首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This contribution investigates two different ways for mitigating the aliasing errors in ocean tides. This is done, on the one hand, by sampling the satellite observations in another direction using the pendulum satellite mission configuration. On the other hand, a mitigation of the temporal aliasing errors in the ocean tides can be achieved by using a suitable repeat period of the sub-satellite tracks.The findings show, firstly, that it is very beneficial for minimizing the aliasing errors in ocean tides to use pendulum configuration; secondly, optimizing the orbital parameter to get shorter repeat orbit mode can be effective in minimizing the aliasing errors. This paper recommends the pendulum as a candidate for future gravity mission to be launched in longer repeating orbit mode with shorter “sub-cycle” repeat periods to improve the temporal resolution of the satellite mission.  相似文献   

2.
To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismic sections and point out the differences between the two. We recognize that migration sections more often show spatial aliasing than stacked sections. Second, from wave propagation theory, I know that migration output is a new spatial sampling process and seismic prestack time migration can provide the high density sampling to prevent spatial aliasing on high resolution migration sections. Using a 2D seismic forward modeling analysis, I have found that seismic spatial aliasing noise can be eliminated by high density spatial sampling in prestack migration. In a 3D seismic data study for Daqing Oilfield in the Songliao Basin, I have also found that seismic sections obtained by high-density spatial sampling (10 × 10 m) in prestack migration have less spatial aliasing noise than those obtained by conventional low density spatial sampling (20 × 40 m) in prestack migration.  相似文献   

3.
The low-frequency response of the P400 watergun is an improvement over that of the S80 version. It has been further enhanced by deployment in a vertically staggered array. The notch in the amplitude spectrum at about 35 Hz due to the interference between the precursor and main implosion pulse has been virtually eliminated, and depth notches due to the free surface interface at the upper end of the spectrum have been greatly reduced. The spectral band is thus very broad and well-shaped and corresponds to an even shorter signature. After convolution with the streamer ghost, the amplitude of the implosion pulse from the composite far-field signature is more than 30 times the composite precursor amplitude. Thus the signal approaches the minimum-phase condition. Shot-generated noise scattered back by diffractors located at or near seabed is the single greatest impediment to increased penetration, especially in high resolution surveys. Such noise decays much less rapidly than signal, particularly so with broad band data. Furthermore, back-scattered interference coming from a cone of bearings between 15–45° with respect to the line is particularly damaging since in these directions the stack enhances the interference and confuses the primary velocity analysis. The watergun source patterns are therefore element-weighted to maximize directivity within these critical directions in the frequency band 50–155 Hz. When spatial aliasing is reduced by increased streamer spatial sampling and by discrete anti-alias filters during the record cycle,f-k filtering can be applied to the field records as an effective supplement to the source and receiver patterns without the aliased ‘wrapped around’ noise alignments destroying the upper end of the spectrum of genuine reflectors. Furthermore, increased spatial sampling is a pre-requisite in thef-k-migration process if the valuable higher frequencies of broad band data are to be migrated in steep-dip situations without aliasing. Thus, spatial resolution is a necessary complement to temporal resolution if maximum advantage of the broad-band P400 watergun source is to be realized.  相似文献   

4.
Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only.  相似文献   

5.
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution and errors. When using these rainfall datasets as input for hydrological models, their errors and uncertainties propagate through the hydrological system. The aim of this study is to investigate the effect of differences between rainfall measurement techniques on groundwater and discharge simulations in a lowland catchment, the 6.5‐km2 Hupsel Brook experimental catchment. We used five distinct rainfall data sources: two automatic raingauges (one in the catchment and another one 30 km away), operational (real‐time and unadjusted) and gauge‐adjusted ground‐based C‐band weather radar datasets and finally a novel source of rainfall information for hydrological purposes, namely, microwave link data from a cellular telecommunication network. We used these data as input for the, a recently developed rainfall‐runoff model for lowland catchments, and intercompared the five simulated discharges time series and groundwater time series for a heavy rainfall event and a full year. Three types of rainfall errors were found to play an important role in the hydrological simulations, namely: (1) Biases, found in the unadjusted radar dataset, are amplified when propagated through the hydrological system; (2) Timing errors, found in the nearest automatic raingauge outside the catchment, are attenuated when propagated through the hydrological system; (3) Seasonally varying errors, found in the microwave link data, affect the dynamics of the simulated catchment water balance. We conclude that the hydrological potential of novel rainfall observation techniques should be assessed over a long period, preferably a full year or longer, rather than on an event basis, as is often done. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   

6.
The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g., transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment, and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in isotope‐based hydrograph separation determined preevent water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterize this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.  相似文献   

