首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In Amazon-shelf waters, as salinity increases to 36.5 × 10−3, dissolved uranium activities increase to a maximum of 4.60 dpm 1−1. This value is much higher than the open-ocean value (2.50 dpm 1−1), indicating a source of dissolved uranium to shelf waters in addition to that supplied from open-ocean and riverine waters. Uranium activities are much lower for surface sediments in the Amazon-shelf seabed (mean: 0.69 ±.09 dpm g−1) than for suspended sediments in the Amazon River (1.82 dpm g−1). Data suggest that the loss of particulate uranium from riverine sediments (and the consequent input of dissolved uranium to shelf waters) is probably the result of uranium desorption from the ferric-oxyhydroxide coatings on sediment particles, and/or uranium release by mobilization of the ferric oxyhydroxides. The total flux (i.e., riverine flux plus desorbed-remobilized particulate flux) of dissolved 238U from the Amazon shelf (about 1.2 × 1015 dpm yr−1) constitutes about 15% of uranium input to the world ocean, commensurate to the Amazon River's contribution to world river-water discharge (approximately 18%). Measurement of only the riverine flux of dissolved 238U underestimates, by a factor of about 5, the flux of dissolved238U from the Amazon shelf to the open ocean.  相似文献   

2.
Water column and seabed samples were obtained from 92 stations on the Amazon continental shelf during October of 1979. Uptake of silica near and southeast of the river mouth began at a salinity of 8%. and accounted for 17% of the riverine silica flux to this region. Uptake northwest of the river mouth began at a salinity of 20%. and resulted in 33% removal of the riverine silica flux. Examination of filtered suspended solids revealed abundant diatoms in the surface waters, including Coscinodiscus. Skeletonema, Synedra. and Thalassiosira. The biological uptake of silica appears to be dependent on three factors: turbidity, turbulence, and nutrient availability. There was no evidence of abiological removal of silica in the Amazon estuary. 75 to 88% of the silica removed from surface waters by diatoms dissolves prior to accumulation in the seabed. Based on the mean biogenic silica content of shelf sediment (0.25%) and estimates of rates of sediment accumulation, the biogenic silica accumulation rate on the shelf is 2 × 1012 g/yr, which represents only 4% of the dissolved silica supplied by the Amazon River. Biological uptake of silica in estuarine surface waters may not accurately reflect permanent removal of biogenic silica to the seabed because of dissolution which occurs in bottom waters and near the sediment-water interface.  相似文献   

3.
The aquatic chemistry of rare earth elements in rivers and estuaries   总被引:17,自引:0,他引:17  
Laboratory experiments were carried out to determine how pH, colloids and salinity control the fractionation of rare earth elements (REEs) in river and estuarine waters. By using natural waters as the reaction media (river water from the Connecticut, Hudson and Mississippi Rivers) geochemical reactions can be studied in isolation from the large temporal and spatial variability inherent in river and estuarine chemistry. Experiments, field studies and chemical models form a consistent picture whereby REE fractionation is controlled by surface/solution reactions. The concentration and fractionation of REEs dissolved in river waters are highly pH dependent. Higher pH results in lower concentrations and more fractionated composition relative to the crustal abundance. With increasing pH the order of REE adsorption onto river particle surfaces is LREEs > MREEs > HREEs. With decreasing pH, REEs are released from surfaces in the same order. Within the dissolved (<0.22 µm) pool of river waters, Fe-organic colloids are major carriers of REEs. Filtration through filters and ultrafilters with progressively finer pore sizes results in filtrates which are lower in absolute concentrations and more fractionated. The order of fractionation with respect to shale, HREEs > MREEs > LREEs, is most pronounced in the solution pool, defined here as <5K and <50K ultrafiltrates. Colloidal particles have shale-like REE compositions and are highly LREE enriched relative to the REE composition of the dissolved and solution pools. The addition of sea water to river water causes the coagulation of colloidal REEs within the dissolved pool. Fractionation accompanies coagulation with the order of sea water-induced removal being LREEs > MREEs > HREEs. While the large scale removal of dissolved river REEs in estuaries is well established, the release of dissolved REEs off river particles is a less studied process. Laboratory experiments show that there is both release and fractionation of REEs when river particles are leached with seawater. The order of sea water-induced release of dissolved REE(III) (LREEs > MREEs > HREEs) from Connecticut River particles is the same as that associated with lowering the pH and the same as that associated with colloidal particles. River waters, stripped of their colloidal particles by coagulation in estuaries, have highly evolved REE composition. That is, the solution pool of REEs in river waters are strongly HREE-enriched and are fractionated to the same extent as that of Atlantic surface seawater. This strengthens the conclusions of previous studies that the evolved REE composition of sea water is coupled to chemical weathering on the continents and reactions in estuaries. Moreover, the release of dissolved Nd from river particles to sea water may help to reconcile the incompatibility between the long oceanic residence times of Nd (7100 yr) and the inter-ocean variations of the Nd isotopic composition of sea water. Using new data on dissolved and particle phases of the Amazon and Mississippi Rivers, a comparison of field and laboratory experiments highlights key features of REE fractionation in major river systems. The dissolved pool of both rivers is highly fractionated (HREE enriched) with respect to the REE composition of their suspended particles. In addition, the dissolved pool of the Mississippi River has a large negative Ce-anomaly suggesting in-situ oxidation of Ce(III). One intriguing feature is the well developed maximum in the middle REE sector of the shale normalized patterns for the dissolved pool of Amazon River water. This feature might reflect competition between surface adsorption and solution complexation with carbonate and phosphate anions.  相似文献   

