首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》1991,6(5):565-574
Natural colloids (1–450 nm) and suspended particles (>450 nm) were characterized in groundwaters of the Whiteshell Research Area of southern Manitoba to evaluate their potential role in radionuclide transport through fractured granite. Data on particle concentrations, size distributions, compositions and natural radionuclide content were collected to predict radionuclide formation and to provide a database for future colloid migration studies. The concentrations of colloids between 10 and 450 nm ranged between 0.04 and 1 mg/l. The concentrations of suspended particles, which require higher groundwater velocities for transport, varied from 0.04 to 14 mg/l. Colloid (10–450 nm) concentrations as low as these observed in Whiteshell Research Area groundwater would have a minimal effect on radionuclide transport, assuming that radionuclide sorption on colloids is reversible. If radiocolloid formation is not reversible, and radionuclide-containing colloids cannot sorb onto fracture walls, the importance of natural colloids in radionuclide transport will depend upon particle migration properties.  相似文献   

2.
《Applied Geochemistry》1988,3(5):535-548
Large-volume groundwater samples were collected at the Nevada Test Site from within a nuclear detonation cavity and from approximately 300 m outside the cavity. The samples were filtered and ultrafiltered, and the filtrates and various particle size fractions were analyzed for chemical composition and radionuclide activity. In samples from both locations, approximately 100% of the transition element (Mn, Co) and lanthanide (Ce, Eu) radionuclides were associated with colloids. Their presence outside the cavity indicates transport in the colloidal form. Distribution coefficients calculated for Ru, Sb, and Cs nuclides from both field sample locations indicate equilibrium partitioning on the 0.05-0.003 μm colloids. Calculation of transport efficiencies relative to colloid mass concentrations and dissolved neutral or anionic nuclides indicates that both the cations and the radiolabelled colloids appear to experience capture by or exchange with immobile aquifer surfaces.  相似文献   

3.
《Applied Geochemistry》1993,8(6):605-616
The Cigar Lake U deposit is located in northern Saskatchewan in the eastern part of the Athabasca Sandstone Basin, and consists of a high-grade ore body (up to 55% U) located at a depth of ∼430 m. As part of a study to evaluate the analog features of this deposit with respect to a disposal vault for waste nuclear fuel, colloids (1–450 nm) and suspended particles (450nm) in groundwater have been investigated to evaluate their effect on element transport through the U deposit. Tangential-flow ultrafiltration was used to concentrate particles from 501 groundwater samples in order to characterize the size distribution, concentration, composition and natural radionuclide content of particles in representative parts of the U deposit. Although Cigar Lake groundwaters contain particles in all sizes ranging from 10 nm to slightly larger than 20 μm, most samples contained a relatively high concentration of colloids in the 100–400 nm size range. Particle compositions are similar to the composition of minerals in the sandstones and ore body, suggesting that particles in groundwater are generated by the erosion of fracture-lining minerals. As a result, particle concentrations in groundwater are affected by the integrity of the host rock. In some piezometers the high initial concentrations of suspended particles, which may have been drilling artifacts, decreased during the collection of the first 350 1. Although colloid concentrations fluctuated during sampling, there are no indications that these concentrations will be permanently reduced by continued groundwater pumping. The observed colloid and suspended particle concentrations in the deep groundwaters are too low to have a significant impact on radionuclide migration, provided that radionuclide sorption is reversible. If radionuclides are irreversibly sorbed to particles they cannot sorb to the host rock and their migration can only be evaluated with an understanding of particle mobility. The data for dissolved and particulate U, Th and Ra were used to calculate field-derived distribution ratios (Rd) between particles and groundwater. The wide range of observed Rd values indicates that these radionuclides in particulate form are not in equilibrium with groundwater. U-series isotope data indicated that most of the U and Ra on particles was derived from groundwater. Some particles could have retained their U for as long as 8000 a. The U and Ra contents of particles in the ore and surrounding clay zones are significantly higher than in particles from sandstone, suggesting that the clay has been an effective barrier to particle migration.  相似文献   

