首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
UBV pinhole scans of the Saturn disk have been made with a photoelectric area-scanning photometer. Limb profiles, spaced parallel to the equator, were obtained over the entire southern hemisphere of the planet. Saturn was found to exhibit strong limb brightening in the ultraviolet, moderate limb brightening at blue wavelengths, and strong limb darkening in the visual region of the spectrum. Latitudinal variations in the disk profiles were found. In general, the degree of limb brightening decreases towards the polar region. Pronounced asymmetry is apparent in the disk profiles in each color. The sunward limb is significantly brighter than the opposite limb. This asymmetry depends on phase angle; approaching zero at opposition, it reaches a maximum near quadrature. Our observations are interpreted using an elementary radiative transfer model. The Saturn atmosphere is approximated by a finite homogeneous layer of isotropically scattering particles overlying a Lambert scattering haze or cloud layer. The reflectivity of the haze or clouds is a strongly dependent function of wavelength. Our best-fitting model consists of a clear H2 layer of column density ~31 km-am above the haze or clouds; the maximum permitted H2 column density is ~46 km-am. The H2 column density above the equatorial region appears to be less than at temperate latitudes. The phase-dependent asymmetry in the disk profiles is a natural consequence of the scattering geometry. Our results are consistent with current knowledge of the Saturn atmosphere.  相似文献   

2.
Mercury's transit on the solar disk offers ideal conditions to determine the stray light level of instruments. We present here the results on the stray light level deduced from the observation of the Mercury transit on 2003 May 7th at the secondary focus of the THEMIS telescope with the broad-band and spectral channels of the IPM instrument. The scattered light in the broad-band channel is about 17% and about 25% in the spectral channel. The spread function was deduced for the two channels taking into account the observations on the limb and on Mercury's disk. The goal of this paper is to underline the limits of determining the spread function from limb measurements to correct disk observations. Indeed, we show that if a diaphragm is located in the optical path of scattering surfaces, then the spread function deduced from limb measurements can be underestimated compared to the one required for disk observations. The case is illustrated with the results of the IPM-THEMIS instrument. The spread function deduced from limb measurements is able to correct disk observations in the broad-band channel but not in the spectral channel, even if the two channels are illuminated through the same telescope configuration.  相似文献   

3.
From the UCSD OSO-7 X-ray experiment data, we have identified 54 X-ray bursts with 5.1–6.6 keV flux greater than 103 photon cm?2 keV?1 which were not accompanied by visible Hα flare on the solar disk. By studying OSO-5 X-ray spectroheliograms, Hα activity at the limb and the emergence and disappearance of sunspot groups at the limb, we found 17 active centers as likely seats of the X-ray bursts beyond the limb. We present the analysis of 37 X-ray bursts and their physical parameters. We compare our results with those published by Datlowe et al. (1974a, b) for disk events. The distributions of maximum temperature, maximum emission measure, and characteristic cooling time of the over-the-limb events do not significantly differ from those of disk events. We show that of conduction and radiation, the former is the dominant cooling mechanism for the hot flare plasma. Since the disk and over-the-limb bursts are similar, we conclude that the scale height for X-ray emission in the 5–10 keV range is large and is consistent with that of Catalano and Van Allen (1973), 11000 km, for primarily 1–3 keV emission. Twenty-five or about 2/3 of the over-the-limb events had a non-thermal component. The distribution of peak 20 keV flux is not significantly different from that of disk events. However, the spectral index at the time of maximum flux is significantly different for events over the limb and for events near the center of the disk; the spectral index for over-the-limb events is larger by about δγ = 3/4. If hard X-ray emission came only from localized sources low in the chromosphere we would expect that hard X-ray emission, would be occulted over the limb; on the contrary, the observation show that the fraction of soft X-ray bursts which have a nonthermal component is the same on and off of the disk. Thus hard X-ray emission over extended regions is indicated.  相似文献   

