首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Zircon U–Pb ages and trace elements were determined for granulites and gneiss at Huangtuling, which are hosted by ultrahigh-pressure metamorphic rocks in the Dabie Orogen, east-central China. CL images reveal core–rim structure for most zircons in the granulites. The cores show oscillatory zoning, relatively high Th/U ratios, and HREE enriched patterns, consistent with a magmatic origin. They gave a weighted mean 207Pb/206Pb age of 2766 ± 9 Ma, interpreted as dating magma emplacement of the protolith. The rims are characterized by sector or planar zoning, low Th/U ratios, negative Eu anomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphic conditions. Zircon U–Pb dating yields a weighted mean 207Pb/206Pb age of 2029 ± 13 Ma, which is interpreted to record a metamorphic event, possibly during assembly of the supercontinent Columbia. The gneiss has a protolith age of 1982 ± 14 Ma, which is younger than the zircon age of the granulite-facies metamorphism, suggesting a generally delay between HT metamorphism and the intrusion of post-collisional granites. A few inherited cores with igneous characteristics have 207Pb/206Pb ages of 2.90, 3.28 and 3.53 Ga, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants in the Yangtze Craton. A few Cretaceous metamorphic ages were also obtained, suggesting the influence of post-collisional collapse in response to Cretaceous extension of the Dabie Orogen. It is inferred that the recently discovered Archean basement of the Yangtze Craton occurs as far north as the Dabie Orogen.  相似文献   

2.
This paper presents a regional scale observation of metamorphic geology and mineral assemblage variations of Kontum Massif, central Vietnam, supplemented by pressure–temperature estimates and reconnaissance geochronological results. The mineral assemblage variations and thermobarometric results classify the massif into a low- to medium-temperature and relatively high-pressure northern part characterised by kyanite-bearing rocks (570–700 °C at 0.79–0.86 GPa) and a more complex southern part. The southern part can be subdivided into western and eastern regions. The western region shows very high-temperature (> 900 °C) and -pressure conditions characterised by the presence of garnet and orthopyroxene in both mafic and pelitic granulites (900–980 °C at 1.0–1.5 GPa). The eastern region contains widespread medium- to high-temperature and low-pressure rocks, with metamorphic grade increasing from north to south; epidote- or muscovite-bearing gneisses in the north (< 700–740 °C at < 0.50 GPa) to garnet-free mafic and orthopyroxene-free pelitic granulites in the south (790–920 °C at 0.63–0.84 GPa). The Permo-Triassic Sm–Nd ages (247–240 Ma) from high-temperature and -pressure granulites and recent geochronological studies suggest that the south-eastern part of Kontum Massif is composed of a Siluro-Ordovician continental fragment probably showing a low-pressure/temperature continental geothermal gradient derived from the Gondwana era with subsequent Permo-Triassic collision-related high-pressure reactivation zones.  相似文献   

3.
Petrological analysis, zircon trace element analysis and SHRIMP zircon U–Pb dating of retrogressed eclogite and garnet granulite from Bibong, Hongseong area, SW Gyeonggi Massif, South Korea provide compelling evidence for Triassic (231.4 ± 3.3 Ma) high-pressure (HP) eclogite facies (M1) metamorphisms at a peak pressure–temperature (PT) of ca. 16.5–20.0 kb and 775–850 °C. This was followed by isothermal decompression (ITD), with a sharp decrease in pressure from 20 to 10 kb and a slight temperature rise from eclogite facies (M1) to granulite facies (M2), followed by uplift and cooling. Granitic orthogneiss surrounding the Baekdong garnet granulite and the ophiolite-related ultramafic lenticular body near Bibong records evidence for a later Silurian (418 ± 8 Ma) intermediate high-pressure (IHP) granulite facies metamorphism and a prograde PT path with peak PT conditions of ca. 13.5 kb and 800 °C. K–Ar ages of biotite from garnet granulites, amphibolites, and granitic orthogneisses in and around the Bibong metabasite lenticular body are 208–219 Ma, recording cooling to about 310 °C after the Early Triassic metamorphic peak. Neoproterozoic zircon cores in the retrogressed eclogite and granitic orthogneiss provide evidence that the protoliths of these rocks were  800 and  900 Ma old, respectively, similar to the ages of tectonic episodes in the Central Orogenic Belt of China. This, and the evidence for Triassic HP/UHP metamorphism in both China and Korea, is consistent with a regional tectonic link within Northeast Asia from the time of Rodinia amalgamation to Triassic continent–continent collision between the North and South China Blocks, and with an eastward extension of the Dabie–Sulu suture zone into the Hongseong area of South Korea.  相似文献   

