首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Three piston cores from Lake Victoria (East Africa) have been analysed for organic carbon (TOC) and nitrogen (TN) content, stable isotopes (13C and 15N), and Hydrogen Index (HI). These data are combined with published biogenic silica and water content analyses to produce a detailed palaeolimnological history of the lake over the past ca. 17.5 ka. Late Pleistocene desiccation produced a lake-wide discontinuity marked by a vertisol. Sediments below the discontinuity are characterised by relatively low TOC and HI values, and high C/N, 13C and 15N, reflecting the combined influence of abundant terrestrial plant material and generally unfavourable conditions for organic matter preservation. A thin muddy interval with lower 13C and higher HI and water content indicates that dry conditions were interrupted by a humid period of a few hundred years duration when the lake was at least 35 m deep. The climate changed to significantly more humid conditions around 15.2 ka when the dry lake floor was rapidly flooded. Abundant macrophytic plant debris and high TOC and 13C values at the upper vertisol surface probably reflect a marginal swamp. 13C values decrease abruptly and HI begins to increase around 15 ka BP, marking a shift to deeper-water conditions and algal-dominated lake production. C/N values are relatively low during this period, suggesting a generally adequate supply of nitrogen, but increasing 15N values reflect intense utilisation of the lake's DIN reservoir, probably due to a dramatic rise in productivity as nutrients were released to the lake from the flooded land surface.An abrupt drop in 13C and 15N values around 13.8-13.6 ka reflects a period of deep mixing. Productivity increased due to more efficient nutrient recycling, and 13C values fell as 12C-rich CO2 released by bacterial decomposition of the organic material was brought into the epilimnion. A weak drop in HI values suggests greater oxygen supply to the hypolimnion at this time. Better mixing was probably due to increased wind intensity and may mark the onset of the Younger Dryas in the region.After the period of deep mixing, the water column became more stable. TOC, C/N, 13C and HI values were at a maximum during the period between 10 and 4 ka, when the lake probably had a stratified water column with anoxic bottom waters. A gradual decrease in values over the last 4000 yrs suggest a change to a more seasonal climate, with periodic mixing of the water column. Rising sediment accumulation rates and a trend to more uniform surface water conditions over the last 2000 yrs are probably a result of increased anthropogenic impact on the lake and its catchment.Following a maximum at the time of the rapid lake-level rise during the terminal Pleistocene, 15N has remained relatively low and displays a gradual but consistent trend to lower values from the end of the Pleistocene to the present. TN values have risen during the same period. The lack of correlation between 13C and 15N, and the absence of any evidence for isotopic reservoir effects despite the rise in TN, suggests that the atmosphere, rather than the lake's dissolved nitrogen pool has been the principal source of nitrogen throughout the Holocene. The importance of atmospheric N fixation to Lake Victoria's nitrogen cycle thus predates by a very considerable margin any possible anthropogenic eutrophication of the lake.  相似文献   

2.
Sediments of the marl lake Malham Tarn located in NW Englandpreserve an environmental record since 12 Ka. Eight Holocene pollen zones wereidentified, and the 13C of total organic carbon (TOC) showsthree stratigraphic divisions. The basal clay unit and overlayingsand/clay/marl unit have 13C of –24which decreases at the base of the principal marl unit to a mean value around–30, whilst the topmost black marl unit 13Cincreases to –28 at the surface. Representative samples of theseunits were selected for analysis of n-alkanes andn-fatty acids and their 13C.Samples of modern Chara and peat were analysed forcomparison. The clay unit has a minor contribution of redeposited matureorganic matter and autochthonous algae, the marl unit a high contribution ofChara, and the dark marl unit has a high contribution fromhigher plants. Compound-specific 13C revealssystematic differences between alkanes and fatty acids of different chainlength. The major shift in 13C in the short and medium chainfatty acids are probably due to the decreasing influence of carbonate rockflour as source of DIC. The major shift in 13C in the longchain n-fatty acids andn-alkanes could reflect the lower atmosphericCO2 concentration at Last Glacial. The negative shift of short chainfatty acids in organic rich dark marls reflects introduction of detrital peatinto the lake. The 13C results show a dramatic change fromdominance of autochthonous plus eroded sources up to Pollen Zone IV, then slowcolonisation of the hinterland by higher plants, followed by constantChara contributions throughout the deposition of the marl,and a further increase of higher plant material after the rise in water levelin 1791.  相似文献   

