首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
In order to test the assumption that accretion rates of intertidal salt marshes are approximately equal to rates of sea-level rise along the Rhode Island coast,210Pb analyses were carried out and accretion rates calculated using constant flux and constant activity models applied to sediment cores collected from lowSpartina alterniflora marshes at four sites from the head to the mouth of Narragansett Bay. A core was also collected from a highSpartina patens marsh at one site. Additional low marsh cores from a tidal river entering the bay and a coastal lagoon on Block Island Sound were also analyzed. Accretion rates for all cores were also calculated from copper concentration data assuming that anthropogenic copper increases began at all sites between 1865 and 1885. Bulk density and weight-loss-on-ignition of the sediments were measured in order to assess the relative importance of inorganic and organic accumulation. During the past 60 yr, accretion rates at the eight low marsh sites averaged 0.43±0.13 cm yr?1 (0.25 to 0.60 cm yr?1) based on the constant flux model, 0.40±0.15 cm yr?1 (0.15 to 0.58 cm yr?1) based on the constant activity model, and 0.44±0.11 cm yr?1 (0.30 to 0.59 cm yr?1) based on copper concentration data, with no apparent trend down-bay. High marsh rates were 0.24±0.02 (constant flux), 0.25±0.01 (constant activity), and 0.47±0.04 (copper concentration data). The cores showing closest agreement between the three methods are those for which the excess210Pb inventories are consistent with atmospheric inputs. These rates compare to a tide gauge record from the mouth of the bay that shows an average sea-level rise of 0.26±0.02 cm yr?1 from 1931 to 1986. Low marshes in this area appear to accrete at rates 1.5–1.7 times greater than local relative sea-level rise, while the high marsh accretion rate is equal to the rise in sea level. The variability among the low marsh sites suggests that marshes may not be poised at mean water level to within better than ±several cm on time scales of decades. Inorganic and organic dry solids each contributed about 9% by volume to low marsh accretion, while organic dry solids contributed 11% and inorganic 4% to high marsh accretion. Water/pore space accounted for the majority of accretion in both low and high marshes. If water associated with the organic component is considered, organic matter accounts for an average of 91% of low marsh and 96% of high marsh accretion. A dramatic increase in the organic content at a depth of 60 to 90 cm in the cores from Narragansett Bay appears to mark the start of marsh development on prograding sand flats.  相似文献   

2.
The purpose of this study was to determine how vertical accretion rates in marshes vary through the millennia. Peat cores were collected in remnant and drained marshes in the Sacramento–San Joaquin Delta of California. Cubic smooth spline regression models were used to construct age–depth models and accretion histories for three remnant marshes. Estimated vertical accretion rates at these sites range from 0.03 to 0.49 cm year−1. The mean contribution of organic matter to soil volume at the remnant marsh sites is generally stable (4.73% to 6.94%), whereas the mean contribution of inorganic matter to soil volume has greater temporal variability (1.40% to 7.92%). The hydrogeomorphic position of each marsh largely determines the inorganic content of peat. Currently, the remnant marshes are keeping pace with sea level rise, but this balance may shift for at least one of the sites under future sea level rise scenarios.  相似文献   

3.
Total nitrogen, phosphorus and organic carbon were compared in natural and transplanted estuarine marsh soils (top 30 cm) to assess nutrient storage in transplanted marshes. Soils were sampled in five transplanted marshes ranging in age from 1 to 15 yr and in five nearby natural marshes along the North Carolina coast. Dry weight of macroorganic matter (MOM), soil bulk density, pH, humic matter, and extractable P also were measured. Nutrient pools increased with increasing marsh age and hydroperiod. Nitrogen, phosphorus and organic carbon pools were largest in soils of irregularly flooded natural marshes. The contribution of MOM to marsh nutrient reservoirs was 6–45%, 2–22%, and 1–7% of the carbon, nitrogen and phosphorus, respectively. Rates of nutrient accumulation in transplanted marshes ranged from 2.6–10.0, 0.03–1.10, and 84–218 kmol ha?1yr?1 of nitrogen, phosphorus and organic carbon, respectively. Accumulation rates were greater in the irregularly flooded marshes compared to the regularly flooded marshes. Approximately 11 to 12% and 20% of the net primary production of emergent vegetation was buried in sediments of the regularly flooded and irregularly flooded transplanted marshes, respectively. Macroorganic matter nutrient pools develop rapidly in transplanted marshes and may approximate natural marshes within 15 to 30 yr. However, development of soil carbon, nitrogen and phosphorus reservoirs takes considerably longer.  相似文献   

