首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of below-cloud aerosol on the acidification process of rain   总被引:1,自引:0,他引:1  
Using a model of the acidification process of rain, we calculate and analyze the effects and contributions of a below-cloud aerosol in its different concentrations and acidities on the pH and ion components of rain (SO 4 2– , H+, NO 3 , NH 4 + , etc.) under the conditions of different concentrations of pollution gases. The results show that the aerosol has an acidification or alkalization effect on the rain which changes the pHs of rain and aerosol. As acidifying pollution gas concentrations (SO2, HNO3) are low, the acid aerosol has important effects on the pH and H+ of rain, but as the gas concentrations are high, the acid aerosol has very little effect. The alkalizing aerosol makes the pH of rain increase by between 0.3 and 0.5 and neutralizes about 60% of H+ in the rain. As alkalizing pollution gas NH3 exists, the acid aerosol has important effects on the pH and H+ of rain. But the alkalizing aerosol has very little effect, especially as the NH3 concentration is high. The percentage contribution of the aerosol to SO 4 2– in rain is generally 7–15%, the contribution of the aerosol to NO 3 is nearly the same as that of HNO3=1 ppb, and the contribution of the aerosol to NH 4 + is nearly the same as that of NH3, from 5 to 7 ppb, and is an important source of NH 4 + in rain. Finally, according to the actual conditions of typical regions in the south and north of China (Chongqing and Beijing), we analyze the effects of aerosol and pollution gases on the ion components of rain.  相似文献   

2.
Barnes  I.  Bastian  V.  Becker  K. H.  Fink  E. H.  Nelsen  W. 《Journal of Atmospheric Chemistry》1986,4(4):445-466
The reactions of OH radicals with SO2, H2S, thiophenol, and a series of aliphatic thiols (1–5 C-atoms) have been investigated in 201 and 381 reaction chambers at 1 atm total pressure and 300 K using a competitive kinetic technique. Initially, OH radicals were produced by photolysis of CH3ONO/NO mixtures in air. Applying this OH source rate constants for OH with SO2, H2S, and thiophenol in synthetic air were determined to be (1.1±0.2)×10-12, (5.5±0.8)×10-12 and (1.1±0.2)×10-11 cm3 s-1, respectively. However, when this method was applied to the aliphatic thiols the rate constants obtained were found to be dependent on the partial pressures of O2 and NO. These effects have been attributed to the built-up of a radical species, not yet identified, which leads to uncontrolled chain reactions in the system. Using the photolysis of H2O2 at wavelengths greater than 260 nm as the OH source in 1 atm N2, rate constants for the 1–5 aliphatic thiols in the range 2.9 to 5.6×10-11 cm3 s-1 were obtained. The rate constants obtained in the present study are compared with recent literature values.  相似文献   

3.
The activation of Br- and Cl- to atomic Br and Cl in sea-spray aerosol was investigated in smog-chamber experiments. In the presence of O3, hydrocarbons and NaCl aerosol alone no activation was observed. By adding Br- to the aerosol, the chain reaction: Br + O3 BrO, BrO + HO2 HOBr, HOBr HOBr(aq), HOBr(aq) + H+ + Br- Br2 (6), HOBr(aq) + H+ + Cl- BrCl (7) was verified. The step from reaction (6) to (7) is accompanied by a decrease of the Br-/Cl- ratio from 1/600 to less than 1/2000. In the absence of sulphate, the chain is initiated by the reaction of OH(aq) with Br-. The pH value decreases to less than 2 during the first minutes of the experiment and later on to almost 1 (in the absence of NOx or SO2). This is caused by the formation of oxalic acid from alkanes and toluene. In stopped flow experiments, the reduction of Br2 by oxalic acid was observed to occur through a two-step mechanism: HC2O4 - + Br2 Br- + BrC2O4H (k22, k-22), BrC2O4H Br- + H+ + 2 CO2 (23) with the following rate constants and ratios of rate constants, k ± 2: k22k-23 / k-22 = (2.9 ± 0.3) · 10-4 s-1, k-22 / k-23 = 7000 ± 3000 13000 M-1, k22 = 2 ±-1 4 M-1 s-1, and k-23 > 0.1 s-1, k-22 > 600 M-1 s-1. Oxalic acid may be responsible for the inhibition of the chain reaction observed at the end of the experiments.  相似文献   