4.
Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.  相似文献   

5.
The concentration and the role of colloids in the transport of elements in the vicinity of a fossil reactor at Bangombé, Gabon, were assessed. Colloid sampling was conducted in seven boreholes around and in the extinguished natural reactor. The ground waters are of Na–Mg–Ca–HCO3 type, with variable salinities, pH 4.6–6.8 and anaerobic Eh values. Filtered ground water and colloid samples were taken from the reactor and the surroundings. Filtered fluids and colloid samples collected on membranes and resuspended in solution were analysed by ICP-MS and ICP-AES in order to examine the element association in the colloid phase within the size range 3000 to 400 to 50 nm. The colloid concentrations for the size 400 to 50 nm range from 80 to 300 ng ml−1. They consist of silica particles associated with ferrihydrite coated with organics. Trace element results show that metals including Pb, Sc, Y, La, Ce, Pr, Nd, Bi, Th and U are associated to various degrees with the colloid phase. The distribution ratios of these trace elements between the water and the colloid phase (Kp) were experimentally determined. The high Pb distribution ratios of 10+7 ml g−1 are specifically discussed. Values range from 10+6 to 10+5 ml g−1for the trivalent elements (Sc, Y, La, Ce,  , Bi). For uranium, a Kp of the order of 10+5 ml g−1 may be calculated and compared with data gained using the surface complexation model. These Kp values suggest that the uranium is partially sorbed or associated with ground water colloids. Measurements from the reactor zone show that about 2–4% of the uranium is associated with the colloid phase, which contributes partially to the uranium transport. The rather low colloid concentrations are due to the relatively high concentrations of Ca, Mg and Na in these quasi-neutral waters. These soluble elements contribute to the attachment of the colloids, restricting their transport. This indicates that the colloid phase may not be an important transport medium for the radionuclides in the Bangombé system if their association is reversible. The Bangombé colloid results are compared with those studied for other systems.  相似文献   

6.
《Applied Geochemistry》2004,19(1):119-135
Colloid-facilitated transport of contaminants could enhance the release rate of radionuclides from the cementitious near field of a repository for radioactive waste. In the current design of the planned Swiss repository for intermediate-level radioactive waste, a gas-permeable mortar is employed as backfill material for the engineered barrier. The main components of the material are hardened cement paste (HCP) and quartz aggregates. The chemical condition in the backfill mortar is controlled by the highly alkaline cement pore water present in the large pore space. The interaction of pore water with the quartz aggregates is expected to be the main source for colloids. Colloid transport is facilitated due to the high porosity of the backfill mortar. Batch-type studies have been performed to generate colloidal material in systems containing crushed backfill mortar or quartz in contact with artificial cement pore water (ACW) at pH 13.3. The chemical composition of the colloidal material corresponds to that of calcium silicate hydrates (CSH). Batch flocculation tests show that, after about 20 days reaction time, the concentration of the CSH-type colloids is typically below 0.1 mg l−1 due to reduced colloid stability in ACW. Uptake studies with Cs(I), Sr(II) and Th(IV) on a CSH phase (initial C:S ratio=1.09) have been carried out to assess the sorption properties of the colloidal material. The influence of uptake by colloids on radionuclide mobilisation is expressed in terms of sorption reduction on the immobile phase (HCP). Sorption reduction factors can be estimated on the assumption that the sorption properties of the colloidal material are either similar to those of the CSH phase or HCP, and that sorption is linear and reversible. A scaling factor accounts for the higher specific surface area of the colloidal material compared to the CSH phase and HCP. At colloid concentration levels typically encountered in highly alkaline cement pore waters, colloid-induced sorption reduction is predicted to be negligibly small even for strongly sorbing radionuclides, such as Th(IV). Thus, no significant impact of cementitious colloids on radionuclide mobilisation in the porous backfill mortar is anticipated.  相似文献   

