首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new nonlinear two-dimensional tubular joint element is developed in this study on the basis of flexibility equations and the interaction between the axial force and the in-plane bending moment in the joint. Empirical equations are used to define the joint yielding in the axial direction and the in-plane rotation. An elastic-perfectly plastic yield function is adopted to include the combined effects of axial loads and bending moments on the yielding of the joint. The element formulation is straightforward, and it can readily be implemented in nonlinear finite element programs. Verification studies are carried out for the element to prove its suitability for the modeling of tubular joints of offshore jacket structures. It is concluded that the nonlinear joint model that has been developed produces accurate results, verified against experimental data as well as against sophisticated multi-axial finite element joint models.  相似文献   

2.
The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffener rings, etc., if necessary. Four different joints are studied here in detail for the elasto-plastic behavior, the strain at the hot spot, the strain concentration factor around the intersection line, and the propagation of the plastic region with loading up to collapse in order to determine the ultimate strength, safety factor, and development of the plastic field. The present results are in good agreement with the experimental results.  相似文献   

3.
-A ring model is developed to investigate the ultimate strength of tubular X and XX joints in the case that the brace is compressed. In the present analysis, the tubular joint is made of elasto-perfectly-plastic material, and the arch element of the chord section intersecting with the brace is assumed to be rigid. It is found that when 6 plastic hinges for X joint and 8 plastic hinges Tor XX joint appear in the ring, the limit state is reached, and by means of the equivalent ring width Be formula proposed in a previous paper by the authors, the ultimate strength of tubular X and XX joints subjected to compression can be obtained.  相似文献   

4.
近海固定平台碰撞的准静态分析   总被引:5,自引:1,他引:5  
本文采用增量有限元方法结合极限分析的概念,研究近海固定平台碰撞的静力强度。文中综合考虑了平台结构在碰撞加载过程中的大变形和塑性变形特性,建立了以广义应力表达的圆管截面的屈服条件,采用塑性节点法(PNM)推导得到了单元的弹塑性矩阵。文中也考虑了梁柱单元的屈曲情况。本文所采用的载荷增量法结合牛顿—拉夫逊迭代,可跟踪加载过程中平台结构上塑性铰的出现,并最终获得平台结构的极限承载能力。  相似文献   

5.
昝森  王德禹 《海洋工程》2018,36(1):114-121
针对受均匀轴向压力的矩形开孔板剩余极限强度的问题,考虑矩形板中间开圆孔和腰圆孔两种典型形状,四种边界条件下,以板的柔度系数、开孔率为主要影响参数通过大量非线性有限元数值计算分析,采用一种新的拟合方式提出了矩形开孔板轴向受压剩余极限强度的简化计算公式,新经验公式能够很好地反映开孔所导致板极限强度的衰减趋势。将所提出的经验公式计算结果分别与相应的试验结果、非线性有限元计算结果及其他经验公式计算结果进行对比分析。结果表明所提出的经验公式相比已有的经验公式计算更为准确,适用范围更广,可以用来预报不同边界条件下轴向均匀受压开孔矩形板的极限强度。  相似文献   

6.
In this paper a numerical analysis method combining FEM incemental technique with limit analysis concept is proposed for the study of the static strength of offshore platform in collision. Large deformation and plasticity are accounted for and the limit yield surface expressed by generalized stress for a tubular section is derived. The modified stiffness matrix of space beam element is formulated by Plastic Node Method. The buckling behavior of beam columns can also be taken into account. It can trace the generation of plastic hinges during loading and finally the ultimate strength of offshore platform against collision is obtained.  相似文献   

7.
海洋平台的灌浆卡箍技术研究   总被引:4,自引:0,他引:4  
在国内外文献研究的基础上,对钢质近海结构物的修理,加固方法做了较为深入的研究,利用丹麦学者N.S.Ottosen提出的多轴应力状态下混凝土强度理论Ottosen破坏准则,建立了钢与混凝土组合结构T型灌浆卡箍管节点的轴向受控,受压和面内弯矩作用下的非线性有限元计算模型,采用分级加载计算分析了相应的极限承载能力,并与试验结果进行比较分析,计算结果表明,经灌浆卡箍维修后的管节点应力分布,变形和极限承载能力都得到了明显的改善,所得结果较好地反映了实际结构的力学特性。  相似文献   