4.
Rate coefficients have been measured for the reactions of hydroxyl radicals with a range of aliphatic ethers by a competitive technique. Mixtures of synthetic air containing a few ppm of nitrous acid, isobutene and an ether were photolyzed in a Teflon-bag smog chamber. From the rates of depletion of the ether and of the isobutene, and based on the value of the rate coefficient k(OH+i-C4H8)=5.26×10-11 cm3 molecule-1 s-1, the following rate coefficients were obtained for the hydroxyl radical reactions at 750 Torr and at 294±2K in units of 10-12 cm3 molecule-1 s-1: diethylether = 12.0±1.1, di-n-propylether = 15.3±1.6, di-n-butylether=17.1±0.9, ethyl n-butylether = 13.5±0.4, ethyl t-butyl-ether = 5.6±0.5, and di-isobutylether = 26.1±1.6. The quoted error limits correspond to 2 standard deviations but do not include any contribution from k(OH+i-C4H8) for which the error limits are estimated to be about ±10%. The results are discussed in relation to the available literature data and considered in terms of the structure-activity relation for hydroxyl radical reactions with organic molecules.  相似文献   

5.
Aerosol chemical composition and trace gas measurements were made at twolocations on the northeastern peninsula of Tenerife during the ACE-2HILLCLOUD experiment, between 28 June and 23 July 1997. Measurementswere made of coarse (#gt;2.5 m aerodynamic diameter) and fine (#lt; 2.5m) aerosol Cl, NO3 ,SO4 2–, non-sea saltSO4 2– (NSSS),CH3SO3 (MSA) andNH4 +, and gas phase dimethylsulphide (DMS), HCl,HNO3, SO2, CH3COOH, HCOOH andNH3. Size distributions were measured using a cascadeimpactor. Results show that in marine air masses NSSS and MSA wereformed via DMS oxidation, with additional NSSS present in air massescontaining a continental component. Using a Eulerian box model approachfor aerosols transported between upwind and downwind sites, a mean NSSSproduction rate of 4.36 × 10–4 gm–3 s–1 was calculated for daytimeclear sky periods (highest insolation), with values for cloudy periodsduring daytime and nighttime of 3.55 × 10–4 and2.40 × 10–4 g m–3s–1, respectively. The corresponding rates for MSA were6.23 × 10–6, 8.49 × 10–6and 6.95 × 10–6 g m–3s–1, respectively. Molar concentration ratios forMSA/NSSS were 8.7% (1.8–18.2%) and 1.9%(1.3–3.5%) in clean and polluted air masses, respectively.Reactions occurring within clouds appeared to have a greater influenceon rates of MSA production, than of NSSS, while conversely daytime gasphase reactions were more important for NSSS. For MSA, nighttimein-cloud oxidation rates exceeded rates of daytime gas phase productionvia OH oxidation of DMS. NSSS, MSA and ammonium had trimodal sizedistributions, with modes at 0.3, 4.0 and >10.0 m (NSSS andNH4 +), and 0.3, 1.5 and 4.0 m (MSA). Nosignificant production of other aerosol species was observed, with theexception of ammonium, which was formed at variable rates dependent onneutralisation of the aerosol with ammonia released from spatiallynon-uniform surface sources. Seasalt components were mainly present incoarse particles, although sub-micrometre chloride was also measured.Losses by deposition exceeded calculated expectations for all species,and were highest for the seasalt fraction and nitrate.  相似文献   