4.
The Northeast USA is experiencing severe impacts of a changing climate, including increased winter temperatures and accelerated relative sea level rise (RSLR). The sediment-poor, organic-rich nature of many Southern New England salt marshes makes them particularly vulnerable to these changes. In order to assess how marsh accretion has changed over time, we returned to Narragansett Bay, RI where salt marsh vertical accretion rates were documented almost 30 years ago. Using radionuclide tracers (210Pb and 137Cs), we observe no significant change in overall accretion rates (0.27–0.69 cm year?1) compared to historical averages (0.24–0.60 cm year?1), but we document a shift in how these marshes maintain elevation. Organic matter now plays a smaller role in contributing to vertical accretion across all study sites, declining by 22 % on average. We attribute this reduction to potentially higher decomposition rates fueled by higher water temperature. Inorganic matter also contributes less to accretion (declining by 44 % on average at marshes located more internal to the estuary), likely due to diminishing sediment supply in this region. With organic and inorganic solids accounting for less of the total accretion, several of the marshes are experiencing symptoms of swelling, with water and porespace contributing more towards accretion compared to historical values. Accretion rates (0.27–0.45 cm year?1) at these organic-rich (>40 % sediment organic matter) marshes are predominantly lower than the current (30 years) rate of RSLR (0.41?±?0.07 cm year?1). These results, combined with the increased rate of RSLR and the hardened shorelines inhibiting landward migration, call into question the long-term survivability of these marshes.  相似文献   

5.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

6.
The influence of canals on vertical marsh accretion, including mineral sediment and organic matter accumulation, was evaluated at three locations along the Louisiana coast representing different geographic regions. The isotopes210Pb and157Cs were used to determine vertical accretion along transects representing a canal and a control site. Rapid rates of vertical accretion were measured at all sites and ranged from 0.47 cm yr?1 to 0.90 cm yr?1. Results indicated that there was no measurable effect of canals on marsh accretionary processes. In general, greater variation in vertical accretion, including mineral sediment deposition and organic matter accumulation, was observed between geographical regions than between canal and control sites within a region. Statistical analysis of data suggest that any difference between canal and control site would be less than 0.20 cm yr?1. Such a change in marsh surface-water level relationships as a result of any canal influence on marsh accretionary processes would be less than reported eustatic sea-level rise for the Gulf of Mexico. Results suggest that any change in the marsh surface-water level relationship could be the influence of canals on local hydrology, resulting in increased water level rather than any appreciable reduction in accretionary processes. Such changes in hydrology under certain conditions could stress vegetation, resulting in marsh deterioration.  相似文献   

7.
Along the mid- and north Atlantic coasts of the USA, over 90 % of salt marshes have been ditched. Ditching was largely abandoned by the mid-twentieth century; however, techniques that create permanent shallow water pools for mosquito control and bird habitat are increasingly being applied to marshes of the USA and elsewhere. Salt marshes in Plum Island Sound, Massachusetts, and Barnegat Bay, New Jersey, were used to examine differences between areas that have been ditched and those altered to increase the density of shallow pools in water table dynamics, salinity, soil and porewater chemistry, as well as short-term sedimentation, accretion, and elevation change rates. We found that the area with plugged ditches, berms, and pools in Plum Island had less drainage, higher salinity and porewater sulfide and ammonium concentrations, and higher soil organic matter than the adjacent ditched area. Despite averaging 8 cm lower in elevation, the Plum Island ditched area had less sediment deposition and was composed of higher elevation plant species than the area with plugged ditches, berms, and shallow pools. Elevation increased in the ditched area at a rate of 3.2 ± 0.5 mm/year, but elevation change was variable in the area with pools. In Barnegat Bay, the marsh area with pools and ditches had less sediment deposition and surface accretion than the ditch-only area, associated, in part, with the higher elevation. An average elevation difference of 4.5 cm was associated with a sixfold difference in mineral sediment deposition. Temporal sediment deposition and surface accretion was important in the ditch-only area but was absent or muted in the area with numerous pools. Elevation increased in both marsh areas at an average rate of 1.8 ± 0.8 mm/year, less than half the long-term average local rate of sea-level rise. Our results illustrate how physical manipulations including changes to tidal hydrology and surface topography interact with elevation to influence short-term biophysical feedbacks.  相似文献   