8.
针对在役老龄导管架平台进行倒塌计算分析,确定极限承载力进而评估老龄导管架的安全裕度。采用非线性有限元方法,考虑平台的波流载荷及桩-土的非线性相互作用,利用SACS软件建立导管架整体三维有限元计算分析模型,并用逐步加载的方式,对南海某导管架平台进行了全过程非线性倒塌分析。计算分析表明,该导管架平台极限强度很高,具有较大的安全裕度;导管架倒塌过程呈逐步破坏形式,先是撑杆屈服,造成局部结构破坏,然后是钢桩发生屈服,降低结构承载力,最后节点逐步失效,造成结构倒塌。揭示了导管架平台结构失效倒塌的机理,给出了倒塌分析的可行方法和步骤。  相似文献   

9.
In the present paper, results of a parametric study conducted on the Local Joint Flexibility (LJF) of two-planar tubular DK-joints under In-Plane Bending (IPB) loads are presented. DK-joints are among the most common joint types in jacket substructure of Offshore Wind Turbines (OWTs). A total of 324 finite element (FE) analyses were carried out on 81 FE models under four types of IPB loading in order to investigate the effect of the DK-joint’s geometrical parameters on the LJF factor (fLJF). Based on the results of parametric study, the factors leading to the LJF reduction were introduced. Generated FE models were verified using the existing experimental data, FE results, and parametric equations. The effect of the weld profile was also considered. The fLJF in two-planar DK- and uniplanar K-joints were compared. Results indicated that the effect of multi-planarity on the LJF is quite significant and consequently the use of the equations already available for uniplanar K-joints to calculate the fLJF in two-planar DK-joints may lead to highly under-/over-predicting results. To handle this issue, the FE results were used to derive a set of parametric equations for the prediction of the fLJF in IPB-loaded two-planar DK-joints. The proposed equations were checked against the acceptance criteria recommended by the UK DoE and can be reliably used for the analysis and design of tubular joints in OWTs.  相似文献   

10.
自升式钻井平台插桩是地基土在桩靴荷载作用下发生连续的塑性破坏的动态过程,当地基极限承载力等于桩靴荷载时插桩完成。经典土力学极限承载力理论对土体潜在滑动面做了假设,无法有效分析土体内部的破坏过程。本研究应用有限元法(FEM )对插桩过程进行了模拟,得到地基土的破坏机制以及中间荷载下土体的应力、应变情况,通过和各理论公式计算的极限承载力进行对比分析,分析影响地基极限承载力的因素。研究表明,基础宽度与硬土层厚度的比值 B/H越大,下卧软土层越容易发生塑性破坏,极限承载力明显下降,当B/H<0.286时,可以忽略下卧软土层对地基承载力的影响。  相似文献   

11.
Truss Spar平台在风、浪、流的作用下,结构受力十分复杂,准确分析其疲劳强度相当困难。通过建立Truss Spar平台三维有限元模型,利用HydroD软件进行载荷预报、波浪搜索,得到产生最大应力幅响应的最不利浪向和相位角。运用Sestra软件进行整体有限元分析,得到的结果作为桁架管节点细化模型的边界条件,再用Nastran软件进行局部分析求得节点的热点应力,修正壁厚影响。最后根据DNV规范的S-N曲线计算了管节点的疲劳寿命。  相似文献   