6.
Both aerosol and rainwater samples were collected and analyzed for ionic species at a coastal site in Southeast Asia over a period of 9 months (January–September 2006) covering different monsoons. In general, the occurrence and distribution of ionic species showed a distinct seasonal variation in response to changes in air mass origins. Real-time physical characterization of aerosol particles during rain events showed changes in particle number distributions which were used to assess particle removal processes associated with precipitation, or scavenging. The mean scavenging coefficients for particles in the range 10–500 nm and 500–10 μm were 7.0 × 10−5 ± 2.8 × 10−5 s−1 and 1.9 × 10−4 ± 1.6 × 10−5 s−1, respectively. A critical analysis of the scavenging coefficients obtained from this study suggested that the wet removal of aerosol particles was greatly influenced by rain intensity, and was particle size-dependent as well. The scavenging ratios, another parameter used to characterize particle removal processes by precipitation, for NH4 +, Cl, SO4 2−, and NO3 were found to be higher than those of Na+, K+, and Ca2+ of oceanic and crustal origins. This enrichment implied that gaseous species NH3, HCl, and HNO3 could also be washed out readily. These additional sources of ions in precipitation presumably counter-balanced the dilution effect caused by high total precipitation volume in the marine and tropical area.  相似文献   

7.
The kinetics of the reaction of nitrous acid (HONO) with nitric acid (HNO3), nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) have been studied using Fourier transform infrared spectroscopy. Experiments were performed at 700 torr total pressure using synthetic air or argon as diluents. From the observed decay of HONO in the presence of HNO3 a rate constant of k<7×10-19 cm3 molecule-1 s-1 was derived for the reaction of HONO with HNO3. From the observed decay of HONO in the presence of mixtures of N2O5 and NO2 we have also derived upper limits for the rate constants of the reactions of HONO with NO3 and N2O5 of 2×10-15 and 7×10-19 cm3 molecule-1 s-1, respectively. These results are discussed with respect to previous studies and to the atmospheric chemistry of HONO.  相似文献   

8.
The gas phase reactions of peroxyacetyl nitrate (PAN) with OH and Cl have been studied using the discharge-flow EPR method. The rate constants are found to be k 3=(7.5±1.4)×10-14 and k 4=(3.7±1.7)×10-13 cm3 molecule-1 s-1 at 298 K, respectively. These results confirm that the OH+PAN reaction will be the dominant sink of PAN in the middle and upper troposphere, whereas the reaction Cl+PAN will be negligible in contrast with previous estimations.  相似文献   

9.
Atmospheric nitric acid measurements by ACIMS (Active Chemical Ionization Mass Spectrometry) are based on ion-molecule reactions of CO3 -(H2O) n and NO3 -(H2O) n with HNO3. We have studied these reactions in the laboratory using a flow tube apparatus with mass spectrometric detection of reactant and product ions. Both product ion distributions and rate coefficients were measured. All reactions were investigated in an N2-buffer (1–3 hPa) at room temperature. The reaction rate coefficients of OH-, O2 -, O3 -, CO4 -, CO3 -, CO3 -H2O, NO3 -, and NO3 -H2O were measured relative to the known rate k=3.0×10-9 cm3 s-1 for the reaction of O- with HNO3. The main product ion of the reaction of CO3 -H2O with HNO3 was found to be (CO3HNO3)- supporting a previous suggestion made on the basis of balloon-borne ACIMS measurements. For the reaction of bare CO3 - with HNO3 three product ions were observed, namely NO3 -, (NO3OH)-, and (CO3HNO3)-. The reaction rate coefficients for CO3 -H2O (1.7×10-9 cm3 s-1) and NO3 -H2O (1.6×10-9 cm3 s-1) were found to be close to the collision rate. The measured k values for bare CO3 - (1.3×10-9 cm3 s-1) and NO3 - (0.7×10-9 cm3 s-1) are somewhat smaller. The collisional dissociations of CO3 -(H2O) n , NO3 -(H2O) n (n=1, 2), (CO3HNO3)- and (NO3HNO3)-, occasionally influencing ACIMS measurements, were also studied. Fragment ion distributions were measured using a triple quadrupole mass spectrometer. The results showed that previous stratospheric nitric acid measurements were unimpaired from collisional dissociation processes whereas these processes played a major role during previous tropospheric measurements leading to an underestimation of nitric acid concentrations. Previous ACIMS HNO3 detection was also affected by the conversion of CO3 -(H2O) n to NO3 -(H2O) n due to ion source-produced neutral radicals. A novel ACIMS ion source was developed in order to avoid these problems and to improve the ACIMS method.  相似文献   