8.
Pore and surface water sulfide variation near artificial ditches and a natural creek are examined in salt marshes bordering the Indian River Lagoon in east-central Florida. Pore water sulfide concentrations ranged from 0 μg-at I?1 to 1,640 μg-at I?1. On average, the natural creek had the lowest sulfide concentrations (mean <1.0 μ-at I?1) and the perimeter ditch of a managed salt marsh impoundment the highest (436.5 μg-at I?1). There was a trend of increasing sulfide concentration in the summer, and sharp peaks in late fall-early winter which correspond with peak litter input into the sediments. Significant differences in sulfide concentration between sites are attributed to differences in water flow and in organic matter content. Delaying the seasonal opening of culverts (which connect impounded marshes with the lagoon) until lagoon water levels rise in fall may prevent massive fish kills that have been associated with high sulfide levels in the impoundment perimeter ditches.  相似文献   

9.
One of the most critical problems facing many deltaic wetlands is a high rate of relative sea-level rise due to a combination of eustatic sea-level rise and local subsidence. Within the Rhône delta, the main source of mineral input to soil formation is from the river, due to the low tidal range and the presence of a continuous sea wall. We carried out field and modeling studies to assess the present environmental status and future conditions of the more stressed sites, i.e.,Salicornia-type marshes with a shallow, hypersaline groundwater. The impacts of management practices are considered by comparing impounded areas with riverine areas connected to the Rhône River. Analysis of vegetation transects showed differences between mean soil elevation ofArthrocnemum fruticosum (+31.2 cm),Arthrocnemum glaucum (+26.5 cm), bare soil (+16.2 cm), and permanently flooded soil (?12.4 cm). Aboveground and belowground production showed that root:shoot ratio forA. fruticosum andA. glaucum was 2.9 and 1.1, respectively, indicating more stressful environmental conditions forA. glaucum with a higher soil salinity and lack of soil drainage. The annual leaf litter production rate of the two species is 30 times higher than annual stem litter production, but with a higher long-term decomposition rate associated with leaves. We developed a wetland elevation model designed to predict the effect of increasing rates of sea-level rise on wetland elevation andSalicornia production. The model takes into account feedback mechanisms between soil elevation and river mineral input, and primary production. In marshes still connected to the river, mineral input decreased quickly when elevation was over 21 cm. Under current sea-level rise conditions, the annual amount of riverine mineral input needed to maintain the elevation of the study marshes is between 3,000 and 5,000 g m?2 yr?1. Simulations showed that under the Intergovernmental Panel on Climate Change best estimate sea-level rise scenario, a mineral input of 6,040 g m?2 yr?1 is needed to maintain marsh elevation. The medium term response capacity of the Rhône deltaic plain with rising sea level depends mainly on the possibility of supplying sediment from the river to the delta, even though the Rhône Delta front is wave dominated. Within coastal impounded marshes, isolated from the river, the sediment supply is very low (10 to 50 g m?2 yr?1), and an increase of sea-level rise would increase the flooding duration and dramatically reduce vegetation biomass. New wetland management options involving river input are discussed for a long-term sustainability of low coastal Mediterranean wetlands.  相似文献   

