75°E over AS. Although the concentrations were higher over Bay of Bengal for all the chemical constituents of PM10 aerosols, per cent non-sea salt (nss) fraction (with respect to Na) was higher over Arabian Sea. Very low Ca2+ concentration was observed at Arabian Sea which led to higher atmospheric acidity as compared to BoB. Nss SO 4 2? alone contributed 48% of total water soluble fraction over BoB as well as AS. Ratios SO 4 2? /NO ? 3 over both the regions (7.8 and 9 over BoB and AS respectively) were very high as compared to reported values at land sites like Allahabad (0.63) and Kanpur (0.66) which may be due to very low NO.3 over sea regions as compared to land sites. Air trajectory analysis showed four classes: (i) airmass passing through Indian land, (ii) from oceanic region, (iii) northern Arabian Sea and Middle East and (iv) African continent. The highest nss SO 4 2? was observed during airmasses coming from the Indian land side while lowest concentrations were observed when the air was coming from oceanic regions. Moderate concentrations of nss SO2. 4 were observed when air was seen moving from the Middle East and African continent. The pH of rainwater was observed to be in the range of 5.9–6.5 which is lower than the values reported over land sites. Similar feature was reported over the Indian Ocean during INDOEX indicating that marine atmosphere had more free acidity than land atmosphere.  相似文献   

12.
The objective of this paper is to analyze temporal and seasonal trends of air pollution in Bahrain between 2006 and 2012 by utilizing datasets from five air quality monitoring stations. The non-parametric and robust Theil-Sen approach is employed to study quantitatively temporal variations of particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3). The calculated annual concentrations for PM10 and PM2.5 in Bahrain were substantially higher than recommended World Health Organization (WHO) guideline standards. Results showed increasing trends for PM10, PM2.5, and SO2 whereas O3 and its precursor NO2 showed decreasing behavior. The general increase in air pollution trends is in agreement with prediction of air pollution models for Middle East region due to economic growth, industrialization, and urbanization. The significances of long-term trends were examined. Additional to actual (unadjusted) trends, meteorological adjusted (deseasonalized) trends and seasonal trends were quantified. The box-plot analysis visually illustrated monthly variations of key air pollutants. It showed that only PM10 and PM2.5 exhibited seasonal pattern, and their concentrations increased during summer and decreased during winter. The effects of ambient air temperature, relative humidity, wind speed, and rainfall on particulate matter (PM) concentrations were further investigated. The Spearman correlation coefficient results demonstrated significant negative correlation between relative humidity and PM concentrations (??0.595 for PM10 and ??0.526 for PM2.5) while significant positive correlation was observed between temperature and PM concentrations (0.420 for PM10 and 0.482 for PM2.5).  相似文献   

13.
Zinclipscombite, a new mineral species, has been found together with apophyllite, quartz, barite, jarosite, plumbojarosite, turquoise, and calcite at the Silver Coin mine, Edna Mountains, Valmy, Humboldt County, Nevada, United States. The new mineral forms spheroidal, fibrous segregations; the thickness of the fibers, which extend along the c axis, reaches 20 μm, and the diameter of spherulites is up to 2.5 mm. The color is dark green to brown with a light green to beige streak and a vitreous luster. The mineral is translucent. The Mohs hardness is 5. Zinclipscombite is brittle; cleavage is not observed; fracture is uneven. The density is 3.65(4) g/cm3 measured by hydrostatic weighing and 3.727 g/cm3 calculated from X-ray powder data. The frequencies of absorption bands in the infrared spectrum of zinclipscombite are (cm?1; the frequencies of the strongest bands are underlined; sh, shoulder; w, weak band) 3535, 3330sh, 3260, 1625w, 1530w, 1068, 1047, 1022, 970sh, 768w, 684w, 609, 502, and 460. The Mössbauer spectrum of zinclipscombite contains only a doublet corresponding to Fe3+ with sixfold coordination and a quadrupole splitting of 0.562 mm/s; Fe2+ is absent. The mineral is optically uniaxial and positive, ω = 1.755(5), ? = 1.795(5). Zinclipscombite is pleochroic, from bright green to blue-green on X and light greenish brown on Z (X > Z). Chemical composition (electron microprobe, average of five point analyses, wt %): CaO 0.30, ZnO 15.90, Al2O3 4.77, Fe2O3 35.14, P2O5 33.86, As2O5 4.05, H2O (determined by the Penfield method) 4.94, total 98.96. The empirical formula calculated on the basis of (PO4,AsO4)2 is (Zn0.76Ca0.02)Σ0.78(Fe 1.72 3+ Al0.36)Σ2.08[(PO4)1.86(AsO4)0.14]Σ2.00(OH)1. 80 · 0.17H2O. The simplified formula is ZnFe 2 3+ (PO4)2(OH)2. Zinclipscombite is tetragonal, space group P43212 or P41212; a = 7.242(2) Å, c = 13.125(5) Å, V = 688.4(5) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern (d, (I, %) ((hkl)) are 4.79(80)(111), 3.32(100)(113), 3.21(60)(210), 2.602(45)(213), 2.299(40)(214), 2.049(40)(106), 1.663(45)(226), 1.605(50)(421, 108). Zinclipscombite is an analogue of lipscombite, Fe2+Fe 2 3+ (PO4)2(OH)2 (tetragonal), with Zn instead of Fe2+. The mineral is named for its chemical composition, the Zn-dominant analogue of lipscombite. The type material of zinclipscombite is deposited in the Mineralogical Collection of the Technische Universität Bergakademie Freiberg, Germany.  相似文献   