3.
Lake Manitoba, the largest lake in the Prairie region of North America, contains a fine-grained sequence of late Pleistocene and Holocene sediment that documents a complex postglacial history. This record indicates that differential isostatic rebound and changing climate have interacted with varying drainage basin size and hydrologic budget to create significant variations in lake level and limnological conditions. During the initial depositional period in the basin, the Lake Agassiz phase (12–9 ka), 18O of ostracodes ranged from –16 to –5 (PDB), implying the lake was variously dominated by cold, dilute glacial meltwater and warm to cold, slightly saline water.Candona subtriangulata, which prefers cold, dilute water, dominates the most negative 18O intervals, when the basin was part of proglacial Lake Agassiz. At times during this early phase, the 18O of the lake abruptly shifted to higher values; euryhaline taxa such asC. rawsoni orLimnocythere ceriotuberosa, and halobiont taxa such asL. staplini orL. sappaensis are dominant in these intervals. This positive covariance of isotope and ostracode records implies that the lake level episodically fell, isolating the Lake Manitoba basin from the main glacial lake.18O values from inorganic endogenic Mg-calcite in the post-Agassiz phase of Lake Manitoba trend from –4 at 8 ka to –11 at 4.5 ka. We interpret that this trend indicates a gradually increasing influence of isotopically low (–20 SMOW) Paleozoic groundwater inflow, although periods of increased evaporation during this time may account for zones of less negative isotopic values. The 18O of this inorganic calcite abruptly shifts to higher values (–6) after 4.5 ka due to the combined effects of increased evaporative enrichment in a closed basin lake and the increased contribution of isotopically high surface water inflow on the hydrologic budget. After 2 ka, the 18O of the Mg-calcite fluctuates between –13 and –7, implying short-term variability in the lake's hydrologic budget, with values indicating the lake varied from outflow-dominated to evaporation-dominated. The 13C values of Mg-calcite remain nearly constant from 8 to 4.5 ka and then trend to higher values upward in the section. This pattern suggests primary productivity in the lake was initially constant but gradually increased after 4.5 ka.This is the sixth in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   

4.
Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates   总被引:32,自引:0,他引:32  
Identification of the sources of organic matter in sedimentary records provides important paleolimnologic information. As the types and abundances of plant life in and around lakes change, the composition and amount of organic matter delivered to lake sediments changes. Despite the extensive early diagenetic losses of organic matter in general and of some of its important biomarker compounds in particular, bulk identifiers of organic matter sources appear to undergo minimal alteration after sedimentation. Age-related changes in the elemental, isotopic, and petrographic compositions of bulk sedimentary organic matter therefore preserve evidence of past environmental changes.We review different bulk organic matter proxies of climate change in tropical and temperate sedimentary records ranging in age from 10-500 ka. Times of wetter climate result in enhanced algal productivity in lakes as a consequence of greater wash-in of soil nutrients, and these periods are recorded as elevated Rock-Eval hydrogen indices, lowered organic C/N ratios, less negative organic 13C values, and increased organic carbon mass accumulation rates. Lowering of lake water levels, which typically depresses algal productivity, can also cause an apparent increase in organic carbon mass accumulation rates through suspension of sediments from lake margins and redeposition in deeper basins. Alternations between C3 and C4 watershed plants accompany climate changes such as glacial/interglacial transitions and wet/dry cycles, and these changes in land-plant types are evident in 13C values of organic matter in lake sediments. Changes in climate-driven hydrologic balances of lakes are recorded in D values of sedimentary organic matter. Visual microscopic examination of organic matter detritus is particularly useful in identifying changes in bulk organic matter delivery to lake sediments and therefore is important as an indicator of climate changes.  相似文献   