12.
- Stress concentration analysis of multiplanar tubular DT joints plays an important role in the fatigue design of offshore platforms. A semi-analytic method for stress analysis under the condition of any loads is briefly introduced in the paper. Nineteen multiplanar tubular DT joints with one of two braces of the same dimension subjected to axial loads and out- of- plane bending moments are computed for parametric stress analysis by using the present method. The influence of geometrical parameters on the stresses of multiplanar tubular DT joints is discussed and compared with corresponding uniplanar T joints. The regression formulae for the stress at hot spot of multiplanar DT joints are found by modification of SCF of corresponding uniplanar T joints. The parametric formulae for the maximum stress by superposition. Finally, the influences of stiffening effect and load-interaction effect on the maximum stress of DT joints are discussed.  相似文献   

13.
张力腿平台局部节点强度可靠度分析方法   总被引:1,自引:0,他引:1  
局部节点可靠度分析对张力腿平台(TLP)整体安全性评估具有重要意义。提出了一个TLP平台局部节点可靠度的分析方法,首先对TLP平台整体进行分析,统计局部节点各种失效模式并得到典型失效模式及对应的典型荷载工况;然后应用改进的子模型技术对TLP平台局部节点进行极限承载能力分析,确定了局部节点在典型荷载工况下的极限承载力;对局部节点极限承载力及南海某区域的波浪荷载进行统计分析,得到其概率统计特性;在此基础上计算了TLP平台局部节点对应典型失效模式下的可靠度指标。通过算例分析表明,该TLP平台各节点可靠度指标值均大于3.1;立柱与浮箱连接节点在不同荷载工况下失效模式不同,而立柱与甲板连接节点易发生管交汇处剪切破坏。为TLP平台的安全性评估提供了一种有效的分析方法,具有一定的理论价值及实用价值。  相似文献   

14.
Jack-up platforms of the Ocean engineering structures always withstand the vertical gravity loads which are applied to the seabed by spudcan, so it is important to determine the bearing capacity and the penetration depth of the spudcan for its geometry. In fact, it is up to the deformation law and the failure modes of soil surrounding the spudcan which can calculate the ultimate bearing capacity of the spudcan foundation on the soil seabed. By using the finite element analysis software Abaqus, the deformation law of soil around the spudcan is analyzed in detail, and the failure modes of soil surrounding the spudcan foundation are achieved. At the same time, based on the limit equilibrium theory, by use of static permissible slip-line field, the ultimate bearing capacity of the spudcan foundation is analyzed and the lower limit solution is derived theoretically, and the effect of the spudcan angle on the ultimate bearing capacity is investigated. The numerical results are compared with those obtained by the theoretical formulas deduced in this paper. On the basis of the lower limit solutions in this paper, the effect of the spudcan angle on the ultimate bearing capacity is revealed, and a practical bearing capacity formula is given to take the effect of the spudcan angle into consideration.  相似文献   

15.
胡康  杨平  刘清超 《海洋工程》2023,41(3):85-95
旨在了解箱型梁在极端循环载荷下的极限强度特性。利用非线性有限元方法来研究裂纹箱型梁的极限弯矩,分析了5种裂纹模型,探讨了裂纹类型、裂纹位置和裂纹长度的影响。考虑了两种载荷形式应用生死单元法对双向循环弯曲下裂纹扩展进行了模拟;并将由循环载荷引起的累积塑性损伤和疲劳裂纹损伤均考虑在内。无论单向循环还是双向循环,单裂纹模型的极限弯矩均小于双裂纹模型的极限弯矩;单边裂纹是最危险的裂纹类型。进一步分析了极端循环载荷下裂纹箱型梁的极限强度折减机理,得出了极限强度折减归因于这两种损伤的耦合作用的结论,并通过其他箱型梁验证了其适用性。  相似文献   

16.
The new simple design equations for predicting the ultimate compressive strength of stiffened plates with initial imperfections in the form of welding-induced residual stresses and geometric deflections were developed in this study. A non-linear finite element method was used to investigate on 60 ANSYS elastic–plastic buckling analyses of a wide range of typical ship panel geometries. Reduction factors of the ultimate strength are produced from the results of 60 ANSYS inelastic finite element analyses. The proposed design equations have been developed based on these reduction factors. For the real ship structural stiffened plates, the most general loading case is a combination of longitudinal stress, transverse stress, shear stress and lateral pressure. The new simplified analytical method was generalized to deal with such combined load cases. The accuracy of the proposed equations was validated by the experimental results. Comparisons show that the adopted method has sufficient accuracy for practical applications in ship design.  相似文献   