4.
A survey of U.S. east coast estuaries confirms that large-scale rapid removal of iron from river water is a general phenomenon during estuarine mixing. The river-borne ‘dissolved’ iron consists almost entirely of mixed iron oxide-organic matter colloids, of diameter less than 0.45 μm, stabilized by the dissolved organic matter. Precipitation occurs on mixing because the seawater cations neutralize the negatively charged iron-bearing colloids allowing flocculation. The process has been duplicated in laboratory experiments using both natural filtered and unfiltered river water and a synthetic colloidal goethite in 0.05 μm filtered water. The colloidal nature of the iron has been further confirmed by ultracentrifugation and ultrafiltration. A major consequence of the precipitation phenomena is to reduce the effective input of ‘dissolved’ iron to the ocean by about 90% of the primary river value, equivalent to a concentration of less than 1 μmol per liter of river water.  相似文献   

5.
In order to examine the mixing behavior of dissolved uranium (U) in estuaries under different suspended particulate matter (SPM) regimes, three laboratory-based experiments were conducted by mixing seawater with river water containing different concentrations of SPM. Comparing this study with other field and laboratory-based experiments, dissolved U behaved differently depending upon the concentration of SPM. When SPM concentrations are >?0.8 g/L in the Yellow River, desorption/dissolution of U from SPM becomes predominant and dissolved U is enriched relative to the theoretical mixing line. However, when SPM concentrations are <?0.8 g/L, dissolved U behaves conservatively with some extent of removal during estuarine mixing. 234U/238U activity ratios were somewhat constant showing no measurable isotopic fractionation during physical mixing and U sorption/desorption to/from particles. Addition of dissolved 238U desorbed/dissolved from SPM during the annual Yellow River water-sediment regulation scheme (Jun 30th–Jul 14th, 2014) was estimated at 6.4?×?1011 dpm, about 9% of the total riverine flux of dissolved 238U during that same period. This study represents a contribution to studies of dissolved U in muddy rivers and estuaries throughout the world. Results reported here provide not only a perspective to better estimate U flux from rivers to the ocean but also new insights into better understanding its estuarine mixing behavior and controlling factors.  相似文献   