5.
Lake Chen Co, situated at 90°33–39E, 28°53–59N with a lake level of 4420 m asl, is an enclosed lake with 148 km2 of catchment area and 40 km2 of lake surface. It is mainly supplied by glacier melt water either from surface inflow or groundwater. Atmospheric precipitation is mainly concentrated in June–September. A 216-cm long lake sediment core was obtained at a site with 8 m of water depth, 800 m from the lakeshore and 1.5% of the bottom slope in this lake. The sediment core was taken by a piston sampler and was sliced with an interval of 1 cm each. 210Pb dating measurement suggested that the average sedimentary rate was 0.16 cm yr–1, which also was confirmed by 137Cs peak occurrence. Magnetic analyses included low-frequency dependent susceptibility (LF), susceptibility of anhysteretic remanent magnetism (ARM), the saturation isothermal remanent magnetism (SIRM), the isothermal remanent magnetism (IRM) reverse and Soft and Hard contents were performed for the sediment core. Results showed that LF was an index for reflecting the environmental conditions, but was not sufficient to reveal details of magnetic features. This had been proved by measurements of IRM Reverse percentage and Soft and Hard magnetic minerals values. The log(SIRM/LF) had much more information to reveal environmental changes. The ARM/LF might be more sensitive to the local environmental conditions because it was well able to indicate the grain-size variations of magnetic particles. In the past ca. 1400 years, the warm stages were ca. 620–740 AD, 1120–1370 AD and since ca. 1900 AD. After an intensively cold stage during ca. 1550–1690 AD, a cold-humid stage from ca. 1690–1900 AD and a warm-dry stage since ca. 1900 AD followed. Among these stages, the warmest one occurred in ca. 1120–1370 AD and the coldest stage was between ca. 1550 and 1690 AD. This result might be compared with many other research results from lake cores, ice cores and the Chinese historical documents.  相似文献   

6.
Southeastern Missouri has been a major Pb mining region since 1720 AD. Missouri mines produce a Pb ore that has a distinctive elevated 206Pb/207Pb isotopic ratio (>1.30) that is easily recognized in Pb-contaminated sediments. Five 210Pb dated sediment cores from Horseshoe Lake, Madison County, Illinois were examined to reconstruct Pb-contamination of the site from southeastern Missouri mines and from a local Pb smelter located adjacent to the lake. Pb concentrations increased in the cores from 5 ppm in the early 1800s to approximately 350 ppm in the late 1940s and 1950s. Pb concentrations in recently deposited sediment range from 100 to 300 ppm depending on the location within the lake. Throughout the 1800s and early 1900s the 206Pb/207Pb ratios in the sediment cores increased indicating contamination from southeastern Missouri (mean = 1.243). After the local smelter began recycling lead-acid storage batteries in the 1950s, the 206Pb/207Pb ratio declined (mean = 1.224) suggesting contamination of Horseshoe Lake with Pb from sources elsewhere around the world. The results of this study demonstrate how isotopic ratios of Pb can be used to reconstruct historical anthropogenic contamination.  相似文献   