10.
Short-term sedimentation patterns were evaluated from August 1992 to May 1993 in different wetland habitats characteristic of the Rhône Delta, including impounded and seasonally-dry saline Arthrocnemum marshes, brackish Juncus, Phragmites, and Scirpus riverine wetlands directly connected to the Rhône River, and Arthrocnemum-dominated marine marshes influenced by the Mediterranean. Short-term sedimentation was measured as sediment accumulation on paper filters which had been placed on the soil surface for several weeks. Total sedimentation and material lost on ignition was significantly related to individual sampling periods, reflecting the importance of short-term processes. High sedimentation at riverine sites (up to 22 g m?2 d?1) was related to a combination of river stage and wind events. Marine and impounded wetlands of the Rhône Delta experienced low sedimentation throughout the period of study. Sedimentation rates averaged over the study period were 0.8 g m?2 d?1, 1.8 g m?2 d?1, and 5.4 g m?2 d?1 for marine, impounded, and riverine sites, respectively. Percent material lost on ignition was low in all habitats (average 15%) and followed a seasonal trend with a minimum in late fall and winter (1%). Soil percent organic matter was also low in the top several centimeters (13%), suggesting that inorganic sedimentation is very important for accretion on these wetland surfaces. Coastal flooding was not a significant mechanism for sedimentation in the marine sites during the period of study. Sedimentation is an important factor in elevation change, and this study shows that impounded habitats, the most common “natural environment“ left in the delta, may become vulnerable to sea-level rise in the future if management practices continue to isolate these wetlands from riverine sources of sediment.  相似文献   

11.
A new methodology used on a large scale is reported by which short-term (≤1 yr) marsh accretion rates were measured in saltwater and brackish marshes and compared to first-time measurements made in freshwater marshes. The stable rare-earth elements (REE) dysprosium and samarium were used for soil horizon markers that were collected by a cryogenic field coring method and detected by instrumental neutron activation analysis (INAA). Accumulation in saltwater marshes for 6 months was estimated to be 0.76±0.26 cm (n=11) and accumulation for 1 year was 1.29±0.49 cm (n=7). Accumulation in brackish marshes for 6 months was 0.51±0.34 cm (n=6) and for 1 year, 0.84±0.32 cm (n=10). These data from saline and brackish environments can be compared to first-time measurements of accumulation in a freshwater marsh of 1.53±0.66 cm (n=8) for 6-month accumulation and 2.97±0.92 cm (n=11) for 1-year accumulation. The cryogenic REE-INAA method for sampling and measuring 6-month and 1-year accretion is nonpolluting, does not alter natural marsh soil processes, and is effective in salt, brackish, and freshwater marshes. Additionally, the marker is essentially immobile, long lasting in the soil profile, and inexpensive to buy, apply, and sample. INAA analysis of the cores is expensive and time-consuming, yet the REE-INAA method yields accretion data, especially in freshwater habitats, that are obtainable in no other way. A comparison between short-term accretion and the presence or absence of man-made canals showed no statistically significant differences of accretion along transects from 0- to 50-m distance into brackish and saltwater marshes (no freshwater transects were established). Sediment depositions measured at 50 m into fresh, brackish, and saltwater marshes from natural or man-made waterways showed no statistically significant differences of accretion within each habitat over a 6-month or a 1-year time period.  相似文献   

12.
In recent years, artificial establishment of Spartina alterniflora marshes has become a common method for mitigating impacts to salt marsh systems. The vegetative component of artificially established salt marshes has been examined in several studies, but relatively little is known about the other aspects of these systems. This study was undertaken to investigate the infaunal community of artificially established salt marshes. Infauna were sampled from pairs of artificially established (AE) salt marshes and nearby natural marshes at six sites along the North Carolina coast. The AE marshes ranged in age from 1 yr to 17 yr. Total infaunal density, density of dominant taxa, and community trophic structure (proportions of subsurface-deposit feeders, surface-deposit and suspension feeders, and carnivores) were compared between the two types of marsh to assess infaunal community development in AE marshes. Overall, the two marsh types had similar component organisms and proportions of trophic groups, but total density and densities within trophic groupings were lower in the AE marshes. Soil organic matter content of the natural marshes was nearly twice that of the AE marshes, and is a possible cause for the higher infaunal densities observed in the natural marshes, Using the same three criteria, comparisons of the natural and AE marshes at each of the six locations revealed varying degrees of similarity. Similarity of each AE marsh to its natural marsh control appeared to be influenced by differences in environmental factors between locations more than by AE marsh age. Functional infaunal habitat convergence of an AE marsh with a natural marsh somewhere within its biogeographical region is probable, but success in duplicating the infaunal community of a particular natural marsh is contingent upon the developmental age of the natural marsh and the presence and interaction, of site-specific factors.  相似文献   