4.
New narrow-band (100 Å) photoelectric area-scanning photometry of the Uranus disk is reported. Observations were concentrated on the two strong CH4 bands at λ 6190 and 7300 Å. Adjacent continuum regions at λ 6400 and 7500 Å were also measured for comparison. Both slit and pinhole scans were made in orthogonal directions. Disk structure in each waveband is apparent through lack of circular symmetry in the intensity distribution over the Uranus image. Polar brightening is especially prominent in the λ 7500-Å waveband. Coarse quantitative determinations of the true intensity distribution over the Uranus disk were made. For the λ 6190-Å CH4 band, Uranus exhibits a disk of essentially uniform intensity except for a hint of polar brightening. For the λ 7300-Å CH4 band, moderate limb brightening is apparent. Specifically, the true intensities at the center and limb of the planetary disk are approximately in the proportion 1:2. Extreme limb brightening, with a corresponding intensity ratio greater than 1:4, is not permitted by the observational data.  相似文献   

5.
We analyze the phenomenon of sudden disappearance (DB) of quiescent filaments and prominences, with examples of the two classes (dynamic and thermal DB) observed on the solar disk and at the limb. The differences between their dynamics are discussed, and it is shown that only dynamic DBs are associated with coronal mass ejections (CME), whereas thermal DBs are only local disturbances of the lower corona. We finish with a discussion of DBs detected on the disk and limb, to explain the statistical differences between the disappearance of filaments and the production of CME.  相似文献   

6.
The rare-earth ions cerium ii, lanthanum ii, dysprosium ii, and additionally zirconium ii and iron ii, are seen as weak emission features in the wings of the solar Ca ii H and K lines. The strength of these emission lines increases on the disk toward the limb. We provide recent high-resolution observations at disk center and at the limb. The identity of the weak lines is re-worked. We point out the unique role of eclipse spectra in distinguishing between the photospheric and chromospheric origins of emission lines. It is then demonstrated from our full disk (Sun-as-a-Star) and center disk archives, 1974 – 2010, that no activity cycle related signal is evident (save for the H and K lines themselves).  相似文献   

7.
We present observations of a solar quiet region obtained using the Hinode Solar Optical telescope (SOT) in the Ca II H-line with broadband filter taken on November 2006. We study off-limb and on-disk spicules to find a counterpart of the limb spicule on the disk. This investigation shows a strong correspondence between the limb and near limb spicules (on-disk spicules that historically were called dark or bright mottles, especially when observed in Hα, being a rather cool line) from the dynamical behavior (e.g., periodicity). An excellent time sequence of images obtained near the equatorial region with a cadence of 8 s was selected for analysis. 1D Fourier power spectra made at different positions on the disk and above the limb are shown. We take advantage of the so-called mad-max operator to reduce the effects of overlapping and improve the visibility of these hair-like features. A definite signature with strong power in the 3-min (5.5 mHz) and 5-min (3.5 mHz) oscillations for both places exists. A full range of oscillations was found and the high frequency intensity fluctuation (greater than 10 mHz or less than 100 s) corresponding to the occurrence of the so-called type II spicules and, even more impressively, dominant peaks of Fourier power spectra are seen in a wide range of frequencies and for all places of “on” and “off” disk spicules, in rough agreement with what historical works report regarding disk mottles and limb spicules. Also, some statistically significant behavior, based on the power spectrum computed for different positions, is discussed. The power for all kinds of power spectra is decreasing with increasing distance from the limb, except for photospheric oscillations (5 min or p-mode), which show a dominant peak for on-disk power spectra.  相似文献   

8.
1997年3月9日日全食8.6mm波段射电观测资料的分析表明:8.6mm波段射电太阳的半径为1.012R,总流量为2540sfu(1sfu=10-22W/m2Hz),日面平均亮温度为9632K,径向亮温度分布,在日面光学边缘内侧0.936-0.992R处,存在临边增亮,平均增亮幅度相对于日面中心为9.7%.  相似文献   