4.
Zircons from an eclogite and a diamond-bearing metapelite near the Kimi village (north-eastern Rhodope Metamorphic Complex, Greece) have been investigated by Micro Raman Spectroscopy, SEM, SHRIMP and LA-ICPMS to define their inclusion mineralogy, ages and trace element contents. In addition, the host rocks metamorphic evolution was reconstructed and linked to the zircon growth domains.

The eclogite contains relicts of a high pressure stage (ca. 700 °C and > 17.5 kbar) characterised by matrix omphacite with Jd40–35. This assemblage was overprinted by a lower pressure, higher temperature metamorphic event (ca. 820 °C and 15.5–17.5 kbar), as indicated by the presence of clinopyroxene (Jd35–20) and plagioclase. Biotite and pargasitic amphibole represent a later stage, probably related to an influx of fluids. Zircons separated from the eclogite contain magmatic relicts indicating Permian crystallization of a quartz-bearing gabbroic protolith. Inclusions diagnostic of the high temperature, post-eclogitic overprint are found in metamorphic zircon domain Z2 which ages spread over a long period (160 – 95 Ma). Based on zircon textures, zoning and chemistry, we suggest that the high-temperature peak occurred at or before ca. 160 Ma and the zircons were disturbed by a later event possibly at around 115 Ma. Small metamorphic zircon overgrowths with a different composition yield an age of 79 ± 3 Ma, which is related to a distinct amphibolite-facies metamorphic event.

The metapelitic host rock consists of a mesosome with garnet, mica and kyanite, and a quartz- and plagioclase-bearing leucosome, which formed at granulite-facies conditions. Based on previously reported micro-diamond inclusions in garnet, the mesosome is assumed to have experienced UHP conditions. Nevertheless, (U)HP mineral inclusions were not found in the zircons separated from the diamond-bearing metapelite. Inclusions of melt, kyanite and high-Ti biotite in a first metamorphic zircon domain suggest that zircon formation occurred during pervasive granulite-facies metamorphism. An age of 171 ± 1 Ma measured on this zircon domain constrains the high-temperature metamorphic event. A second, inclusion-free metamorphic domain yielded an age of 160 ± 1 Ma that is related to decompression and melt crystallization.

The similar age data obtained from the samples indicate that both rock types recorded a high-T metamorphic overprint at granulite-facies conditions at ca. 170 – 160 Ma. This age implies that any high pressure or even ultra-high pressure metamorphism in the Kimi Complex occurred before that time. Our findings define new constraints for the geodynamic evolution for the Alpine orogenic cycle within the northernmost Greek part of the Rhodope Metamorphic Complex. It is proposed that the rocks of the Kimi Complex belong to a suture zone squeezed between two continental blocks and result from a Paleo-ocean basin, which should be located further north of the Jurassic Vardar Ocean.  相似文献   