6.
A “snap shot” survey of the Mississippi estuary was made during a period of low river discharge, when the estuarine mixing zone was within the deltaic channels. Concentrations of H+, Ca2+, inorganic phosphorus and inorganic carbon suggest that the waters of the river and the low salinity (<5‰) portion of the estuary are near saturation with respect to calcite and sedimentary calcium phosphate. An input of oxidized nitrogen species and N2O was observed in the estuary between 0 and 4‰ salinity. The concentrations of dissolved NH4 + and O2, over most of the estuary, appeared to be influenced by decomposition of terrestrial organic matter in bottom sediments. The estuarine bottom also appears to be a source of CH4 which has been suggested to originate from petroleum shipping and refining operations. Estuarine mixing with offshore Gulf waters was the dominant influence on distributions of dissolved species over most of the estuary (i.e., from salinities >5‰). The phytoplankton abundance (measured as chlorophylla) increased as the depth of the mixed layer decreased in a manner consistent with that expected for a light-limited ecosystem. Fluxes of NO3 ?+NO2 ? and soluble inorganic phosphorus to the Gulf of Mexico were estimated to be 3.4±0.2×103 g N s?1 and 1.9±0.2 g P s?1 respectively, at the time of this study.  相似文献   

7.
Nutrient and trace element distributions were determined in the outflow region of the Mississippi and Atchafalaya rivers during high river discharge. This outflow region can be divided into two physiographic areas: the broad, shallow Louisiana Shelf off the Atchafalaya River and the narrow shelf off the Mississippi Delta. The physiographic differences between these two areas lead to observable differences in the chemical distributions. During high discharge conditions, nutrient depletion occurs at lower salinities on the Louisiana Shelf, relative to the delta outflow plume, and significant uptake of nickel and cadmium is apparent in these shelf waters, too. Important factors that appear to connect the physiographic to the chemical include the fate of the fluvial suspended load, rates of mixing, and the extent of productivity supported by recycled nutrients. The results suggest that the Mississippi-Atchafalaya outflow region may provide a natural laboratory for examining the possible effects of sea-level change on the biogeochemistry of estuarine and coastal environments.  相似文献   

8.
The rate of chemical weathering of rocks has been determined by using uranium as a natural isotopic tracer. The concentration of uranium and 234U/238U ratio in natural waters, rocks, and soils of the Preto river basin (Bahia State, Brazil) was measured by alpha-ray spectroscopy.The activity ratio U234/U238 measured in the various samples indicates the uranium fraction which is dissolved from rocks during the weathering process. The results obtained show that 1 m of rock needs 25,000 yr to be weathered in this region under present climatic conditions.  相似文献   

9.
This study was designed to determine the amount of particulate organic carbon (POC) introduced to the Gulf of Mexico by the Mississippi River and assess the influence of POC inputs on the development of hypoxia and burial of organic carbon on the Louisiana continental shelf. Samples of suspended sediment and supporting hydrographic data were collected from the river and >50 sites on the adjacent shelf. Suspended particles collected in the river averaged 1.8±0.3% organic carbon. Because of this uniformity, POC values (in μmol l?1) correlated well with concentrations of total suspended matter. Net transport of total organic carbon by the Mississippi-Atchafalaya River system averaged 0.48×1012 moles y?1 with 66% of the total organic carbon carried as POC. Concentrations of POC decreased from as high as 600 μmol l?1 in the river to <0.8 μmol l?1 in offshore waters. In contrast, the organic carbon fraction of the suspended matter increased from <2% of the total mass in the river to >35% along the shelf at ≥10 km from the river mouth. River flow was a dominant factor in controlling particle and POC distributions; however, time-series data showed that tides and weather fronts can influence particle movement and POC concentrations. Values for apparent oxygen utilization (AOU) increased from ~60 μmol l?1 to >200 μmol l?1 along the shelf on approach to the region of chronic hypoxia. Short-term increases in AOU were related to transport of more particle-rich waters. Sediments buried on the shelf contained less organic carbon than incoming river particles. Orgamic carbon and δ13C values for shelf sediments indicated 3 that large amounts of both terrigenous and marine organic carbon are being decomposed in shelf waters and sediments to fuel observed hypoxia.  相似文献   