7.
The kinetics of radionuclide desorption from bentonite colloids and subsequent sorption onto fracture filling material can influence colloid-facilitated radionuclide migration in ground water. To shed light on the significance of these issues batch-type experiments using a cocktail of strong and weak sorbing radionuclides as well as FEBEX bentonite colloids in the presence of fracture filling material from Grimsel (Switzerland) under Grimsel ground water conditions have been conducted. Results show that tri- and tetravalent radionuclides, 232Th(IV), 242Pu(IV) and 243Am(III) are clearly colloid associated in contrast to 233U(VI), 237Np(V) and 99Tc(VII). Concentrations of colloid-borne 232Th(IV), 242Pu(IV) and 243Am(III) decrease after ∼100 h showing desorption from bentonite colloids while 233U(VI) and 99Tc(VII) concentrations remain constant over the entire experimental time of 7500 h thus showing no interaction either to colloids or to the fracture filling material. 232Th(IV) and 242Pu(IV) data yield a slower dissociation from colloids compared to 243Am(III) indicating stronger RN–colloid interaction. In the case of 237Np(V), a decrease in concentration after ∼300 h is observed which can be explained either by slow reduction to Np(IV) and subsequent sorption to mineral surfaces in accordance with the evolution of pe/pH and/or by a slow sorption onto the fracture filling material. No influence of the different fracture filling material size fractions (0.25–0.5 mm, 0.5–1 mm and 1–2 mm) can be observed implying reaction independence of the mineral surface area and mineralogical composition. The driving force of the observed metal ion desorption from colloids is binding to fracture filling material surfaces being in excess of the available colloid surface area (76:1, 55:1 and 44:1 for the 0.25–0.5 mm, 0.5–1 mm and 1–2 mm size fraction of the FFM, respectively).  相似文献   

8.
胶体在地下水中的环境行为特征及其研究方法探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
在收集查阅国内外已有研究资料的基础上,对地下水中胶体稳定性、迁移机制以及模拟预测方法进行了详细归纳和总结。研究表明,胶体稳定性主要受自身理化性质和水文地球化学条件的影响,其受控于胶体粒径、形态、电势电位以及地下水的pH、离子强度等条件。胶体在多孔介质中的迁移机制主要表现为胶体沉积和形变阻塞,其中针对胶体稳定性的差异性,胶体沉积过程分别表现为表面封阻和过滤熟化。目前有关胶体在地下水中迁移的模拟技术已发展得日益成熟,但结合多孔介质非均质性和胶体化学性质非均质性的数学模型还需进一步探讨。  相似文献   

9.

Background  

The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules) and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation) and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu).  相似文献   

10.
《Applied Geochemistry》2001,16(14):1653-1662
Strontium-90 (90Sr) is one of the major radioactive contaminants found in DP Canyon at Los Alamos, New Mexico, USA. Radioactive surveys found that 90Sr is present in surface water and shallow alluvial groundwater environments in Los Alamos National laboratory (LANL). Colloids may influence the transport of this radionuclide in surface and groundwater environments in LANL. In this study, the authors investigated the sorption/desorption behavior of radioactive Sr on Ca-montmorillonite and silica colloids, and the effect of ionic strength of water on the sorption of Sr. Laboratory batch sorption experiments were conducted using 85Sr as a surrogate for 90Sr. Groundwater, collected from Well LAUZ-1 at DP Canyon and from Well J-13 at Yucca Mountain, Nevada, and deionized water, were used. The results show that 92–100% of the 85Sr was rapidly adsorbed onto Ca-montmorillonite colloids in all three waters. Adsorption of 85Sr onto silica colloids varied among the three waters. The ionic strength and Ca2+ concentration in groundwater significantly influence the adsorption of 85Sr onto silica colloids. Desorption of 85Sr from Ca-montmorillonite colloids is slower than from silica colloids. Desorption of 85Sr from silica colloids was faster in LAUZ-1 groundwater than in J-13 groundwater and deionized water. The results suggest that clay and silica colloids may facilitate the transport of Sr along potential flowpaths from DP Canyon to Los Alamos Canyon.  相似文献   