5.
T. Andersen  W.L. Griffin  A.G. Sylvester   《Lithos》2007,93(3-4):273-287
Laser ablation ICPMS U–Pb and Lu–Hf isotope data on granitic-granodioritic gneisses of the Precambrian Vråvatn complex in central Telemark, southern Norway, indicate that the magmatic protoliths crystallized at 1201 ± 9 Ma to 1219 ± 8 Ma, from magmas with juvenile or near-juvenile Hf isotopic composition (176Hf/177Hf = 0.2823 ± 11, epsilon-Hf > + 6). These data provide supporting evidence for the depleted mantle Hf-isotope evolution curve in a time period where juvenile igneous rocks are scarce on a global scale. They also identify a hitherto unknown event of mafic underplating in the region, and provide new and important limits on the crustal evolution of the SW part of the Fennoscandian Shield. This juvenile geochemical component in the deep crust may have contributed to the 1.0–0.92 Ga anorogenic magmatism in the region, which includes both A-type granite and a large anorthosite–mangerite–charnockite–granite intrusive complex. The gneisses of the Vråvatn complex were intruded by a granitic pluton with mafic enclaves and hybrid facies (the Vrådal granite) in that period. LAM-ICPMS U–Pb data from zircons from granitic and hybrid facies of the pluton indicates an intrusive age of 966 ± 4 Ma, and give a hint of ca. 1.46 Ga inheritance. The initial Hf isotopic composition of this granite (176Hf/177Hf = 0.28219 ± 13, epsilon-Hf = − 5 to + 6) overlaps with mixtures of pre-1.7 Ga crustal rocks and juvenile Sveconorwegian crust, lithospheric mantle and/or global depleted mantle. Contributions from ca. 1.2 Ga crustal underplate must be considered when modelling the petrogenesis of late Sveconorwegian anorogenic magmatism in the region.  相似文献   

6.
High-pressure (HP) and ultra-high pressure (UHP) terranes are excellent natural laboratories to study subduction-zone processes. In this paper we give a brief theoretical background and we review experimental data and observations in natural rocks that constrain the nature and composition of the fluid phase present in HP and UHP rocks. We argue that a fluid buffered by a solid residue is compositionally well defined and is either an aqueous fluid (total amount of dissolved solids < 30 wt.%) or a hydrous melt (H2O < 35 wt.%). There is only a small temperature range of approximately 50–100 °C, where transitional solute-rich fluids exist. A review of available experimental data suggest that in felsic rocks the second critical endpoint is situated at 25–35 kbar and  700 °C and hence must be considered in the study of UHP rocks. Despite this, the nature of the fluid phase can be constrained by relating the peak metamorphic conditions of rocks to the position of the wet solidus even if the peak pressure exceeds the pressure where the wet solidus terminates at the second critical endpoint. Transitional solute-rich fluids are expected in UHP terrains (P > 30 kbar) with peak temperatures of about 700 ± 50 °C. At higher temperatures, hydrous granitic melts occur whereas at lower temperatures aqueous fluids coexists with eclogite-facies minerals. This argument is complemented by evidence on the nature of the fluid phase from high-pressure terrains. We show that in the diamond-bearing, high-temperature UHP rocks from the Kokchetav Massif there are not only hydrous felsic melts, but probably also carbonate and sulfide melts present.

Hydrous quartzo-feldspathic melts are mainly produced in high temperature UHP rocks and their composition is relatively well constrained from experiments and natural rocks. In contrast, constraining the composition of aqueous fluids is more problematic. The combined evidence from experiments and natural rocks indicates that aqueous fluids liberated at the blueschist to eclogite facies transition are dilute. They contain only moderate amounts of LILE, Sr and Pb and do not transport significant amounts of key trace elements such as LREE, U and Th. This indicates that there is a decoupling of water and trace element release in subducted oceanic crust and that aqueous fluids are unable to enrich the mantle wedge significantly. Instead we propose that fluid-present melting in the sediments on top of the slab is required to transfer significant amounts of trace elements from the slab to the mantle wedge. For such a process to be efficient, top slab temperature must be at least 700–750 °C at sub-arc depth. Slab melting is likely to be triggered by fluids that derive from dehydration of mafic and ultramafic rocks in colder (deeper) portions of the slab.  相似文献   