10.
The Water–Sediment Regulation Scheme (WSRS) is an important water conservancy project in the Yellow River basin, which is usually operated annually from June to July to control water and sediment release from the Xiaolangdi Reservoir in the middle reaches. As a greatly concentrated period of delivering terrigenous materials from the Yellow River to the sea, the WSRS can serve as a natural laboratory to examine the geochemical behavior of elements during their transport along the river. Uranium isotopes (234U and 238U) were measured in Yellow River waters at stations Xiaolangdi (located in the middle reaches of the Yellow River) and Lijin (the last hydrologic station near the Yellow River estuary) during the WSRS 2012. Compared with station Xiaolangdi, dissolved uranium concentration at station Lijin was markedly higher, showing a significant impact from the WSRS. Budget calculation for dissolved uranium during the WSRS indicated that two major sources of new added dissolved uranium in the section of the Yellow River between Xiaolangdi and Lijin: suspended particles (46%) and porewater of bottom sediment (45%). The flux of dissolved uranium from the Yellow River to the sea was estimated to be 2.40 × 107 g during the WSRS 2012.  相似文献   

11.
Rare earth element concentrations have been measured in organic-rich Luce river water and coastal sea water. Concentrations (e.g. ~350?1850 pmol/kg Nd in the Water of Luce and ~45?350 pmol/ kg Nd in Luce Bay) are related to the presence of particles, with 30–60% of the REE associated with >0.4?0.7 μm particles, and to riverine Fe concentrations. REE fractionation occurs in the river water the submicrometre river water is heavy REE enriched whereas the coarser fraction has a more shale-like REE pattern.Laboratory experiments show that the REE in organic-rich river waters are chiefly associated with Feorganic matter colloids which flocculate during estuarine mixing. Preferential removal of heavy REE (~95%) relative to light REE (~60%) occurs, but no Ce anomaly is developed. In contrast, no REE removal occurs during estuarine mixing with organic-poor river water.  相似文献   

12.
Marine chemistry of the coastal environment starts with principles of rock weathering that use carbonic acid to mobilize elements, only some of which comprise the majority of sea salt. The principle reason is reverse weathering, extensively represented in coastal waters, and returns most elements to newly formed colloids or minerals while recycling carbon dioxide to the atmosphere. This includes the deeper ocean expanse of sediment diagenesis, plus hydrothermal plumes and attendant low-temperature basalt alteration. Within the estuarine and extended shelf regimes, both conservative and non-conservative processes can be distinguished and modeled to determine proportions of weathered elements transmitted to the sea or consumed by reverse weathering. Conceptually, the steady-state processes that lead to the composition of seawater can be viewed as heterogeneous equilibria between dissolved constituents and solid mineral products taking hundreds of millennia. However, initial processes in the estuarine and coastal environment are characterized by shorter term scavenging associated with inorganic and organic colloids. These recycle both carbon and trace elements on timescales commensurate with estuarine flushing and coastal exchange with the ocean. The natural uranium and thorium decay series provide powerful tools for quantifying the rates of estuarine processes, including those within groundwater and the subterranean estuary. In the future, new mass spectrometric and nuclear magnetic resonance techniques will help to define the molecular nature of newly formed estuarine colloids as has been done for dissolved organic matter. As the coastal environment undergoes the forces of climate change in the form of warming and sea level rise, future research should address how these will impact chemistry of the coastal environment as a net source or sink of carbon dioxide and associated organic material.  相似文献   

13.
Behavior of Uranium in the Yellow River Plume (Yellow River Estuary)   总被引:2,自引:0,他引:2  
The Yellow River (Huanghe) is the second largest river in China and is known for its high turbidity. It also has remarkably high levels of dissolved uranium (U) concentrations (up to 38 nmol 1-1). To examine the mixing behavior of dissolved U between river water and seawater, surface water samples were collected along a salinity gradient from the Yellow River plume during September 2004 and were measured for dissolved U concentration,234U:238U activity ratio, phosphate (PO4 3–), and suspended particulate matter. Laboratory experiments were also conducted to simulate the mixing process in the Yellow River plume using unfiltered Yellow River water and filtered seawater. The results showed a nonconservative behavior for dissolved U at salinities < 20 with an addition of U to the plume waters estimated at about 1.4 X 105 mol yr–1. A similarity between variations in dissolved U and PO4 3– with salinity was also found. There are two major mechanisms, desorption from suspended sediments and diffusion from interstitial waters of bottom sediments, that may cause the elevated concentrations of dissolved U and PO4 3– in mid-salinity waters. Mixing experiments indicate that desorption seems more responsible for the elevated dissolved U concentrations, whereas diffusion influences more the enrichment of PO4 3–.  相似文献   