11.
The fluid transfer of radionuclides in the geologic medium is considered under conditions when radionuclides are contained in fluids not only as solutes but also as colloids. The effect of colloidal transport of radionuclides on the rate of spreading of radioactive contamination in an underground medium is estimated, with assessment of this effect in mathematical models describing the transport of radionuclides by subsurface water. For this purpose, the exchange of radionuclides between subsurface water, colloid, and an immobile solid phase is considered, taking into account the precipitation of colloidal particles on both the immobile solid phase and other colloidal particles and their recurrent mobilization into the liquid phase. It is noted that, in real colloidal transfer, the heterogeneity of the geologic medium and colloidal particles in subsurface water is of great importance. The known models of colloidal transfer of radionuclides are evaluated on the basis of the analysis performed.  相似文献   

12.
The interaction of Cs(I), Eu(III), Th(IV) and U(VI) with montmorillonite colloids was investigated in natural Grimsel Test Site groundwater over a 3 years period. The asymmetric flow field-flow fractionation combined with various detectors was applied to study size variations of colloids and to monitor colloid association of trace metals. The colloids suspended directly in the low ionic strength (I), slightly alkaline granitic groundwater (I = 10−3 mol/L, pH 9.6) showed a gradual agglomeration with a size distribution shift from initially 10-200 nm to 50-400 nm within over 3 years. The Ca2+ concentration of 2.1 × 10−4 mol/L in the ground water is believed to be responsible for the slow agglomeration due to Ca2+ ion exchange against Li+ and Na+ at the permanently charged basal clay planes. Furthermore, the Ca2+ concentration lies close to the critical coagulation concentration (CCC) of 10−3 mol L−1 for clay colloids. Slow destabilization may delimit clay colloid migration in this specific groundwater over long time scales. Eu(III) and Th(IV) are found predominantly bound to clay colloids, while U(VI) prevails as the UO2(OH)3 complex and Cs(I) remains mainly as aquo ion under our experimental conditions. Speciation calculations qualitatively represent the experimental data. A focus was set on the reversibility of metal ion-colloid binding. Addition of humic acid as a competing ligand induces rapid metal ion dissociation from clay colloids in the case of Eu(III) even after previous aging for about 3 years. Interestingly only partial dissociation occurs in the case of Th(IV). Experiments and calculations prove that the humate complexes dominate the speciation of all metal ions under given conditions. The partial irreversibility of clay bound Th(IV) is presently not understood but might play an important role for the colloid-mediated transport of polyvalent actinides over wide distances in natural groundwater.  相似文献   

13.
Colloid particles were examined in groundwaters sampled at the large contamination area of the subsoil environment at the Mayak production association in the Southern Urals. Colloid particles were separated from groundwater samples by ultrafiltration, and their composition and structure were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger spectroscopy (AS). Our results indicate that the chemical composition of the particles significantly varies at their surface and along their radii, from the peripheries to the cores of the particles. The data are used to estimate the possibility of utilizing properties of colloid particles contained in groundwaters (the composition, structure, and zeta potential of such particles) to numerically simulate the spreading of radioactive contamination with groundwaters with regard to the colloid mode of radionuclide transport. It is demonstrated that, along with transmitting electron spectroscopy (TEM) coupled with X-ray microprobe analysis and electron diffraction, the XPS and AS techniques make it possible to obtain information on heterogeneity in the distribution and modes of occurrence of various elements in colloid particles.  相似文献   