7.
Reducing aliasing effects of insufficiently modelled high-frequent, non-tidal mass variations of the atmosphere, the oceans and the hydrosphere in gravity field models derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is the topic of this study. The signal content of the daily GRACE gravity field model series (ITG-Kalman) is compared to high-frequency bottom pressure variability and terrestrially stored water variations obtained from recent numerical simulations from an ocean circulation model (OMCT) and two hydrological models (WaterGAP Global Hydrology Model, Land Surface Discharge Model). Our results show that daily estimates of ocean bottom pressure from the most recent OMCT simulations and the daily ITG-Kalman solutions are able to explain up to 40 % of extra-tropical sea-level variability in the Southern Ocean. In contrast to this, the daily ITG-Kalman series and simulated continental total water storage variability largely disagree at periods below 30 days. Therefore, as long as no adequate hydrological model will become available, the daily ITG-Kalman series can be regarded as a good initial proxy for high-frequency mass variations at a global scale. As a second result of this study, based on monthly solutions as well as daily observation residuals, it is shown that applying this GRACE-derived de-aliasing model supports the determination of the time-variable gravity field from GRACE data and the subsequent geophysical interpretation. This leads us to the recommendation that future satellite concepts for determining mass variations in the Earth system should be capable of observing higher frequeny signals with sufficient spatial resolution.  相似文献   

8.
We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures, etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets.This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by sidewise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the wavelet defines the temporal and spatial scale to be isolated and the span determines the length over which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by the wavelength. λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be applied directly to two-dimensional radargrams, in which case they abstract information about given scales at given orientations. Alternatively, they can be rotated to different orientations under adaptive control, so that they remain tuned at a given frequency or wavenumber and the resulting images can be stacked in the LS sense, so as to obtain a complete representation of the input data at a given temporal or spatial scale.In addition to isolating geometrical information for further scrutiny, the proposed filtering methods can be used to enhance the S/N ratio in a manner particularly suitable for GPR data, because the frequency response of the filters mimics the frequency characteristics of the source wavelet. Finally, signal attenuation and temporal localization are closely associated: low attenuation interfaces tend to produce reflections rich in high frequencies and fine-scale localization as a function of time. Conversely, high attenuation interfaces will produce reflections rich in low frequencies and broad localization. Accordingly, the temporal localization characteristics of the filters may be exploited to investigate the characteristics of signal propagation (hence material properties). The method is shown to be very effective in extracting fine to coarse scale information from noisy data and is demonstrated with applications to noisy GPR data from archaeometric and geotechnical surveys.  相似文献   

11.
In this paper, we investigate the information content in “nanosensors” with limited functionality that might be injected into a reservoir or an aquifer to provide information on the spatial distribution of properties. The two types of sensors that we consider are sensors that can potentially measure pressure at various times during transport, and sensors can be located in space by perturbations in electrical, magnetic, or acoustic properties. The intent of the study is to determine the resolution of estimates of properties that can be obtained from various combinations of sensors, various frequencies of observations, and various specifications on sensor precision.Our goal is to investigate the resolution of model estimates for various types of measurements. For this, we compute linearized estimates of the sensitivity of the observations to the porosity and permeability assuming gaussian errors in the pressure and location observations. Because the flow is one-dimensional and incompressible, observations of location are sensitive to the porosity between the injection location and the sensor location, while the location of particles is sensitive to the effective permeability over the entire interval from injector to producer. When only the pressure is measured but the location of the sensor is unknown, as might be the situation for a threshold sensor, the pressure is sensitive to both permeability and porosity only in the region between the injector and sensor.In addition to the linearized sensitivity and resolution analyses, Markov chain Monte Carlo sampling is used to estimate the posterior pdf for model variables for realistic (non-Gaussian) likelihood models. For a Markov chain of length one million samples approximately 200-500 independent samples are generated for uncertainty and resolution assessment. Results from the MCMC analysis are not in conflict with the linearized analysis.  相似文献   

12.
Shuaipu Zhang  Mingan Shao 《水文研究》2017,31(15):2725-2736
Temporal stability of soil moisture has been widely used in hydrological monitoring since it emerged. However, the spatial analysis of temporal stability at the landscape scale is often limited because of insufficient sampling numbers. This work made an effort to investigate the spatial variations of temporal stability of soil moisture in an oasis landscape. The specific objectives of the study were to explore the spatial patterns of temporal stability and to determine the controlling factors of temporal stability in the desert oasis. A time series of soil moisture measurements were gathered on 23 occasions at 118 locations over 3 years in a rectangular transect of approximately 100 km2. The nonparametric Spearman's rank correlation coefficient, standard deviation of relative difference (SDRD), and mean absolute bias error (MABE) were used to quantify the temporal stability of soil moisture. Results showed that the temporal stability of soil moisture was depth dependent and season dependent. The spatial pattern of soil moisture in a deep soil layer and between two same seasons generally had a high temporal stability. SDRD and MABE were spatially autocorrelated and exhibited strong spatial structures in the geographic space. The concept of temporal stability can be extended to describe the time‐stable areas of soil moisture with geostatistics. There were great differences between SDRD and MABE in describing the temporal stability of soil moisture and in identifying the controlling factors of temporal stability. In this case, MABE was a better alternative to estimate the areal mean soil moisture using representative locations than SDRD. Land use type, soil moisture condition, and soil particle composition were the dominant controls of temporal stability in the oasis. These insights could help to better understand the essence of temporal stability of soil moisture in arid regions.  相似文献   