7.
A vast supracrustal belt of khondalites (granulite facies metapelites) occur along the northern margin of the North China Craton. We report here for the first time spinel + quartz equilibrium assemblage from these rocks in two textural settings: (1) high ZnO (up to 14.47 wt.%) spinel with quartz as inclusions within garnet porphyroblasts defining pressure above 12 kbar and temperature of 900 °C; and (2) low ZnO (down to 1.2 wt.%) spinel in association with quartz in the matrix assemblage formed during peak ultrahigh-temperature conditions (ca. 975 °C and 9 kbar). We present a unique case of decompression where the metamorphic conditions of the rocks traversed mostly through the spinel + quartz (extended) stability field. Monazite grains in textural association with both types of spinel + quartz textures were analysed for age determination, and the data define two age peaks at 1927 ± 11 Ma and 1819 ± 11 Ma. Since the peak thermal regime of the khondalites was close to or exceeded the theoretical closure temperature of Pb in monazite, we infer the 1819 ± 11 Ma age as the timing of ultrahigh-temperature event in this craton. Our data lend support to the idea of ca. 1.9–1.8 Ga E–W collisional orogen at the northern margin of the North China Craton. We correlate the extreme crustal metamorphism with tectonics associated with the assembly of the North China Craton within the Columbia supercontinent.  相似文献   

8.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


9.
Mafic gneisses and associated paragneisses from the Cabo Frio Tectonic Domain in the southeastern part of the Ribeira Belt, along the coast of Rio de Janeiro State in southeast Brazil, were subjected to a geochemical and Sm–Nd isotope study. Four lithotypes are distinguished: aluminous paragneisses (mainly sillimanite–kyanite–garnet–biotite gneiss), calcsilicate lenses, quartzo–feldspathic metasedimentary gneisses and mafic–ultramafic lenses. The whole-rock major and trace, including rare earth element distributions in the mafic–ultramafic intercalations indicate that derivation from subalkaline basalt/gabbro of tholeiitic affinity with E-MORB signature from a non-subduction environment. These mafic rocks have positive εNd(t) and TDM of 1.1 Ga. The metasedimentary rocks have negative εNd(t) and TDM of 1.7 Ga. A Sm–Nd whole rock isochron of mafic rocks yielded an age of 604 ± 38 Ma for the crystallization. This matches with the age of some detrital zircon grains from the paragneisses. The depositional basin, named Buzios–Palmital, was active at least until 620 Ma (age of the youngest detrital zircon) and was subsequently deformed and metamorphosed at ca. 525 Ma (age of metamorphic zircons) during the Buzios Orogeny. It is interpreted as a back arc basin with relation to the 630 Ma magmatic arc of the Oriental Terrane in the Ribeira Belt to the NW. However, after 600 Ma, the Buzios–Palmital basin changed to an active margin setting because the arc collided with the continental margin and the subduction shifted to the back arc environment. By 610 Ma, most of the Brasiliano belts registered collisional events related to multiple convergent blocks. The stress fields and paleocontinent shapes would have allowed the occurrence of extensional areas with not only sedimentary deposition but also ocean floor spreading. Its remnants are preserved in this Brazilian coastal region as an ancient suture, reworked intensively during the Mesozoic rifting events. The reconnaissance of Late Neoproterozoic basins in the Brasiliano–Pan-African belts is of major importance to partially unravel the final amalgamation events of SW Gondwana. Considering that the Buzios–Palmital basin rock units are mostly covered by the marginal Atlantic basins, it is possible that other evidence could be preserved in the coastal regions of SW-Africa and SE-South America.  相似文献   

10.
The boundary between the Archean cratons and the Eastern Ghats Belt in peninsular India represents a rifted Mesoproterozoic continental margin which was overprinted by a Pan-African collisional event associated with the westward thrusting of the Eastern Ghats granulites over the cratonic foreland. The contact zone contains a number of deformed and metamorphosed nepheline syenite complexes of rift-related geochemical affinities. In addition to the nepheline-bearing rocks, metamorphosed quartz-bearing monzosyenitic bodies can also be identified along the suture in the region between the Godavari-Pranhita graben and the Prakasam Igneous Province. One such occurrence at Jojuru near Kondapalle is geochemically comparable to the nepheline syenites and furnishes a weighted mean concordant U–Th–Pb SHRIMP zircon age of 1263 ± 23 Ma (2σ), which provides a lower age bracket for the rift-related magmatic activity. The original igneous mineral assemblage in the monzosyenite was partially replaced by the formation of coronitic garnet during the Pan-African metamorphism of the rocks. PT estimates of garnet corona formation at the interface between clinopyroxene–orthopyroxene–ilmenite clusters and plagioclase indicate mid to upper amphibolite facies condition (5.5–7.0 kbar and 600–700 °C) during the thrust induced deformation and metamorphism associated with the Pan-African collisional tectonics.  相似文献   