10.
An experimental study is described of Fe(III)-S(IV) formation constants measured as a function of pH (1–3), ionic strength (0.2–0.5 M) and [Fe(III)] T (2.5–5.0×10–4 M) using a continuous-flow spectrophotometric technique to make observations 160 ms after mixing. Preliminary experiments using pulse-accelerated-flow (PAF) spectrophotometry to measure rate constants on a microsecond timescale are also described. The conditional formation constant at 25 °C can be modeled with the following equation: {ie307-1} where {ie307-2}K 7 andK 8 can be interpreted as intrinsic constants for the coordination of HSO 3 by FeOH2+ and Fe3+, respectively, but until further evidence is obtained they should be regarded as fitting constants. PAF spectrophotometry showed that the initial reaction of Fe(III) with S(IV) (pH 2.0) is characterized by a second-order rate constant of 4×106 M–1 s–1 which is comparable to rate of reaction of FeOH2+ with SO 4 2– . However, the PAF results should be regarded as preliminary since unexpected features in the initial data indicate that the reaction may be more complex than expected.  相似文献   

11.
Rate coefficients have been measured for the gas phasereactions of hydroxyl (OH) radicals and ozone with twounsaturated esters, allyl acetate(CH3C(O)OCH2CH=CH2) and isopropenylacetate (CH3C(O)OC(CH3)=CH2). The OHexperiments were carried out using the pulsed laserphotolysis – laser induced fluorescence technique overthe temperature range 243–372 K and the kinetic dataused to derive the following Arrhenius expressions (inunits of cm3 molecule-1 s-1): allylacetate, k 1 = (2.33 ± 0.27) ×10-12 exp[(732 ± 34)/T]; and isopropenyl acetate,k 2 = (4.52 ± 0.62) × 10-12exp[(809 ± 39)/T]. At 298 K, the rate coefficients obtained (inunits of 10-12 cm3 molecule-1 s-1)are: k 1 = (27.1 ± 3.0) and k 2= (69.6± 9.4). The relative rate technique has been usedto determine rate coefficients for the reaction ofozone with the acetates. Using methyl vinyl ketone asthe reference compound and a value of4.8 × 10-18 cm3 molecule-1s-1 asthe rate coefficient for its reaction with O3,the following rate coefficients were derived at 298 ± 4 K (in units of10-18 cm3molecule-1 s-1): allyl acetate, (2.4 ± 0.7) andisopropenyl acetate (0.7 ± 0.2). Theresults are discussed in terms of structure-activityrelationships and used to derive atmospheric lifetimesfor the acetates.  相似文献   

12.
Oxidation of sulfur dioxide by ozone in highly dispersed water droplets   总被引:1,自引:0,他引:1  
The oxidation of S(IV) by ozone in aqueous solution has been studied in highly dispersed droplets in a laboratory could chamber at 20°C. Urban air was used. Ozone concentrations ranged from 15 to 120 ppb, orders of magnitude lower than most previous works. Rate constants were derived from differential product determination, rather than from rates of decay of bulk reactants. Comparison of the results obtained here with those from previous work indicates that the reaction rate is indeed first order with respect to ozone. The second-order reaction rate constants found in this work lay between, or close to, other recent results, and could be represented by:k=1.23×104 [H+]–0.51 M–1 s–1.  相似文献   

13.
Partition, not kinetics, ultimately determines the concentration of highly soluble gases in cloud droplets. Partition equations are formulated and applied to idealized air-mass thunderclouds and precipitating stratus. Contribution to aqueous concentrations from sub-cloud scavenging of highly soluble gases is estimated at between 10 and 20% under relatively unpolluted conditions. Data indicate that evaporation can produce enhancements in concentration of as much as a factor of 3. The calculations give large-scale mean coefficients of wet removal of highly soluble gases of about 2.8×10-6 s-1 (4-day residence time) for air-mass thunderclouds and precipitating stratus. Removal is so effective that the mean scale heights of these gases should be decreased to 2 km or less. The criterion of high solubility in this paper is that K H (Henry's Law coefficient) > 105 mol l-1 atm-1. Gases that are effectively highly soluble include HCl, HNO3, H2SO4, H2O2, NH3 in acid droplets, SO2 in oxidizing droplets (and probably some light amines and sulfonic acids), but not SO2 in the absence of oxidants, nor HCHO. A variation of removal coefficient and scale height with solubility is presented. A comparison of atmospheric NH3 concentrations deduced from rain NH4 + and measured directly gives reasonable agreement.  相似文献   