17.
Upper bound plastic limit analyses (PLA) can provide a useful framework for estimating the load capacity of suction caisson anchors in purely cohesive soils. Since arbitrary assumptions regarding the soil stress state are not required in the PLA formulation, it may be used with greater consistency compared to other simplified approaches such as limit equilibrium methods. While PLA methods do not attempt to include all of the complexities of anchor behavior, they can provide a relatively simple framework for visualizing anchor kinematics leading to an understanding of the relative importance of various parameters on suction anchor load capacity. The most rigorous PLA formulations involve postulating a three-dimensional anchor-soil failure mechanism and deriving expressions for internal energy dissipation throughout the mechanism. This approach can involve extensive numerical integrations and a relatively complex scheme for optimizing the failure mechanism to obtain a least upper bound collapse load. Considerable simplification is possible if the problem is formulated in terms of ultimate unit resistances (lateral, axial, and their interaction) that can be exerted by the soil on the caisson. In this case, the caisson failure mechanism can be characterized in terms of one or two optimization variables. Simple expressions for the ultimate unit resistances acting on the caisson can be obtained from several sources including rigorous PLA solutions, finite element techniques, or experimental measurements. General expressions are possible by limiting consideration to common, idealized strength profiles such as uniform or constant gradient. Such simplified formulations are particularly valuable for providing an analysis tool accessible to practicing engineers. Suction caisson anchors can be subjected to a variety of load orientations including nearly vertical uplift forces imposed by the vertical tendons of tension leg platforms, horizontal loads imposed by catenary mooring systems, and inclined loads imposed by taut moorings. Recently, PLA methods have been applied to the analysis of suction caissons subjected to this range of loading conditions. This paper reviews the formulation of these analyses and summarizes the most significant findings.  相似文献   

18.
Corrosion and fatigue cracks are major threats to the structural integrity of aging offshore platforms.For the rational estimation of the safety levels of aging platforms,a global reliability assessment approach for aging offshore platforms with corrosion and fatigue cracks is presented in this paper.The base shear capacity is taken as the global ultimate strength of the offshore plaffoms,it is modeled as a random process that decreases with time in the presence of corrosion and fatigue crack propagation.And the corrosion and fatigue crack growth rates in the main members and key joints are modeled as random variables.A simulation method of the extreme wave loads which are applied to the structures of offshore platforms is proposed too.Furthermore,the statistics of global base shear capacity and extreme wave loads are obtained by Monte Carlo simulation method.On the basis of the limit state equation of global failure mode,the instantaneous reliability and time dependent reliability assessment methods are both presented in this paper.Finally the instantaueous reliability index and time dependent failure probability of a jacket platform are estimated with different ages in the demonstration example.  相似文献   

19.
-The formulation of ring analogy method for the prediction of static strength (ductile collapse) of tubular T, X joints under axial compression based on the limit analysis of the ring with some assumptions is presented in this papaer. The regression formula for the effective length of the chord based on test results is established by means of the least square method. The results computed by the present semi-analytic formula are compared with previous results and test data. They are quite close to each other. The accuracy of the present formula depends on the reasonable selection of the effective length of the chord, which requires numerous test data.  相似文献   

20.
利用有限元软件ABAQUS建立T型圆钢管节点热传导分析模型,通过与已有试验数据进行对比,验证了所建有限元模型的可靠性。利用提出的有限元模型分析了不同主管轴力作用下的T型圆钢管节点在火灾环境中的失效过程,研究了主管轴力对T型圆钢管节点临界温度的影响规律。分别讨论了采用屈服强度折减和弹性模量折减的方法预测T型圆钢管节点在高温下的极限承载力,并将预测结果和有限元分析结果进行了对比,给出了这两种方法用于工程设计时的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号