9.
We have statistically studied the 344 Coronal Mass Ejections (CMEs) associated with flares and DH-type-II radio bursts (1??C?14 MHz) during 1997??C?2008. We found that only 3?% of the total CMEs (344) compared to the general population CMEs (13208) drives DH-type-II radio bursts (Gopalswamy in Solar Eruptions and Energetic Particles, AGU Geophys. Monogr. 165, 207, 2006). Out of 344 events we have selected 236 events for further analysis. We divided the events into two groups: i) disk events (within 45° from the disk center) and ii) limb events (beyond 45° but within 90° from the disk center). We find that the average CME speed of the limb events (1370?km?s?1) is three times, while for the disk events (1055?km?s?1) it is two times the average speed of the general population CMEs (433?km?s?1). The average widths of the limb events (129°) and disk events (116°) are two times greater than the average width of the general population CMEs (58°). We found a better correlation between the CME speed and width (correlation coefficient R=0.56) for the limb events than that of the disk events (R=0.47). The shock speed of the CMEs associated with DH-type-II radio bursts is found by applying Leblanc, Dulk, and Bougeret??s (Solar Phys. 183, 165, 1998) electron density model; the disk events are found to have an average speed of 1190 km?s?1 and that of the limb events is 1275 km?s?1. From this study we compare the CME properties between limb and disk events. The properties like CME speed, width, shock speed, and correlation between CME speed and width are found to be higher for limb events than disk events. The results in disk events are subject to projection effects, and this study stresses the importance of these effects.  相似文献   

10.
G. Feix 《Solar physics》1969,9(2):265-268
From a burst survey at 36 GHz, the diameter of the burst core was always found less than 1′. Several limb bursts with a remarkable flash intensity have been observed. Comparison of corresponding bursts on the disk exhibit in general a recognizable post-increase phase which seems to become faint at the solar limb. This work was performed at the Stockert Radio Observatory, near Bonn, Germany.  相似文献   

11.
The helium resonance line at 584 Å has been observed with the UltraViolet Imaging Spectrograph (UVIS) Extreme Ultraviolet channel during the flyby of Venus by Cassini at a period of high solar activity. The brightness was measured along the disk from the morning terminator up to the bright limb near local noon. The mean disk intensity was ∼320 R, reaching ∼700 R at the bright limb. These values are slightly higher than those determined from previous observations. The sensitivity of the 584 Å intensity to the helium abundance is analyzed using recent cross-sections and solar irradiance measurements at 584 Å. The intensity distribution along the UVIS footprint on the disk is best reproduced using the EUVAC solar flux model and the helium density distribution from the VTS3 empirical model. It corresponds to a helium density of 8×106 cm−3 at the level of where the CO2 is 2×1010 cm−3.  相似文献   

12.
MacQueen  R. M.  Blankner  J. G.  Elmore  D. F.  Lecinski  A. R.  White  O. R. 《Solar physics》1998,182(1):97-105
A new instrument capable of 3-min time resolution full-disk and limb observations in the Hei 1083 nm spectral line has been in operation at the High Altitude Observatory's Mauna Loa Solar Observatory (MLSO) since April 1996. We discuss instrument capabilities and performance and present some initial observations of limb activity from the first year of instrument operation. We compare limb Hei and Hα observations of quiescent and active prominences, comment on the role of Doppler shifts in interpreting the Hei observations, and illustrate the use of disk/limb Hei observations of a CME-associated eruptive filament in mass-ejection studies.  相似文献   

13.
Center-to-limb brightness distribution measurements of the quiet Sun at a wavelength of 3.3 mm show that there is a slight limb brightening at this wavelength. Within the measurement accuracy of the system used, the limb brightening function is only radially dependent. At 3.3 mm, the measurements are consistent with a solar brightness curve that is flat to about r = 0.8 with a rapid increase to a peak value of about 1.3 at the limb. The results show that most of the central disk 3.3-mm emission comes from a thin layer of relatively constant temperature about 1500–3500 km above the photosphere. This work was supported by the U.S. Air Force under Contract No. F04701-69-C-0066.  相似文献   