14.
The Kathmandu valley urban area is growing as a metropolis. Bishnumati corridor in Kathmandu valley is is a target of increased pollution. The unabated solid waste land-filling on either side of the river-bank and animal slaughter houses and biological waste arising from these activities, busy commercial and high residential density characterize the corridor. Six areas, namely Teku Dovan, Kalimati Bridge, Kankeswori, Shova Bhagwati, Balaju and New Bus Park areas, all areas falling within the Bishnumati corridor were selected to measure air quality representing corridor. The pollutants quantified were respirable particulate matter — PM10, sulphur dioxide and oxides of nitrogen. The air-borne microbial flora and fungi load quantification were also carried out. Teku Dovan (918.92 μg/m3) and Shovabhagavati areas (847.45 μg/m3) showed higher levels of particulates. Kankeswori area showed highest levels of aerial bacterial (3.7×107 cfu/m3) and fungal load (4.8×108 cfu/m3). The PM10 levels at all the sites are substantial and fall in the categories of ’Harmful’ and ’Hazardous’ quality of air suggesting that the corridor needing intervention to minimize the risk from air pollution. Non-judicious open-air combustion of the solid waste contributes to air pollution. Heavy traffic and few roads not clad with asphalt; perceivable mal-odor and persistent stench emanating from the indiscriminate disposal and consequent putrefaction processes, dense population and increased commercial activities are other principal contributing sources to the resulting pollution of the corridor. In view of this status, mitigating measures to minimize exposure to the toxicants in the corridor is a necessity.  相似文献   

15.
北京市PM_(2.5)中主要重金属元素污染特征及季节变化分析   总被引:3,自引:0,他引:3  
利用2005年4月18日—2008年9月27日北京市中国地质大学(东门)采样点的PM2.5质量浓度变化与重金属Cd、Pb、As、Cu及Zn等污染特征,结合最新发布的《环境空气质量标准》(GB3095—2012),初步分析了近4年时间里北京市单点PM2.5的污染水平及主要重金属污染元素的变化特征,得出了一些有意义的认识。2005年春季—2008年春季期间PM2.5质量浓度为13.1~171μg/m3之间变化,平均浓度为65.6μg/m3,超过最新环境空气质量标准制定的PM2.5年平均浓度限值35μg/m3,北京市PM2.5污染形势依然严峻。奥运会及残奥会期间PM2.5的24 h质量浓度平均值为40.7μg/m3,没有超标。北京市PM2.5中的重金属元素含量及富集特征随着不同年份不同季节差别较大,典型的城市污染元素As在冬季质量浓度最高。对比环境空气质量标准的参考浓度限值发现,As元素的质量浓度在研究期间的年均值均超过了年平均浓度参考限值0.006μg/m3。化学分析结果显示人为污染是PM2.5中Cu、Cd、Pb、Zn、As重金属污染的主要来源,其中As污染需要引起足够重视。研究结果对于北京市大气污染防治具有一定的借鉴意义。  相似文献   