7.
Profiles of percent carbon and nitrogen, carbon/nitrogen (C/N) ratios and stable carbon (13C), and nitrogen (15N) isotopic ratios in organic matter from an 11.6 m core were used to reconstruct environments of deposition in the Swan Lake basin during the past 5300 YBP. The upper 6.5 m consisted of gyttja containing variable amounts of reddish brown-colored fine organic matter and calcium carbonate. It was followed by a 0.5 m sandy silt, which was followed by a 3.6 m reduced layer characterized by large quantities of black organic plant remains, sapropel, and then by another sapropel layer consisting mainly of well-sorted sapropelic sand with relatively low organic matter content. The C- and N-contents in the organic matter in the sediment profile ranged from 0.5 to 23% and from 0.02 to 2%, respectively. Carbon content were positively correlated to both N and clay content while carbon content was negatively correlated to sand content. Two major environmental phases in Swan Lake were apparent from large differences in the C and N data of the sediment organic matter. These include the sapropel (marsh) stage that stretched from approximately 5330 to 3930 YBP, and the following gyttja (open water stage). During the sapropel marsh plants identified in a previous pollen study as cattails and sedges proliferated and produced copious amounts of well-preserved organic matter. C/N ratios, 13C values, and 15N values in the sapropel were significantly different from those that characterized organic matter in the gyttja. During the gyttja 13C values indicated that deep primary producers have dominated lake biomass. By utilizing bicarbonate as their C-source, the accumulating biomass became relatively enriched 13C values. The presence of high sediment CaCO3 contents indicated more alkaline and deeper water conditions prevailed during the gyttja. Further refinement of the data suggested that each major phase initially contained an identifiable transition stage. During the sapropelic (initial marsh stage) which occurred before 5330 YBP, sand content gradually decreased as organic matter increased. As reflected by high C/N ratios and slightly enriched 13C values, these sands appear to have contained sufficient permeability to promote partial mineralization of accumulated organic-N containing compounds. A short initial gyttja transition period from about 3930–3830 YBP occurred in which the sediment silt content was anomalously high relative that measured in the surrounding layers. The silt content suggests that this turbid transition layer can not be completely explained by sediment mixing via bioturbation. The silts appeared to have been associated with the sharp climate change that resulted in higher water-table conditions during the gyttja stage.  相似文献   

8.
Several waterbodies occupied the tectonic depressions along the Dead Sea transform during the NeogeneQuaternary. The earliest of these water bodies was the marine Sedom lagoon, which produced the SedomDead Sea brine. After the disconnection of the Sedom lagoon from the open sea several lakes were developed in the Dead Sea basinJordan Valley. Lake Amora (Samra) that existed from early to late Pleistocene, Lake Lisan (~ 70–15 kyr B.P.), and the Holocene Dead Sea. The lacustrine water bodies in the Dead Sea basin behave as amplifier lakes whose size and depth reflect the changing climatic conditions in the region. Lake level and limnological conditions of Lake Amora are not yet known, nevertheless, the lake probably extended over a large part of the Dead Sea basin-Jordan Valley. Lake Lisan level changed between ~ 330 and ~ 150 meters below sea level (m b.s.l.). Its maximum elevation was reached at ~ 27–23 kyr B.P. during marine isotope stage 2. Its minimum elevation was reached at ~ 47–43 kyr during marine isotope stage 3. Lake Lisan began to recede at ~ 17–15 kyr B.P. and at 12–11 kyr B.P. the postLisan water body declined to its minimum level. During most of the Holocene the lake (paleoDead Sea) stabilized at ~ 400 m b.s.l.The limnological evolution of water bodies in the Dead Sea basin reflects the climatic conditions in the region during the late Pleistocene, which fluctuated between wetter and drier periods. During Lisan time these fluctuations appear to be modulated by the cold and warm cycles, respectively in the northern Hemisphere. This relation is less obvious in the postLisan water body, where the strongest lake drop appears to occur during the Younger Dryas cold event.  相似文献   

9.
The volcanogenic lake Laguna Potrok Aike, Santa Cruz, Argentina, reveals an unprecedented continuous high resolution climatic record for the steppe regions of southern Patagonia. With the applied multi-proxy approach rapid climatic changes before the turn of the first millennium were detected followed by medieval droughts which are intersected by moist and/or cold periods of varying durations and intensities. The total inorganic carbon content was identified as a sensitive lake level indicator. This proxy suggests that during the late Middle Ages (ca. AD 1230–1410) the lake level was rather low representing a signal of the Medieval Climate Anomaly in southeastern Patagonia. At the beginning of the Little Ice Age the lake level rose considerably staying on a high level during the whole period. Subsequently, the lake level lowered again in the course of the 20th century.  相似文献   