11.
Rb-Sr and Sm-Nd isotopic studies were carried out for metamorphic rocks in the Namaqualand Metamorphic Complex, South Africa. The metamorphic rocks give the Rb-Sr mineral isochron ages (whole-rock - biotite - felsic fractions) of 844±85 Ma and 811.6±6.6 Ma for the lower granulite zone and of 776.5±5.4 Ma for the upper granulite zone. The rocks yield the Sm-Nd mineral isochron ages of 1071±18 Ma (whole-rock - garnet - felsic fractions) and 1067±158 Ma (whole-rock - hornblende - biotite rich fraction - felsic fractions) for the lower granulite zone and of 1052.0±3.6 Ma and 1002.5±1.4 Ma (whole-rock - garnet - felsic fractions) for the upper granulite zone. These age data suggest that the granulite facies metamorphism took place at 1060-1000 Ma, and that the rocks cooled down at 850-780 Ma. The Sr and Nd isotopic compositions of metamorphic rocks are different between the lower and upper granulite zones.  相似文献   

12.
C.W. Oh  S.W. Kim  I.S. Williams 《Lithos》2006,92(3-4):557-575
Spinel granulite formed in the Fe–Al-rich layers in migmatitic gneiss adjacent to a late Paleozoic collision-related mangerite intrusion in the Odesan area, eastern Gyeonggi Massif, South Korea, contains the high-temperature (HT) assemblage Crd + Spl + Crn. Spinel and cordierite compositions indicate peak metamorphic conditions of 914–1157 °C. Retrograde metamorphism reached amphibolite facies where garnet and cordierite broke down to biotite, sillimanite and quartz. These conditions, and the reactions inferred from mineral textures, are consistent with a clockwise PT path. Metamorphic zircon overgrowths in the spinel granulite and enclosing migmatitic gneiss, dated by SHRIMP U–Pb, yield Permo-Triassic ages of 245 ± 10 and 248 ± 18 Ma respectively, consistent with the metamorphism being a product of the late Paleozoic collision between the North and South China blocks within South Korea. The zircon core ages and textures suggest that the ultimate source of the spinel granulite was a Paleoproterozoic (1852 ± 14 Ma) igneous rock. The protolith of the host migmatitic gneiss was a sediment derived principally from 2.49, 2.16 and 1.86 Ga sources. The age and conditions of spinel granulite metamorphism are similar to those of spinel-bearing granulite in the Higo terrane in west-central Kyushu (250 Ma, > 950 °C at 8–9 kbar), consistent with a continuation of the Dabie-Sulu collision zone into Japan through the Odesan area.  相似文献   