16.
Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 μ m?3) and yearly (15 μg m?3) mass‐per‐unit‐volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non‐regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size‐limiting cyclone, or with no particle‐size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate‐bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM25 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production and/or mobile sources (Mo, Cd, Pb, Cu, Zn) and (4) a transient marine source (Sr, Mg). Concentrations of Hg in PM2.5 at background levels in the single pg m?3 were shown by collection and analysis of PM2.5 on filters and by an automated speciation analyser set up at the Big Meadows air quality site. The speciation unit revealed periodic elevation of reactive gaseous mercury (RGM) that co‐occurred with peaks in SO2, indicating an anthropogenic source. GC/MS total ion current chromatograms for the two sites were quite similar indicating that organic signatures were regional in extent and/or that the same compounds were present locally at each site. Calculated carbon preference index values for n‐alkanes indicated that plant waxes rather than anthropogenic sources, were the dominant alkane source. Polycyclic aromatic hydrocarbons (PAHs) were detected, with a predominance of non‐alkylated, and higher molecular weight PAHs in this fraction, suggestive of a combustion source (fossil fuel or forest fires).  相似文献   

17.
Given the relevance of desert aerosols to environmental issues such as dust storms, climate change and human health effects, we provide a demonstration of how the bedrock geology of an arid area influences the mineralogy and geochemistry of even the finest particulate matter (i.e., the inhalable fraction <10 μm in size: PM10). PM10 samples extracted from desert sediments at geologically contrasting off-road sites in central and southeastern Australia (granitic, high grade metamorphic, quartzitic sandstone) were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The “granitic” PM10 are highly alkali feldspathic and illitic, with a wide range of accessory minerals including rutile (TiO2), monazite [(Ce, La, Nd, Th, Y) PO4], xenotime (YPO4), apatite [Ca5(PO4)3 (F, OH, Cl)], hematite (Fe3O4), zircon (ZrSiO4) and thorite (ThSiO4). This mineralogy is reflected in the geochemistry which shows notable enrichments in rare earth elements (REE) and most high field strength elements (both held in the accessory minerals), and higher than normal levels of low (<2.0) ionic potential elements (Na, K, Li, Cs, Rb: held in alkali feldspar and illite). The “metamorphic” resuspended PM10 define a mineralogy clearly influenced by local exposures of pelitic and calc-silicate schists (sillimanite, muscovite, calcite, Ca-amphibole), a dominance of monazite over other REE-bearing phases, and a geochemistry distinguished by enrichments in alkaline earth metals (Ca, Mg, Ba, Sr) and depletion in heavy REE. The “quartzite” PM10, derived from rocks already recycled by Precambrian erosion and sedimentary transport, show a sedimentologically mature mineralogy of mostly quartz and kaolinite, detrital accessory ilmenite, rutile, monazite and hematite, and the strongest geochemical depletion (especially K, Rb, Cs, Na, Ca, Mg, Ba).  相似文献   

18.
The purpose of this paper was to perform the experimental and numerical analyses of PM10 and PM2.5 concentrations in Imam Khomeini (IKH) underground subway station in Tehran. The aim was to provide fundamental data in order to fulfill workers and passengers respiratory health necessities. Experimental measurements was done at three different locations (entrance, middle and exit) inside the platform and also outdoor ambient of the station. The Dust-Trak was applied to measure continuous PM2.5 and PM10 concentrations at a logging interval of 30 s. The measurements were recorded during rush hours (8:00 am–12:00 pm) for one week per each season from June 2015–June 2016.Moreover, computational fluid dynamic (CFD) simulation was done for the platform of the above station and the necessary boundary conditions were provided through field measurements. Those basic parameters which were considered for numerical analysis of particulate matters concentrations included air velocity, air pressure and turbulence. Furthermore, the piston effect caused by train movement inside the station provided natural ventilation in the platform. The results showed that seasonal measured PM2.5 and PM10 indoor concentrations had a variety range from 40–98 µg/m3 to 33–102 µg/m3, respectively, and were much higher than national indoor air quality standard levels. Meanwhile, PM2.5 and PM10 concentrations in the IKH underground subway station were approximately 2.5–2.9 times higher than those in outdoor ambient, respectively. Numerical simulation indicated that the predicted concentrations were underestimated by a factor of 8% in comparison with the measured ones.  相似文献   