10.
Geochemical anomalies and stable isotope ratios (18O, 13C) in authigenic carbonates and organic matter (13C) from a 660-year sediment core from Lake Chenghai, southern China, provide a continuous history of recent lake eutrophication. The multi-proxy geochemical and isotopic record can be divided into a three-part history of contrasting limnological development, including: (1) a clear-water, oligotrophic open lake system (1340 and 1690 AD); (2) an environmentally unstable, hydrologically closed, oligotrophic lake system (1690–1940 AD); and (3) an increasingly eutrophic, closed lake system marked by higher organic matter, nitrogen, CaCO3, and pigment concentrations, and lower 18O and 13C values in authigenic calcite (1940–1999 AD). The unanticipated lowering of 18O and 13C of authigenic calcite during eutrophication is thought to be the result of disequilibrium water–carbonate fractionation of oxygen and carbon isotopes during periods of elevated primary production, pH, and [CO3 2–] activities in the water column. The recent eutrophication of Lake Chenghai indicated by these geochemical proxies is essentially simultaneous with large-scale human migration and the application of agricultural fertilizers in the catchment area during the 20th century.  相似文献   

11.
New sediment core data from a unique slow-sedimentation rate site in Lake Tanganyika contain a much longer and continuous record of limnological response to climate change than have been previously observed in equatorial regions of central Africa. The new core site was first located through an extensive seismic reflection survey over the Kavala Island Ridge (KIR), a sedimented basement high that separates the Kigoma and Kalemie Basins in Lake Tanganyika.Proxy analyses of paleoclimate response carried out on core T97-52V include paleomagnetic and index properties, TOC and isotopic analyses of organic carbon, and diatom and biogenic silica analyses. A robust age model based on 11 radiocarbon (AMS) dates indicates a linear, continuous sedimentation rate nearly an order of magnitude slower here compared to other core sites around the lake. This age model indicates continuous sedimentation over the past 79 k yr, and a basal age in excess of 100 k yr.The results of the proxy analyses for the past 20 k yr are comparable to previous studies focused on that interval in Lake Tanganyika, and show that the lake was about 350 m lower than present at the Last Glacial Maximum (LGM). Repetitive peaks in TOC and corresponding drops in 13C over the past 79 k yr indicate periods of high productivity and mixing above the T97-52V core site, probably due to cooler and perhaps windier conditions. From 80 through 58 k yr the 13C values are relatively negative (–26 to –28 l) suggesting predominance of algal contributions to bottom sediments at this site during this time. Following this interval there is a shift to higher values of 13C, indicating a possible shift to C-4 pathway-dominated grassland-type vegetation in the catchment, and indicating cooler, dryer conditions from 55 k yr through the LGM. Two seismic sequence boundaries are observed at shallow stratigraphic levels in the seismic reflection data, and the upper boundary correlates to a major discontinuity near the base of T97-52V. We interpret these discontinuities to reflect major, prolonged drops in lake level below the core site (393 m), with the lower boundary correlating to marine oxygen isotope Stage 6. This suggests that the previous glacial period was considerably cooler and more arid in the equatorial tropics than was the last glacial period.  相似文献   

12.
Criteria for removing training set lakes and taxa in chironomidbased inference models, due to low abundances, have largely been ad hoc. We used an anoxia inference model and a hypolimnetic oxygen model from southcentral Ontario to determine what effect subfossil head capsule abundance and taxa deletion criteria have on fossil inference statistics. Results from six training set lakes suggest that a minimum abundance of 40–50 head capsules is sufficient for use in inference models, however more diverse samples likely require more than 50 head capsules. Taxa deletion criteria substantially improved the predictive ability of inference models (lowered the root mean squared error of prediction (RMSEP)). The common practice of including taxa with only 2% abundance in at least two lakes was one of the deletion criteria that much improved inference models. Similar deletion criteria, such as 2% in at least 3 lakes and 3% in at least 1 lake, produced comparable improvements (up to 18% reduction in RMSEP).  相似文献   