13.
Recent (6–12 month) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in aSpartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr?1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr?1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackishSpartina patens marsh on Louisiana’s Chenier plain, vertical accretion rates were the same along natural and canal waterways (3–4 mm yr?1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr?1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.  相似文献   

14.
We used137Cs-dating to determine vertical accretion rates of 15 salt marshes on the Bay of Fundy, the Gulf of St. Lawrence, and the Atlantic coast of Nova Scotia. Accretion rates are compared to a number of factors assumed to influence vertical marsh accretion: rates of relative sea-level rise, climatic parameters (average daily temperatures and degree days) and latitude (related to insolation and day length), sediment characteristics (organic matter inventory, bulk, mineral, and organic matter density), distance of the core site from the nearest source of tidal waters, and the tidal range. Uniques to our study is a consideration of climatic parameters and latitude, which should influence organic matter production, and thus vertical accretion rates. Significant predictors of accretion rates (in order of importance) were found to be organic matter inventory, distance from a creek, and range of mean tides. Contrary to conclusions from previous studies, we found that accretion rates decreased with increasing tidal range, probably because we considered a wider span of tidal ranges, from micro- to macrotidal. Although four marshes with low organic matter inventories also show a deficit in accretion with respect to relative sea-level rise, organic matter is not limiting in two-thirds of the marshes studied, despite shorter growing seasons.  相似文献   

15.
We report on a decadal trend of accretionary dynamics in the wetlands of several northwestern Mediterranean deltas and a lagoon system, all of them with high rates of wetland loss. Wetland vertical accretion and surface elevation change were measured at 55 riverine, marine, and impounded sites in four coastal systems: the Ebro delta, Spain; the Rhône delta, France; and the Po delta and Venice Lagoon, Italy. Vertical accretion and elevation change ranged between 0 and 25 mm year?1 and were strongly correlated. The highest rates of elevation gain occurred at riverine sites where vertical accretion was highest. We conclude that areas with high sediment input, mainly riverine, are the only ones likely to survive accelerated sea-level rise, especially if recent higher estimates of 1 m or more in the twenty-first century prove to be accurate. This is the first study where the importance of river input on wetland survival has been demonstrated at a decadal time scale over a broad geographical area.  相似文献   

16.
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3?±?0.24 mm year?1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2?±?0.52 mm year?1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment availability, salinity, and elevation capital. Together, these two systems provide critical insight into the relationships between marsh elevation, high marsh plant community, and changing hydroperiods. Our results highlight that not all marshes in Southern New England may be responding to accelerated rates of RSLR in the same manner.  相似文献   

17.
Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year?1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year?1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.  相似文献   