13.
Petrological evidence is provided for anatexis of ultrahigh‐pressure (UHP) metamorphic quartzite in the Sulu orogen. Some feldspar grains exhibit elongated, highly cuspate shapes or occur as interstitial, cuspate phases constituting interconnected networks along grain boundaries. Elongated veinlets composed of plagioclase + quartz ± K‐feldspar also occur in grain boundaries. These features provide compelling evidence for anatexis of the UHP quartzite. Zircon grains from impure quartzite are all metamorphic growth with highly irregular shape. They contain inclusions of coesite, jadeite, rutile and lower pressure minerals, including multiphase solid inclusions that are composed of two or more phases of muscovite, quartz, K‐feldspar and plagioclase. All zircon grains exhibit steep REE patterns, similar U–Pb ages and Hf isotope compositions with a weighted mean of 218 ± 2 Ma. Most grains have similar δ18O values of ?0.6 to 0.1‰, but a few fall in the range ?5.2 to ?4.3‰. Thus, these grains would have grown from anatectic melts at various pressures. Zircon O isotope differences indicate that anatectic melts were derived from different sources with contrasting O isotopes, but similar Hf isotopes, that is, one from the quartzite itself and the other probably from the country‐rock granitic gneiss. Zircon grains from pure quartzite contain relict magmatic cores and significant metamorphic overgrowths. Domains that contain eclogite facies minerals exhibit flat HREE patterns, no Eu anomalies and concordant U–Pb ages of c. 220 Ma. Similar U–Pb ages are also obtained for domains that contain lower pressure minerals and exhibit steep REE patterns and marked negative Eu anomalies. These observations indicate that zircon records subsolidus overgrowth at eclogite facies conditions but suprasolidus growth at lower pressures. Zircon enclosed by garnet gave consistent U–Pb ages of c. 214 Ma. Such garnet is interpreted as a peritectic product of the anatectic reaction that involves felsic minerals and possibly amphibole and titanite. The REE patterns of epidote and titanite also record multistage growth and metasomatism by anatectic melts. Therefore, the anatexis of UHP metamorphic rocks is evident during continental collision in the Triassic.  相似文献   

14.
董杰  魏春景  张建新 《地球科学》2019,44(12):4004-4008
南阿尔金造山带是目前报道的具有最深俯冲记录的大陆超高压变质带,其内出露有高压-超高温麻粒岩,它们对深入理解大陆地壳岩石超深俯冲与折返过程具有重要意义.介绍了对南阿尔金巴什瓦克地区长英质麻粒岩和基性麻粒岩的岩相学、矿物化学、相平衡模拟及锆石U-Pb年代学研究成果.其中基性麻粒岩主要记录了深俯冲大陆地壳折返过程的变质演化:包括高压榴辉岩相、高压-超高温麻粒岩相、低压-超高温麻粒岩相及随后的近等压降温演化阶段;长英质麻粒岩除了记录与基性麻粒岩相似的折返过程外,还记录了从角闪岩相到超高压榴辉岩相的进变质演化过程.结合已有研究资料,确定超高压榴辉岩阶段峰期条件> 7~9 GPa和>1 000℃,可达到斯石英稳定域.锆石年代学显示两种岩石类型的原岩和变质年龄均分别在900 Ma和500 Ma左右.变质作用与年代学研究表明,南阿尔金大陆地壳岩石在早古生代发生超深俯冲至200~300 km后,折返至加厚地壳底部发生高压-超高温变质作用,随后被快速抬升至地壳浅部发生低压-超高温变质作用并经历迅速冷却.   相似文献   

15.
The Nonsberg–Ultental Region of northern Italy contains a Palaeozoic mélange that was partially subducted during the Variscan orogeny. This mélange is constituted mainly by metapelites characterized by shale-type REE-patterns, displaying partial melting which began under high-pressure conditions. The resulting migmatites enclose minor slivers of mantle-wedge peridotites that have been incorporated into the mélange during subduction. Peridotites display important large ion lithophile elements (LILE) enrichment consequent to amphibole recrystallization contemporaneously with metapelite migmatization at P ≈ 2.7 GPa and T ≈ 850 °C in the garnet–peridotite field. Crustal and mantle (ultramafic) rocks of the mélange display the same Sm–Nd ages of about 330 ± 6 Ma, which dates both the metamorphic peak and the migmatization event. The zircon U–Pb age of the metasomatic amphibolitic contact between garnet peridotite and migmatite is identical (333.3 ± 2.4 Ma) within analytical errors. Therefore, metasomatism, migmatization and peak metamorphism are constrained to the same event. The presence of Cl-rich apatite and ferrokinoshitalite in the contact amphibolite, together with the trace-element patterns of peridotites, suggest that metasomatism was driven by Cl- and LILE-rich fluids derived from ocean water transported into the subduction zone by sediments and crustal rocks. These fluids interacted with the crust, prompting partial melting under water oversaturated conditions and partitioning LILE from the crust itself. Peridotites, which were well below their wet solidus temperature, could not melt but they recrystallized in the crustal mélange under garnet-facies conditions. Crustal fluids caused extensive hydration and LILE-enrichment in peridotites and severe Sm–Nd isotope disequilibrium between minerals, especially in the recrystallized peridotites. The proposed scenario suggests massive entrapment of crustal aqueous fluids at high-pressure conditions within subduction zones.  相似文献   