19.
Batisivite has been found as an accessory mineral in the Cr-V-bearing quartz-diopside metamorphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. A new mineral was named after the major cations in its ideal formula (Ba, Ti, Si, V). Associated minerals are quartz, Cr-V-bearing diopside and tremolite; calcite; schreyerite; berdesinskiite; ankangite; V-bearing titanite; minerals of the chromite-coulsonite, eskolaite-karelianite, dravite-vanadiumdravite, and chernykhite-roscoelite series; uraninite; Cr-bearing goldmanite; albite; barite; zircon; and unnamed U-Ti-V-Cr phases. Batisivite occurs as anhedral grains up to 0.15–0.20 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black and opaque, with a black streak and resinous luster. Batisivite is white in reflected light. The microhardness (VHN) is 1220–1470 kg/mm2 (load is 30 g), the mean value is 1330 kg/mm2. The Mohs hardness is near 7. The calculated density is 4.62 g/cm3. The new mineral is weakly anisotropic and bireflected. The measured values of reflectance are as follows (λ, nm—R max /R min ): 440—17.5/17.0; 460—17.3/16.7; 480—17.1/16.5; 500—17.2/16.6; 520—17.3/16.7; 540—17.4/16.8; 560—17.5/16.8; 580—17.6/16.9; 600—17.7/17.1; 620—17.7/17.1; 640—17.8/17.1; 660—17.9/17.2; 680—18.0/17.3; 700—18.1/17.4. Batisivite is triclinic, space group P \(\overline 1\); the unit-cell dimensions are: a = 7.521(1) Å, b = 7.643(1) Å, c = 9.572(1) Å, α = 110.20°(1), β = 103.34°(1), γ = 98.28°(1), V = 487.14(7) Å3, Z = 1. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)(hkl)] are: 3.09(8)(12\(\overline 2\)); 2.84, 2.85(10)(021, 120); 2.64(8)(21\(\overline 3\)); 2.12(8)(31\(\overline 3\)); 1.785(8)(32\(\overline 4\)), 1.581(10)(24\(\overline 2\)); 1.432, 1.433(10)(322, 124). The chemical composition (electron microprobe, average of 237 point analyses, wt %) is: 0.26 Nb2O5, 6.16 SiO2, 31.76 TiO2, 1.81 Al2O3, 8.20 VO2, 26.27 V2O3, 12.29 Cr2O3, 1.48 Fe2O3, 0.08 MgO, 11.42 BaO; the total is 99.73. The VO2/V2O3 ratio has been calculated. The simplified empirical formula is (V 4.8 3+ Cr2.2V 0.7 4+ Fe0.3)8.0(Ti5.4V 0.6 4+ )6.0[Ba(Si1.4Al0.5O0.9)]O28. An alternative to the title formula could be a variety (with the diorthogroup Si2O7) V8Ti6[Ba(Si2O7)]O22. Batisivite probably pertains to the V 8 3+ Ti 6 4+ [Ba(Si2O)]O28-Cr 8 3+ Ti 6 4+ [Ba(Si2O)]O28 solid solution series. The type material of batisivite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

20.
The 19th Common Wealth Games was organized at Delhi, India, during October 3 to 14, 2010, where more than 8,000 athletes from 71 Commonwealth Nations have participated. In order to give them better environment information for proper preparedness, mass concentrations of particulate matters below 10 microns (PM10) and 2.5 microns (PM2.5), black carbon (BC) particles and gaseous pollutants such as carbon monoxide (CO) and nitrogen oxide (NO) were monitored and displayed online for ten different locations around Delhi, including inside and outside the stadiums. This extensive information system for air quality has been set up for the period from September 24 to October 21, 2010, and data have been archived at 5-min interval for further research. During the study period, average concentration of PM10 and PM2.5 was observed to be 229.7 ± 85.5 and 112.1 ± 56.0 μg m?3, respectively, which is far in excess of the corresponding annual averages, stipulated by the national ambient air quality standards. Significant large and positive correlation (r = 0.93) between PM10 and PM2.5 implies that variations in PM10 mass are governed by the variations in PM2.5 mass. The mass concentrations of PM2.5 inside the stadium were found to be ~18 % lower than those outside; however, no large variations were observed in PM10. Mean concentrations of BC, CO and NO for the observation period were 10.9 μg m?3 (Min, 02 μg m?3; Max, 31 μg m?3), 1.83 ± 0.89 ppm (Min, 0.48 ppm; Max, 4.55 ppm) and 37.82 ppb (Min, 2.4 ppb; Max, 206.05 ppb), respectively. BC showed positive correlation (r = 0.73) with CO suggests unified source for both of them, mainly from combustion emissions. All the measured parameters, however, show a significant diurnal variation with enhanced peaks in the morning and late night hours and lower values during daytime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号