13.
The paleohydrological evolution of several high altitude, saline lakes located in the southernmost Altiplano (El Peinado and San Francisco basins, Catamarca province, NW Argentina) was reconstructed applying sedimentological, geochemical and isotopic techniques. Several playa lakes from the San Francisco basin (26° 56 S; 68° 08 W, 3800-3900 m a.s.l.) show evidence of a recent raise in the watertable that led to modern deposition of carbonate and diatomaceous muds. A 2 m - long core from El Peinado Lake (26° 29 59 S, 68°05 32 W, 3820 m a.s.l.) consists of calcitic crusts (unit 3), overlaid by an alternation of macrophyte-rich and travertine clast- rich, laminated muds (unit 2), and topped by travertine facies (unit 1). This sedimentary sequence illustrates a paleohydrological evolution from a subaerial exposure (unit 3) to a high lake stand (unit 2), and a subsequent smaller decrease in lake level (unit 1). The 13Corganic matterrecord also reflects the lake transgression between units 3 and 2. Although there is a general positive correlation between 18Ocarbonate and salinity proxies (Na, Li and B content), the large data dispersion indicates that other factors besides evaporation effects control chemical and isotopic composition of lakewater. Consequently, the oxygen isotopic composition cannot be interpreted exclusively as an indicator of salinity or evaporation ratio. The degassing of CO2 during groundwater discharge can explain the enriched 13C values for primary carbonates precipitated. The carbon budget in these high altitude, saline lakes seems to be controlled by physical rather than biological processes.The Altiplano saline lakes contain records of environmental and climatic change, although accurate 14C dating of these lacustrine sediments is hindered by the scarcity of terrestrial organic material, and the large reservoir effects. Sedimentologic evidence, a 210Pb-based chronology, and a preliminary U/Th chronology indicate a very large reservoir effect in El Peinado, likely as a result of old groundwaters and large contributions of volcanic and geothermal 14C-free CO2 to the lake system. Alternative chronologies are needed to place these paleorecords in a reliable chronological framework. A period of increased water balance in the San Francisco basin ended at about 1660 ± 82 yr B.P. (calendar yr U/Th age), and would correlates with the humid phase between 3000 and 1800 yr B.P detected in other sites of the southern Altiplano. Both, 210Pb and preliminary U/Th dating favor a younger age for the paleohydrological changes in El Peinado. The arid period reflected by subaerial exposure and low lake levels in unit 3 would have ended with a large increase in effective moisture during the late 17th century. The increased lake level during deposition of unit 2 would represent the period between AD1650 - 1900, synchronous to the Little Ice Age. This chronological framework is coherent with other regional records that show an abrupt transition from more arid to more humid conditions in the early 17th century, and a change to modern conditions in the late 19th century. Although there are local differences, the Little Ice Age stands as a significant climatic event in the Andean Altiplano.  相似文献   

14.
This study is focused on the endorheic Uyni-Coipasa Basin located in the southern Bolivian Altiplano. Stratigraphical and fossil diatom studies based on a detailed radiocarbon chrnology revealed six phases in water-level changes and paleosalinity variations. At 15,430±80 yr B.P., lacustrine conditions settled in the southern Bolivian Altiplano. A saline lake, characterized by benthic meso-metasaline species, reached +4 m altitude above the present bottom of the basin. After 15,430±80 yr B.P., the level rapidly rose to +27 m, as suggested by a tychoplanktonic mesosaline flora. Between 14,500 years and 13,000 years, finely lanminated sediments at +32 m contained successively a dominance of epiphytic mesosaline to hypersaline species and tychoplanktonic oligosaline diatoms, indicating weak fluctuations in water-level and salinity. At 13,000 years, strong changes in the diatom flora occurred; epiphytic oligo-hypersaline diatoms were replaced by planktonic meso-polysaline species. They indicate a deep salt lake (the lake reached +100 m). After 12,000 years, the lake level abruptly dropped, as suggested by fluviatile sediments with a benthic mesopolysaline diatom flora. The main lake was replaced by shallow saline ponds. A wet pulse occurred at 11,400 years, characterized by low water level (+7 m) and high salinity. This lacustrine phase remained until 10,400 yr B.P. These data indicate changes in Precipitation minus Evaporation (P-E). Our regional interpretations are based on a comparison with teh available data on the northern (Lake Titicaca) and southern (Lipez are) Bolivian Altiplano and on the northern Chilean Altiplano (Atacama Desert).  相似文献   