14.
Chiuderi Drago  F.  Landi  E. 《Solar physics》2002,206(2):315-332
The ratio between the Extreme Ultraviolet emission of the prominence–corona transition region and that of the quiet Sun (QS) transition region is measured using observations from the CDS and SUMER instruments on board the SOHO Satellite. These results are compared with those obtained in an earlier paper, analysing the same prominence as a filament on the disk. Theoretical models predict a difference in the emission of the prominence–corona transition region when it is observed at the limb and on the disk as a filament; the aim of the present work is to provide an observational check of this difference. SUMER and CDS data provide fairly good agreement if the prominence intensity measured by SUMER is compared with the average quiet-Sun intensity, measured near the disk center; the prominence intensity relative to the average quiet-Sun level measured on the same rasters results in disagreement with CDS, due to the smaller size of the disk portion and to the very strong limb brightening present in SUMER rasters. The relative prominence to quiet-Sun intensity ratio varies from 0.2 to 0.4, depending on the line formation temperature. This value leads to a discrepancy with the results obtained in a previous study when the same prominence was observed as a filament. This discrepancy indicates that the prominence–corona transition region emission is different when emitted by different sides of the prominence.  相似文献   

15.
The direct measurement of the height of the radio source above a solar active region was done by the Westerbork Synthesis Radio Telescope when the source crossed the west limb. The height of the brightest part was 12000 km above the limb. The result of the disk observation is also presented and the emission mechanisms of the observed sources are discussed.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

16.
COPY THE ORIGINAL Analysis of the total eclipse observation of 1997 March 9 at wavelength 8.6 mm, shows that, at this wavelength, the solar radius is 1.012 R, the total flux density is 2540 sfu, the mean brightness temperature of the solar disk is 9632 K, and the brightness temperature distribution shows limb brightening at the inner edge of the solar disk, the average brightness at 0.936−0.992 R being 9.7% above the central brightness.  相似文献   

17.
The radio brightness of the quiet outer solar corona at a frequency of 35 MHz in the presence of a radial magnetic field is computed. It is found that the brightness temperature of the ordinary radiation increases significantly. It is also found that in the presence of a radial magnetic field, coronal holes will appear as bright emission regions on the disk and as depressions at the limb.  相似文献   

18.
The near-infrared (0.65–2.5μm) spectral albedo of Jupiter and Saturn with 1.5% spectral resolution is presented for the center of disk and for the limb. There is a distinct difference in the continuum slope between Jupiter and Saturn which may be attributed to a difference in the dust content or composition of the two atmospheres. There is an indication of limb brightening in the deepest CH4 bands on Saturn. No limb brightening is found for Jupiter.  相似文献   

19.
We present Monte Carlo simulations for the polarization of light reflected from planetary atmospheres. We investigate dependencies of intensity and polarization on three main parameters: single scattering albedo, optical depth of a scattering layer, and albedo of a Lambert surface underneath. The main scattering process considered is Rayleigh scattering, but isotropic scattering and enhanced forward scattering on haze particles are also investigated. We discuss disk integrated results for all phase angles and radial profiles of the limb polarization at opposition. These results are useful to interpret available limb polarization measurements of solar system planets and to predict the polarization of extra-solar planets as a preparation for VLT/SPHERE. Most favorable for a detection are planets with an optically thick Rayleigh-scattering layer. The limb polarization of Uranus and Neptune is especially sensitive to the vertically stratified methane mixing ratio. From limb polarization measurements constraints on the polarization at large phase angles can be set.  相似文献   

20.
Narrow-waveband (100 Å) photoelectric slit-scan photometry of the Neptune disk is reported. Observations were concentrated within the strong CH4 band at λ7300 Å. For comparison, measurements were also made within a continuum waveband at λ6800 Å. Point spread function data were obtained in both colors. Qualitative estimates of the true intensity distribution over the Neptune disk were made. Within the λ6800-Å continuum band, Neptune appears as an essentially uniform disk. Within the λ7300 Å CH4 band, the planet exhibits strong limb brightening. Our results appear to require the presence of an optically thin layer of brightly scattering aerosol particles high in the Neptune atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号