16.
The Maowu eclogite–pyroxenite body is a small (250×50 m) layered intrusion that occurs in the ultra-high-pressure (UHP) metamorphic terrane of Dabieshan, China. Like the adjacent Bixiling complex, the Maowu intrusion was initially emplaced at a crustal level, then subducted along with the country gneisses to mantle depths and underwent UHP metamorphism during the collision of the North and South China Blocks in the Triassic. This paper presents the results of a geochemical and isotopic investigation on the metamorphosed Maowu body. The Maowu intrusion has undergone open system chemical and isotopic behavior three times. Early crustal contamination during magmatic differentiation is manifested by high initial 87Sr/86Sr ratios (0.707–0.708) and inhomogeneous negative Nd(T) values of −3 to −10 at 500 Ma (probable protolith age). Post-magmatic and pre-UHP metamorphic metasomatism is indicated by sinusoidal REE patterns of garnet orthopyroxenites, lack of whole-rock (WR) Sm–Nd isochronal relationship, low δ18O values and an extreme enrichment of Th and REE in a clinopyroxenite. Finally, K and Rb depletion during UHP metamorphism is deduced from the high initial 87Sr/86Sr ratios unsupported by in situ Rb/Sr ratios. Laser ICP-MS spot analyses on mineral grains show that (1) Grt and Cpx attained chemical equilibrium during UHP metamorphism, (2) Cpx/Grt partition coefficients for REE correlate with Ca, and (3) LREE abundances in whole rocks are not balanced by that of the principal phases (Grt and Cpx), implying that the presence of LREE-rich accessory phases, such as monazite and apatite, is required to account for the REE budget.

Sm–Nd isotope analyses of minerals yielded three internal isochrons with ages of 221±5 Ma and (T)=−5.4 for an eclogite, 231±16 Ma and (T)=−6.2 for a garnet websterite, and 236±19 Ma and (T)=−6.9 for a garnet clinopyroxenite. The Cpx/Grt chemical equilibrium and the consistent mineral isochron ages indicate that the metasomatic processes mentioned above must have occurred prior to the UHP metamorphism. These Sm–Nd ages agree with published zircon and monazite U–Pb ages and constrain the time of UHP metamorphism to 220–236 Ma. The Maowu and Bixiling layered intrusions are similar in their in situ tectonic relationship with their country gneisses, but the two bodies are distinguished by their magma-chamber processes. The Bixiling magmas were contaminated by the lower crust, whereas the Maowu magmas were contaminated by the upper crustal rocks during their emplacement and differentiation. The two complexes represent two distinct suites of magmatic rocks, which have resided in the continental crust for about 300–400 Ma before their ultimate subduction to mantle depths, UHP metamorphism and return to the crustal level.  相似文献   


17.
本文对丹凤地区秦岭岩群含柯石英超高压变质地体长英质片麻岩中的混合岩化长英质浅色体和含石榴子石暗色包体的花岗质脉体进行了详细的矿物学、地球化学和锆石U-Pb年代学以及Lu-Hf同位素研究。其中,长英质浅色体显示了近原位熔融的高硅、富钾的过铝质花岗岩地球化学特征;锆石的CL图像呈灰黑色,均匀无结构或云雾状内部结构,Th/U比值0. 008,并含有钾长石、斜长石、石英和磷灰石等包裹体,显示深熔锆石的特征;花岗质脉体暗色包体中的石榴子石显示核-边成分环带,其中核部成分与秦岭岩群长英质片麻岩中石榴子石成分一致,边部Sps含量升高,显示熔体改造或退变质扩散特征,寄主花岗质脉体显示重稀土强烈亏损的与石榴子石平衡的熔体特征,指示它们是秦岭岩群含石榴子石长英质片麻岩部分熔融的产物。锆石LA-ICP-MS定年得到长英质浅色体和花岗质脉体的结晶年龄分别为445±4Ma和420±1Ma,明显晚于本区的超高压变质时代,而与折返过程中麻粒岩相和角闪岩相退变质叠加的时代基本一致。结合区域地质和前人的研究成果,提出秦岭岩群在深俯冲板块的折返过程中,分别在445Ma和420Ma发生了两期部分熔融作用。  相似文献   