15.
Paleoclimate research based on the stable isotopic composition of lake sediments is often hampered by the lack of preservation of suitable material for isotopic analysis. We examined organic material as a proxy for past water isotopic composition in a series of experiments. First, we cultured aquatic moss under constant illumination, temperature, and water 18O, and show that new cellulose records source water 18O precisely (r2 = 0.9997). Second, we analyzed paired lakewater and vegetation samples collected from sites spanning strong climatic gradients. In field conditions, the relationship between organic 18O and water 18O is more variable, though it is still controlled by environmental water isotopic composition. However, terrestrial mosses in the arctic are often significantly enriched in 18O relative to aquatic mosses in nearby lakes due to their use of different water sources. Third, we measured 18O of cellulose extracted from disseminated sedimentary organic material. In the majority of the middle- to high-arctic lakes in this study, the 18O of disseminated sediment cellulose is greatly enriched relative to the expected values based on lakewater 18O, suggesting a significant component of terrestrial cellulose. This interpretation is supported by radiocarbon dates from a Holocene sediment core in which 14C ages of sediment cellulose are 700-5000 yrs older than the enclosing sediments. We conclude that aquatic cellulose can be used as a reliable tracer of lakewater isotope ratios, but terrestrial cellulose often dominates the sedimentary cellulose pool in places such as Baffin Island where sedimentation rates are low enough to allow the degradation of aquatic cellulose. Care must be taken when interpreting sediment cellulose 18O records where diagenesis has played a role, because terrestrial cellulose is more resistant to degradation, and therefore can predominate in environments with low organic carbon burial.  相似文献   

16.
Evaporation dominates the removal of water from Lake Tanganyika, and therefore the oxygen isotope composition of lake water has become very positive in comparison to the waters entering the lake. The surface water in Lake Tanganyika has remained relatively unchanged over the last 30 years with a seasonal range of +3.2 to +3.5 VSMOW. Water from small rivers entering the lake seems to have a 18O value between –3.5 and –4.0, based on scattered measurements. The two largest catchments emptying into the lake deliver water that has a 18O value between these two extremes. This large contrast is the basis of a model presented here that attempts to reconstruct the history of runoff intensity based on the 18O of carbonate shells from Lake Tanganyika cores. In order to use biogenic carbonates to monitor changes in the 18O of mixing-zone water, however, the oxygen isotope fractionation between water and shell carbonate must be well understood. The relatively invariant environmental conditions of the lake allow us to constrain the fractionation of both oxygen and carbon isotope ratios. Although molluskan aragonitic shell 18O values are in agreement with published mineral-water fractionations, ostracode calcite is 1.2 more positive than that of inorganic calcite precipitated under similar conditions. Ostracode shell 18O data from two cores from central Lake Tanganyika suggest that runoff decreased in the first half of this millennium and has increased in the last century. This conclusion is poorly constrained, however, and much more work needs to be done on stable isotope variation in both the waters and carbonates of Lake Tanganyika. We also compared the 13C of shells against predicted values based solely on the 13C of lake water dissolved inorganic carbon (DIC). The ostracode Mecynocypria opaca is the only ostracode or mollusk that falls within the predicted range. This suggests that M. opaca has potential for reconstructing the carbon isotope ratio of DIC in Lake Tanganyika, and may be a useful tool in the study of the history of the lakes productivity and carbon cycle.  相似文献   

17.
The Konya plain in south central Anatolia, Turkey, which is now largely dry, was occupied around the time of the Last Glacial Maximum by a fresh-oligosaline lake covering more than 4000 km2. Sediment cores from three residual water bodies (Pinarbai, Akgöl and Süleymanhaci) within the larger Pleistocene lake basin, have been analysed using a multidisciplinary approach. The sediment sequences are dated as spanning the last 50 Ka years, although breaks in sedimentation mean that there is only partial chronological overlap between them. Carbon and oxygen isotope analyses on lacustrine carbonate from the three cores give contrasting isotope profiles which reflect the different ages and independent hydrological behaviour of different sub-basins through the late Quaternary. Distinguishing changes that are regional from local effects is aided by modern isotope hydrology studies and by comparing the carbonate 13C and 18O values to diatom and other analyses undertaken on the same cores.  相似文献   