13.
Selecting the correct resolution in distributed hydrological modelling at the watershed scale is essential in reducing scale-related errors. The work presented herein uses information content (entropy) to identify the resolution which captures the essential variability, at the watershed scale, of the infiltration parameters in the Green and Ampt infiltration equation. A soil map of the Little Washita watershed in south-west Oklahoma, USA was used to investigate the effects of grid cell resolution on the distributed modelling of infiltration. Soil-derived parameters and infiltration exhibit decreased entropy as resolutions become coarser. This is reflected in a decrease in the maximum entropy value for the reclassified/derived parameters vis a vis the original data. Moreover, the entropy curve, when plotted against resolution, shows two distinct segments: a constant section where no entropy was lost with decreasing resolution and another part which is characterized by a sharp decrease in entropy after a critical resolution of 1209 m is reached. This methodology offers a technique for assessing the largest cell size that captures the spatial variability of infiltration parameters for a particular basin. A geographical information system (GIS) based rainfall-runoff model is used to simulate storm hydrographs using infiltration parameter maps at different resolutions as inputs. Model results up to the critical resolution are reproducible and errors are small. However, at resolutions beyond the critical resolution the results are erratic with large errors. A major finding of this study is that a large resolution (1209 m for this basin) yields reproducible model results. When modelling a river basin using a distributed model, the resolution (grid cell size) can drastically affect the model results and calibration. The error structure attributable to grid cell resolution using entropy as a spatial variability measure is shown.  相似文献   

14.
15.
时空特征分析对全面掌握水质变异规律具有重要意义,但现有的水质时空特征分析方法仍存在水质变异次序不分、水质变幅极值不清、水质评价特征值不明等不足。为更加清晰地探析水质时空特征信息,以秦淮河为研究对象,参考工程水文学经验频率法,建立“水文频率-水质”拟合曲线用于探索流域内高/低活动区不同时间段和丰/枯水期不同河段水质变异特征,并与传统的箱线图法进行对比。结果表明:与箱线图相比,“水文频率-水质”拟合曲线可量化关键水质评判点与特征值信息,使水质时空变异过程更为清晰。在时间上“水文频率-水质”拟合曲线的最佳形式为线性曲线,水质浓度一般不会发生突变;在空间上“水文频率-水质”拟合曲线的最佳形式为指数曲线,水质浓度有较大可能发生突增。各时间段高活动区氮磷浓度大于低活动区,各水体断面丰水期氮磷浓度低于枯水期。该方法分析过程简单方便,结果直观有序,能将水质信息以统计规律自动反映出来,在水质采样点、采样时间和采样频率典型时可作为优选方法用于河流水质时空特征研究。  相似文献   

16.
The emergence of regional and global satellite‐based rainfall products with high spatial and temporal resolution has opened up new large‐scale hydrological applications in data‐sparse or ungauged catchments. Particularly, distributed hydrological models can benefit from the good spatial coverage and distributed nature of satellite‐based rainfall estimates (SRFE). In this study, five SRFEs with temporal resolution of 24 h and spatial resolution between 8 and 27 km have been evaluated through their predictive capability in a distributed hydrological model of the Senegal River basin in West Africa. The main advantage of this evaluation methodology is the integration of the rainfall model input in time and space when evaluated at the sub‐catchment scale. An initial data analysis revealed significant biases in the SRFE products and large variations in rainfall amounts between SRFEs, although the spatial patterns were similar. The results showed that the Climate Prediction Center/Famine Early Warning System (CPC‐FEWS) and cold cloud duration (CCD) products, which are partly based on rain gauge data and produced specifically for the African continent, performed better in the modelling context than the global SRFEs, Climate Prediction Center MORPHing technique (CMORPH), Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The best performing SRFE, CPC‐FEWS, produced good results with values of R2NS between 0·84 and 0·87 after bias correction and model recalibration. This was comparable to model simulations based on traditional rain gauge data. The study highlights the need for input specific calibration of hydrological models, since major differences were observed in model performances even when all SRFEs were scaled to the same mean rainfall amounts. This is mainly attributed to differences in temporal dynamics between products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
《水文科学杂志》2013,58(5):886-898
Abstract