18.
西秦岭地处中国中央造山系东西转换衔接部位,随着东秦岭以及祁连、柴北缘和东昆仑早古生代高压-超高压变质岩石的陆续发现和深入研究,西秦岭造山带变质作用研究吸引了大家的普遍关注。本文在大范围野外地质调查基础上,在北秦岭造山带西段天水南部的秦岭岩群长英质片麻岩中发现了一套石榴子石斜长角闪岩(榴闪岩),并开展了详细的锆石形貌和内部结构、微区微量元素和U-Th-Pb同位素研究。CL图像显示榴闪岩锆石普遍具有核-幔-边或核-边结构,部分存在原岩残留锆石。定年结果得到榴闪岩原岩残留锆石年龄为710±52Ma,同时得到497±3Ma、452±3Ma和423±7Ma三期变质年龄。其中497±3Ma变质年龄来自锆石核部并显示出轻稀土亏损、重稀土平坦且没有明显负Eu异常的稀土配分曲线特征,表明该时期的矿物组合中有石榴子石但没有斜长石,与榴辉岩相变质锆石特征一致;452±3Ma变质年龄来自锆石幔部或边部,对应测点重稀土元素的分异加大,并出现弱的负Eu异常,说明此时石榴子石被消耗且出现少量斜长石;423±7Ma变质年龄来自锆石的最边部,对应稀土配分曲线表现出更明显的负Eu异常和更大的重稀土元素分异特征,指示此时岩石中石榴子石含量更少,斜长石含量更多。上述结果表明该榴闪岩可能经历了~500Ma的榴辉岩相变质作用,并在~450Ma和~420Ma叠加了两期退变质改造。天水地区榴闪岩无论是其野外产状,还是变质锆石的形貌和内部结构、稀土配分曲线特征及其所记录的原岩和三期变质年龄都与北秦岭造山带东段大陆俯冲型高压-超高压变质榴辉岩近乎一致,指示早古生代时期,北秦岭造山带西段与东段经历了相似的大陆(深)俯冲和折返过程,它们共同构成一条统一的早古生代高压-超高压变质岩带。  相似文献   

19.
Previous studies on the atoll-shaped garnets in ultrahigh-pressure (UHP) metamorphic eclogites from the Dabie orogen, east-central China, suggest a fluid-enhanced overgrowth origin at the onset of exhumation. The atoll-garnets bearing eclogite place better constraints on the timing of the retrograde fluid activity and are a straightforward target to gain insight into the isotopic equilibrium and/or disequilibrium during exhumation. Comprehensive textural, chemical and Lu–Hf geochronological analyses on the atoll garnet-bearing eclogite show that the retrograde fluid activity event likely occurred at ca. 221 Ma. The Lu–Hf age of 221.0?±?2.3 Ma marks the last garnet overgrowth episode during exhumation rather than prograde metamorphism. This somewhat restricted study suggests that dating the prograde-zoning-preserved garnets may bias results towards a particular metamorphic event rather than the prograde timing, as previously thought. The general assumption that larger garnet crystals in metamorphic rocks are older should be made with caution, and it is likely invalid in atoll garnet-bearing metamorphic eclogites because the preliminary garnet cores have been largely consumed. These observations highlight that linking textural and chemical analyses is crucial for interpreting geochronological data.  相似文献   

20.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号