14.
Dispersal of river sediments in coastal seas: Six contrasting cases   总被引:2,自引:0,他引:2  
The fate of sediment seaward of river mouths involves at least four stages: supply via plumes; initial deposition; resuspension and transport by marine processes; and long-term net accumulation. The processes that operate at each stage, and relative roles of each stage in governing the long-term accumulation patterns, vary appreciably with river regime and coastal ocean environment. To illustrate the diversity and illuminate the process of dispersal, information is synthesized for six systems: Amazon, Changjiang, Mississippi, Columbia, Purari, and Huanghe. These systems differ markedly in terms of water discharge, sediment discharge, and coastal energy regime and much of the diversity of dispersal patterns is attributed to these differences as well as to the temporal sequencing of river discharge relative to oceanographic transport processes. Although the sediment: water ratio of the discharge of the Mississippi River is 70 times less than that of the Huanghe, both of these systems exhibit rapid deposition and accumulation of sediments near the river mouths. In contrast, sediments dispersed by, the other four systems are transported greater distances from the mouths by oceanographic processes, and are accumulating over relatively wide areas.  相似文献   

15.
Dissolved uranium concentration and 234U/238U activity ratio have been measured in two distinctly different Indian drainage systems: the Yamuna headwaters in the Himalaya and the Chambal river system in the plains to study the weathering and mobility of uranium in these watersheds. The dissolved uranium in the Chambal river system ranges from 0.2 to 1.74 μg L−1 during September (tail end of monsoon), whereas in the Yamuna river system, its concentration varies from 0.1 to 3.18 μg L−1 during October (post-monsoon) and from 0.09 to 3.61 μg L−1 in June (summer). In the Yamuna main stream, uranium is highest at its source and decreases steadily along its course, from 3.18 μg L−1 at Hanuman Chatti to 0.67 μg L−1 at Batamandi, at the base of the Himalaya. This decrease results mainly from mixing of the Yamuna mainstream with its tributaries, which are lower in uranium. The high concentration of uranium at Hanuman Chatti is derived from weathering of the Higher Himalayan Crystalline series (HHC) and associated accessary minerals, which may include uranium-mineralised zones. The 234U/238U activity ratios in the samples from the Chambal watershed are in the range of 1.15±0.05 to 1.67±0.04; whereas in the Yamuna the ratios vary from 0.95±0.03 to 1.56±0.07, during post-monsoon and from 0.98±0.01 to 1.30±0.03, during summer. The relatively high 234U/238U activity ratios in the Yamuna system are in its tributaries from the lower reaches viz., the Amlawa, Aglar, Bata, Tons and the Giri. It is estimated that ~9×103 and ~12 × 103 kg of dissolved uranium are transported annually from the Yamuna at Batamandi and the Chambal at Udi, respectively. This corresponds to uranium weathering rates of 0.9 and 0.09 kg U km−2 y−1 in the basins of the Yamuna and the Chambal headwaters. This study confirms that uranium weathering rate in the Himalaya is far in excess (by about an order of magnitude) of the global average value of ~0.08 kg U km−2 y−1.  相似文献   

16.
The longitudinal distribution of total suspended matter and total, dissolved, and particulate manganese in a small coastal plain estuary is described. The distribution of manganese is a consequence of estuarine circulation; a within-estuary maximum is inversely correlated with river flow, and is a function of residence time in the estuary, resuspension in the upper estuary, and desorption from particles introduced from within the estuary or from the river. The turbidity maximum is similarly most pronounced during low river flows. The upper estuary (salinity <15‰), comprising a small percentage of the total estuary volume during low flow, receives material from the river and along the bottom from the lower estuary; this material is returned to the water column by resuspension and desorption from estuarine and riverine particles. The lower estuary tends to damp out these processes because of the greater volume and (residence) time available for mixing.  相似文献   