14.
The reaction of Cl with cyclohexanone (1) was investigated, for the first time, as a function of temperature (273–333 K) and at a low total pressure (1 Torr) with helium as a carrier gas using a discharge flow-mass spectrometry technique (DF-MS). The resulting Arrhenius expression is proposed, k 1= (7.7 ± 4.1) × 10–10 exp[–(540 ± 169)/T]. We also report a mechanistic study with the quantitative determination of the products of the reaction of Cl with cyclohexanone. The absolute rate constant derived from this study at 1 Torr of total pressure and room temperature is (1.3 ± 0.2) × 10–10 cm3 molecule–1 s–1. A yield of 0.94 ± 0.10 was found for the H-abstraction channel giving HCl. In relative studies, using a newly constructed relative rate system, the decay of cyclohexanone was followed by gas chromatography coupled with flame-ionisation detection. These relative measurements were performed at atmospheric pressure with synthetic air and room temperature. Rate constant measured using the relative method for reaction (1) is: (1.7 ± 0.3) × 10–10 cm3 molecule–1 s–1. Finally, results and atmospheric implications are discussed and compared with the reactivity with OH radicals.  相似文献   

15.
This study reports comparisonsbetween model simulations, based on current sulfurmechanisms, with the DMS, SO2 and DMSOobservational data reported by Bandy et al.(1996) in their 1994 Christmas Island field study. For both DMS and SO2, the model results werefound to be in excellent agreement with theobservations when the observations were filtered so asto establish a common meteorological environment. Thisfiltered DMS and SO2 data encompassedapproximately half of the total sampled days. Basedon these composite profiles, it was shown thatoxidation of DMS via OH was the dominant pathway withno more than 5 to 15% proceeding through Cl atoms andless than 3% through NO3. This analysis wasbased on an estimated DMS sea-to-air flux of 3.4 ×109 molecs cm-2 s-1. The dominant sourceof BL SO2 was oxidation of DMS, the overallconversion efficiency being evaluated at 0.65 ± 0.15. The major loss of SO2 was deposition to theocean's surface and scavenging by aerosol. Theresulting combined first order k value was estimated at 1.6 × 10-5 s-1. In contrast to the DMSand SO2 simulations, the model under-predictedthe observed DMSO levels by nearly a factor of 50. Although DMSO instrument measurement problems can notbe totally ruled out, the possibility of DMSO sourcesother than gas phase oxidation of DMS must beseriously considered and should be explored in futurestudies.  相似文献   

16.
Using a filter radiometer, the meridional profile of the NO2 photolysis frequency, J(NO2), was measured between 50° N and 30° S during the cruise ANTVII/1 September/October 1988 of the research vessel Polarstern on the Atlantic Ocean. Simultaneously, global broadband irradiance and acrosol were monitored. Clean marine background air with low aerosol loads (b sp=(1–2)×10-5 m-1) was encountered at the latitudes 25° N–30° N and 18° S–27° S, respectively. Under these conditions and an almost cloudless sky J(NO2) reached 7.3×10-3 s-1 (2 sr) for a zenith angle of 30°. Between 30° N and 30° S, the latitudinal variation of the J(NO2) noontime maxima was less than ± 10%, while the mean value at noon was 7.8×10-3 s-1. For the set of all data between 50° N and 30° S, a nearly linear correlation of J(NO2) vs. global broadland irradiance was found. The slope of (8.24±0.03)×10-5 s-1/mW cm-2 agrees within 10% with observations in Jülich (51° N, 6.2° E).  相似文献   