18.
A small lake, Kaksoislammi (60° 3830N, 24° 4550E), in southern Finland was studied for Cladocera, diatoms and pollen from a core which covers the entire Holocene. The diatom remains indicate a steady development from alkaliphilous taxa towards the dominance of acidophilous forms and lowering pH in the late Holocene. About 1800–1700 BP, dramatic changes took place in the microfauna, mainly the planktonic Cladocera. Bosmina longirostris, the dominant species, suddenly disappeared, and Daphnia, Chydorus sphaericus and Chaoborus increased. The change is simultaneous with a decline of the diatom-inferred pH to 4.8. It is probable that there was a sudden, profound change in predator-prey relationships. The acidity of the lake water probably increased to such a low level that it led to the disappearance of even the most acid-tolerant fish. Consequently invertebrate predators increased and quickly altered the species composition in the lake. There is also pollen evidence of the onset of Iron Age cultivation and grazing almost simultaneously with the faunal change. Therefore, it cannot be ruled out that the sudden lowering of pH was indirectly caused by prehistoric human activity; possibly the acidic peatland surrounding the lake was disturbed.  相似文献   

19.
We explored the use of carbon and nitrogen isotopes (13C and 15N) in sedimented organic matter (OM) as proxy indicators of trophic state change in Florida lakes. Stable isotope data from four 210Pb-dated sediment cores were compared stratigraphically with established proxies for historical trophic state (diatom-inferred limnetic total phosphorus, sediment C/N ratio) and indicators of cultural disturbance (sediment total P and 226Ra activity). Diatom-based limnetic total P inferences indicate a transition from oligo-mesotrophy to meso-eutrophy in Clear Lake, and from eutrophy to hypereutrophy in Lakes Parker, Hollingsworth and Griffin. In cores from all four lakes, the carbon isotopic signature of accumulated OM generally tracks trophic state inferences and cultural impact assessments based on other variables. Oldest sediments in the records yield lower diatom-inferred total limnetic P concentrations and display relatively low 13C values. In the Clear, Hollingsworth and Parker records, diatom-inferred nutrient concentrations increase after ca. AD 1900, and are associated stratigraphically with higher 13C values in sediment OM. In the Lake Griffin core, both proxies display slight increases before ~1900, but highest values occur over the last ~100 years. As Lakes Clear, Hollingsworth and Parker became increasingly nutrient-enriched over the past century, the 15N of sedimented organic matter decreased. This reflects, in part, the increasing relative contribution of nitrogen-fixing cyanobacteria to sedimented organic matter as primary productivity increased in these waterbodies. The Lake Griffin core displays a narrow range of both 13C and 15N values. Despite the complexity of carbon and nitrogen cycles in lakes, stratigraphic agreement between diatom-inferred changes in limnetic total P and the stable isotope signatures of sedimented OM suggests that 13C and 15N reflect shifts in historic lake trophic state.  相似文献   

20.
A new diatom series with 1–6 year resolution from Lake Victoria, East Africa, shows that lake level minima occurred ca. 820–760, 680–660, 640–620, 370–340, and 220–150 calendar years BP. Inferred lake levels were exceptionally high during most of the Little Ice Age (ca. 600–200 calendar years BP). Synchrony between East African high lake levels and prolonged sunspot minima during much of the last millenium may reflect solar variabilitys effects on tropical rainfall, but those relationships reversed sign ca. 200 years ago. Historical records also show that Victoria lake levels rose during every peak of the ca. 11-year sunspot cycle since the late 19th century. These findings suggest that, if these apparent tropical sun–climate associations during the last millenium were real, then they were subject to abrupt sign reversals.Electronic Supplementary Material to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号