17.
The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 238U238U activity ratios.The 238U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, σ Na + K + Mg + Ca, and with the HCO3? ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. These findings lead us to conclude that 238U is brought into the aqueous phase along with major cations and bicarbonate. The strong positive correlation between 238U and total dissolved salts for selected rivers of the world yield an annual dissolved 238U flux of 0.88 × 1010g/yr to the oceans, a value very similar to its removal rate from the oceans, 1.05 × 1010g/yr, estimated based on its correlation with HCO3? contents of rivers.In the estuaries, both 238U and its great-grand daughter 234U behave conservatively beyond chlorosities 0.14 g/l. These data confirm our earlier findings in other Indian estuaries. The behavior of uranium isotopes in the chlorosity zone 0.02–0.14 g/l, was studied in the Narbada estuary in some detail. The results, though not conclusive, seem to indicate a minor removal of these isotopes in this region. Reexamination of the results for the Gironde and Zaire estuaries (Martin et al., 1978a and b) also appear to confirm the conservative behavior of U isotopes in unpolluted estuaries. It is borne out from all the available data that estuaries beyond 0.14 g/l chlorosities act neither as a sink nor as a source for uranium isotopes, the behavior in the low chlorosity zones warrants further detailed investigation.A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238U concentration of 0.22 μg/l with a 234U238U activity ratio of 1.20 ± 0.06ismissing. The residence time of uranium isotopes in the oceans estimated from the 238U concentration and the 234U238U A. R. of the rivers yield conflicting results; the material balance of uranium isotopes in the marine environment still remains a paradox. If the disparity between the results is real, then an additional 234U flux of about 0.25 dpm/cm2·103 yr into the oceans (about 20% of its river supply) is necessitated.  相似文献   

18.
Dissolved mercury in estuarine waters from the Mississippi Delta and Florida Everglades is associated with dissolved organic matter which has the properties of fulvic matter found in soils. Ultrafiltration of water samples demonstrated that mercury and dissolved organic carbon are selectively enriched in the < 500 molecular size cut-off fraction. A decrease in high molecular weight dissolved organic matter with increasing salinity in the Everglades exerts a partial control on the mercury content of these estuarine waters.  相似文献   

19.
The residence times of orthophosphate measured in midsummer in estuarine and coastal shelf waters near Sapelo Island, Georgia, ranged from 1.6 to 105 h. Rates of orthophosphate uptake by microplankton varied from 1.4 to 62.2 μg P per 1 per h. Generally, when isotopic equilibrium was reached after the addition of32P-orthophosphate, significant amounts of32P-remained in solution, suggesting that the supply of phosphorus to microplankton was not limiting in these waters. In coastal shelf waters, the majority of phosphorus uptake (>60%) was associated with small microorganisms (<1μm); whereas, in estuarine waters or in a Gulf Stream intrusion usually a proportionately greater amount of phosphorus was incorporated into larger algae, or clumped or attached bacteria (>1μm). The time course of32P-orthophosphate incorporation into a cold, 10% TCA insoluble, cellular fraction was more consistently linear than into whole cells. This criterion may be useful for comparative studies of phosphorus utilization by microplankton.  相似文献   

20.
Studies on the suspended particulate matter (SPM) in the Mandovi estuary, western India indicate that during the monsoon and pre-monsoon, the SPM increases, and the major and trace metals decrease from stations in the upstream to downstream of the estuary. SPM is consistently low at all stations during the post-monsoon. Trace metals (Cu, Ni, Zn, Cr, and Pb) show strong inter-relationships. They correlate well with Fe and Mn only during the monsoon. The concentrations of Cr, Cu, and Pb are high during the post-monsoon. Enrichment factors and I geo values of metals indicate that Mn shows significant to strong pollution in all seasons, while Cr, Ni, and Zn during monsoon, and Cr during the post-monsoon show moderate pollution. SPM is controlled by the turbidity maximum, while major and trace metals are governed seasonally by a combination of river discharge, resuspension, spillage of Fe–Mn particulates, and anthropogenic contamination. Incursion of saline waters deep into the river channel during the dry season facilitates aggregation and settling of particulate-borne pollutants close to the discharge area, thereby keeping the estuarine waters free from major contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号