17.
Accurate values for the rate and temperature dependence of the reaction NO + O3 NO2 + O2 are important in the chemical modelling of photochemical processes in the atmosphere. Previous measurements have been made at low total pressures and/or with very large mixing ratios relative to those observed in the atmosphere. In this study the reaction rate has been measured using a novel approach under tropospheric conditions of temperature and pressure, and at tens of ppb (mixing ratios of 1 in 108) between 263 and 328 K. The resultant Arrhenius expression (k=Ae-Ea/RT) gives a larger activation energy (Ea/R=1670 ± 100) than the recommended literature value (Ea/R=1400 ± 200), and a larger pre-exponential factor (A=5.1 ± 1.6 × 10-12 cf. recommended A=2.0 × 10-12), but the second-order rate constant at 298 K (1.90 × 10-14 molecules cm-3 s-1 ± 10%) is similar to the recommended value. The results confirm a lack of pressure dependence of the reaction, but were made over too small a range in temperature to address the issue of curvature of the simple Arrhenius expression.  相似文献   

18.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   

19.
The relative rate technique has been used to measure rate constants for the reaction of chlorine atoms with peroxyacetylnitrate (PAN), peroxypropionylnitrate (PPN), methylhydroperoxide, formic acid, acetone and butanone. Decay rates of these organic species were measured relative to one or more of the following reference compounds; ethene, ethane, chloroethane, chloromethane, and methane. Using rate constants of 9.29×10–11, 5.7×10–11, 8.04×10–12, 4.9×10–13, and 1.0×10–13 cm3 molecule–1 sec–1 for the reaction of Cl atoms with ethene, ethane, chloroethane, chloromethane, and methane respectively, the following rate constants were derived, in units of cm3 molecule–1 s–1: PAN, <7×10–15; PPN, (1.14±0.12)×10–12; HCOOH, (2.00±0.25)×10–13; CH3OOH, (5.70±0.23)×10–11; CH3COCH3, (2.37±0.12)×10–12; and CH3COC2H5, (4.13±0.57)×10–11. Quoted errors represent 2 and do not include possible systematic errors due to errors in the reference rate constants. Experiments were performed at 295±2 K and 700 torr total pressure of nitrogen or synthetic air. The results are discussed with respect to the previous literature data and to the modelling of nonmethane hydrocarbon oxidation in the atmosphere.In recent discussions with Dr. R. A. Cox of Harwell Laboratory, UKAEA, we learnt of a preliminary value for the rate constant of the reaction of Cl with acetone of (2.5±1.0)×10–12 cm3 molecule–1 sec–1 measured by R. A. Cox, M. E. Jenkin, and G. D. Hayman using molecular modulation techniques. This value is in good agreement with our results.  相似文献   

20.
In this study bulk airborne aerosol composition measured by the PILS-IC (integration time of 3 min 24 s) during TRACE-P P3B Flight 10 are used to investigate the ionic chemical composition and mixing state of biomass burning particles. A biomass burning plume, roughly 3–4 days old, moderately influenced by urban pollution aerosols recorded in the Philippine Sea is investigated. Focusing on the fine particle NO3, SO42−, K+, NH4+, and water-soluble organics, the observed correlations and nearly 1-to-1 molar ratios between K+ and NO3 and between NH4+ and (SO42−+ inferred Organics) suggest the presence of fine-mode KNO3, (NH4)2SO4, and NH4(Organics) aerosols. Under the assumption that these ion pairs existed, and because KNO3 is thermodynamically less favored than K2SO4 in a mixture of NO3, SO42−, K+, NH4+, and Organic anions, the measurements suggest that aerosols could be composed of biomass burning particles (KNO3) mixed to a large degree externally with the (NH4)2SO4 aerosols. A “closed-mode” thermodynamic aerosol simulation predicts that a degree of external mixing (by SO42− mass) of 60 to 100% is necessary to achieve the observed ionic associations in terms of the existence of KNO3. However, the degree of external mixing is most likely larger than 90%, based on both the presence of KNO3 and the amounts of NH4NO3. Calculations are also shown that the aerosol mixing state significantly impacts particle growth by water condensation/evaporation. In the case of P3B Flight #10, the internal mixture is generally more hygroscopic than the external mixture. This method for estimating particle mixing state from bulk aerosol data is less definitive than single particle analysis, but because the data are quantitative, it may provide a complementary method to single particle chemical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号