18.
We used a combined field and modeling approach to estimate the potential for submergence for one rapidly deteriorating (Bayou Chitigue Marsh) and one apparently stable (Old Oyster Bayou Marsh) saltmarsh wetland in coastal Louisiana, given two eustatic sea level rise scenarios: the current rate (0.15 cm year−1); and the central value predicted by the Intergovernmental Panel on Climate Change (48 cm by the year 2100). We also used the model to determine what processes were most critical for maintaining and influencing salt marsh elevation including, mineral matter deposition, organic matter production, shallow subsidence (organic matter decomposition + primary sediment compaction), deep subsidence, and sediment pulsing events (e.g., hurricanes). Eight years of field measurements from feldspar marker horizons and surface elevation tables revealed that the rates of vertical accretion at the Bayou Chitigue Marsh were high (2.26 (0.09) cm yr−1 (mean ± SE)) because the marsh exists at the lower end of the tidal range. The rate of shallow subsidence was also high (2.04 (0.1) cm yr−1), resulting in little net elevation gain (0.22 (0.06) cm yr−1). In contrast, vertical accretion at the Old Oyster Bayou Marsh, which is 10 cm higher in elevation, was 0.48 (0.09) cm yr−1. However, there was a net elevation gain of 0.36 (0.08) cm yr−1 because there was no significant shallow subsidence. When these rates of elevation gain were compared to rates of relative sea level rise (deep subsidence plus eustatic sea level rise), both sites showed a net elevation deficit although the Bayou Chitigue site was subsiding at approximately twice the rate of the Old Oyster Bayou site (1.1 cm yr−1 versus 0.49 cm yr−1 respectively). These field data were used to modify, initialize, and calibrate a previously published wetland soil development model that simulates primary production and mineral matter deposition as, feedback functions of elevation. Sensitivity analyses revealed that wetland elevation was most sensitive to changes in the rates of deep subsidence, a model forcing function that is difficult to measure in the field and for which estimates in the literature vary widely. The model also revealed that, given both the current rate of sea level rise and the central value estimate, surface elevation at both sites would fall below mean sea level over the next 100 years. Although these results were in agreement with the field study, they contradicted long term observations that the Old Oyster Bayou site has been in equilibrium with sea level for at least the past 50 years. Further simulations showed that the elevation at the Old Oyster Bayou site could keep pace with current rates of sea level rise if either a lower rate for deep subsidence was used as a forcing function, or if a periodic sediment pulsing function (e.g., from hurricanes) was programmed into the model.  相似文献   

19.
A 115-year-old railroad levee bisecting a tidal freshwater marsh perpendicular to the Patuxent River (Maryland) channel has created a northern, upstream marsh and a southern, downstream marsh. The main purpose of this study was to determine how this levee may affect the ability of the marsh system to gain elevation and to determine the levee’s impact on the marsh’s long-term sustainability to local relative sea level rise (RSLR). Previously unpublished data from 1989 to 1992 showed that suspended solids and short-term sediment deposition were greater in the south marsh compared to the north marsh; wetland surface elevation change data (1999 to 2009) showed significantly higher elevation gain in the south marsh compared to the north (6?±?2 vs. 0?±?2 mm year?1, respectively). However, marsh surface accretion (2007 to 2009) showed no significant differences between north and south marshes (23?±?8 and 26?±?7 mm year?1, respectively), and showed that shallow subsidence was an important process in both marshes. A strong seasonal effect was evident for both accretion and elevation change, with significant gains during the growing season and elevation loss during the non-growing season. Sediment transport, deposition and accretion decreased along the intertidal gradient, although no clear patterns in elevation change were recorded. Given the range in local RSLR rates in the Chesapeake Bay (2.9 to 5.8 mm year?1), only the south marsh is keeping pace with sea level at the present time. Although one would expect the north marsh to benefit from high accretion of abundant riverine sediments, these results suggest that long-term elevation gain is a more nuanced process involving more than riverine sediments. Overall, other factors such as infrequent episodic coastal events may be important in allowing the south marsh to keep pace with sea level rise. Finally, caution should be exercised when using data sets spanning only a couple of years to estimate wetland sustainability as they may not be representative of long-term cumulative effects. Two years of data do not seem to be enough to establish long-term elevation change rates at Jug Bay, but instead a decadal time frame is more appropriate.  相似文献   

20.
Tidal wetlands play an important role with respect to climate change because of both their sensitivity to sea-level rise and their ability to sequester carbon dioxide from the atmosphere. Policy-based interest in carbon sequestration has increased recently, and wetland restoration projects have potential for carbon credits through soil carbon sequestration. We measured sediment accretion, mineral and organic matter accumulation, and carbon sequestration rates using 137Cs and 210Pb downcore distributions at six natural tidal wetlands in the San Francisco Bay Estuary. The accretion rates were, in general, 0.2?C0.5?cm?year?1, indicating that local wetlands are keeping pace with recent rates of sea-level rise. Mineral accumulation rates were higher in salt marshes and at low-marsh stations within individual sites. The average carbon sequestration rate based on 210Pb dating was 79?g?C?m?2?year?1, with slightly higher rates based on 137Cs dating. There was little difference in the sequestration rates among sites or across stations within sites, indicating that a single carbon sequestration rate could be used for crediting tidal wetland restoration projects within the Estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号