Temporal resolution of rainfall plays an important role in determining the hydrological response of river basins. Rainfall temporal variability can be considered as one of the most critical elements when dealing with input data of rainfall—runoff models. In this paper, a typical lumped rainfall—runoff model is applied to long- and short-term runoff prediction using rainfall data sets with different temporal resolution, including daily, hourly and 10-min interval data, and the dependency of model performance on the time interval of the rainfall data is discussed. Furthermore, the effect of temporal resolution on model parameter values is analysed. As results, rainfall data with shorter temporal resolution provide better performance in short-term river discharge estimation, especially for storm discharge estimation. The most accurate results are obtained on the peak discharge and recession part of the hydrograph by using 10-min interval rainfall data. It is concluded that model parameter values are influenced not only by the temporal resolution of calculation but also by the rainfall intensity—duration relationship. This study provides useful information about determination of hydrological model parameters using data of different temporal resolutions.  相似文献   

18.
Global-scale gradient-based groundwater models are a new endeavor for hydrologists who wish to improve global hydrological models (GHMs). In particular, the integration of such groundwater models into GHMs improves the simulation of water flows between surface water and groundwater and of capillary rise and thus evapotranspiration. Currently, these models are not able to simulate water table depth adequately over the entire globe. Unsatisfactory model performance compared to well observations suggests that a higher spatial resolution is required to better represent the high spatial variability of land surface and groundwater elevations. In this study, we use New Zealand as a testbed and analyze the impacts of spatial resolution on the results of global groundwater models. Steady-state hydraulic heads simulated by two versions of the global groundwater model G3M, at spatial resolutions of 5 arc-minutes (9 km) and 30 arc-seconds (900 m), are compared with observations from the Canterbury region. The output of three other groundwater models with different spatial resolutions is analyzed as well. Considering the spatial distribution of residuals, general patterns of unsatisfactory model performance remain at the higher resolutions, suggesting that an increase in model resolution alone does not fix problems such as the systematic overestimation of hydraulic head. We conclude that (1) a new understanding of how low-resolution global groundwater models can be evaluated is required, and (2) merely increasing the spatial resolution of global-scale groundwater models will not improve the simulation of the global freshwater system.  相似文献   

19.
When anomalous gravity gradient signals provide a large signal‐to‐noise ratio, airborne and marine surveys can be considered with wide line spacing. In these cases, spatial resolution and sampling requirements become the limiting factors for specifying the line spacing, rather than anomaly detectability. This situation is analysed by generating known signals from a geological model and then sub‐sampling them using a simulated airborne gravity gradient survey with a line spacing much wider than the characteristic anomaly size. The data are processed using an equivalent source inversion, which is used subsequently to predict and grid the field in‐between the survey lines by means of forward calculations. Spatial and spectral error analysis is used to quantify the accuracy and resolution of the processed data and the advantages of acquiring multiple gravity gradient components are demonstrated. With measurements of the full tensor along survey lines spaced at 4 × 4 km, it is shown that the vertical gravity gradient can be reconstructed accurately over a bandwidth of 2 km with spatial root‐mean square errors less than 30%. A real airborne full‐tensor gravity gradient survey is presented to confirm the synthetic analysis in a practical situation.  相似文献   

20.
The hydrological contribution to polar motion is a major challenge in explaining the observed geodetic residual of non-atmospheric and non-oceanic excitations since hydrological models have limited input of comprehensive global direct observations. Although global terrestrial water storage (TWS) estimated from the Gravity Recovery and Climate Experiment (GRACE) provides a new opportunity to study the hydrological excitation of polar motion, the GRACE gridded data are subject to the post-processing de-striping algorithm, spatial gridded mapping and filter smoothing effects as well as aliasing errors. In this paper, the hydrological contributions to polar motion are investigated and evaluated at seasonal and intra-seasonal time scales using the recovered degree-2 harmonic coefficients from all GRACE spherical harmonic coefficients and hydrological models data with the same filter smoothing and recovering methods, including the Global Land Data Assimilation Systems (GLDAS) model, Climate Prediction Center (CPC) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis products and European Center for Medium-Range Weather Forecasts (ECMWF) operational model (opECMWF). It is shown that GRACE is better in explaining the geodetic residual of non-atmospheric and non-oceanic polar motion excitations at the annual period, while the models give worse estimates with a larger phase shift or amplitude bias. At the semi-annual period, the GRACE estimates are also generally closer to the geodetic residual, but with some biases in phase or amplitude due mainly to some aliasing errors at near semi-annual period from geophysical models. For periods less than 1-year, the hydrological models and GRACE are generally worse in explaining the intraseasonal polar motion excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号