14.
地下咸水与水库水体交换过程中沉积物胶体释放规律   总被引:1,自引:0,他引:1  
李海明  马斌  李子琛  赵雪 《岩矿测试》2012,31(5):849-854
以天津滨海地区北大港水库为研究对象,采用室内柱试验,研究地下咸水与水库水体交换过程中不同位置沉积物胶体释放以及盐分释放/截留的动态特征,同时对沉积物胶体释放、盐分释放/截留机理进行了探讨。研究结果表明:水库不同位置地下咸水与水库水体交换过程中,盐分的归宿不同:接近水库入口处的沉积物能将盐分截留下来,而出水口沉积物却将盐分释放转移到水体。随孔隙体积数的增加,沉积物胶体累计释放量逐渐增加,入库口、库中心、出库口最大累计释放量分别为3.275 mg/g、0.386 mg/g和1.382 mg/g;胶体累计释放量随孔隙体积数的变化曲线符合直线型,胶体释放速率变化很小。盐分的释放或截留是沉积物颗粒的粒径、胶体含量、含盐量等多种因素作用的结果,水库水体与沉积物中的盐分处于动态平衡状态,当沉积物中含盐量高于平衡浓度时,其盐分会向水体中释放,同时吸附在胶体上的盐分也会随着胶体的释放而释放;反之,水体中的盐分会向沉积物中迁移被截留下来,沉积物粒径越小,越易吸附水中的盐分。胶体的释放规律可以用双电层理论得到很好的解释。  相似文献   

15.
The spread of radioactive contamination in the subsurface medium near Lake Karachai is considered. The complexity of this process requires a comprehensive approach to its study. The source of radioactive contamination is overviewed. The map of faults in subsurface medium is considered in order to determine the prevailing direction of contaminated groundwater flow. Photometry in observation wells has been used for structural geological estimation of transport properties of the shallow aquifer, where contaminated groundwater is moving. This study was carried out along with hydrochemical logging, which makes it possible to estimate the dynamics of contamination of subsurface medium and vertical distribution of groundwater contamination. Special attention is paid to transport of radionuclides in the form of radiocolloid particles. Groundwater samples were taken from various depths corresponding to different contamination levels near Lake Karachai. The depth intervals of sampling were determined from the data of hydrochemical logging. Ultrafiltration through membranes with a specific pore size in combination with gamma spectrometry was used to characterize radionuclide transfer with colloidal particles differing in size. The local elemental composition of the radiocolloid surface was studied by Auger spectroscopy. The chemical composition and structure of radiocolloid particles were determined by X-ray photoelectron spectroscopy with consecutive etching of the particle surface by argon ions for a certain depth. The data obtained indicate that radiocolloid particles are heterogeneous and an organic shell consisting of humic and fulvic acids and technogenic organic compounds coat their surface.  相似文献   

16.
The transportation of colloidal radionuclides by groundwater was subject to theoretical analysis. The far field of radioactive contamination of the underground environment (liquid waste pumping sites or storage of solidified waste) is dominated by pseudocolloids, i.e., colloidal particles of natural origin contaminated with radionuclides upon contact of groundwater with radioactive materials. Properties of real pseudocolloids were analyzed at sites of radioactive contamination of the underground environment. Based on a probabilistic approach, we developed a mathematical model of pseudocolloid transportation by groundwater, taking into account the difference in size of colloidal particles and the occurrence of nonradioactive natural particles with a similar composition in the groundwater. It is proved that nonuniform dimensions of the particles considerably affect the water transportation rate.  相似文献   

17.
《Applied Geochemistry》2002,17(5):633-648
Acid rock drainage (ARD) solution from an abandoned ore mine (pH 2.7, SO2−4 concentration 411 mmol/l, Fe concentration 93.5 mmol/l) was investigated by photon correlation spectroscopy, centrifugation, filtration, ultrafiltration, scanning electron microscopy, ICP–MS, AAS, ion chromatography, TOC analysis, and extended X-ray absorption fine structure (EXAFS) spectroscopy. A colloid concentration of ⩾1 g/l was found. The prevailing particle size was <5 nm. Iron, As and Pb were the metal constituents of the colloidal particles. The most probable mineralogical composition of the particles is a mixture of hydronium jarosite and schwertmannite. A small amount of a relatively coarse precipitate was formed in the ARD solution during the months after sampling. The colloid particles are obviously an intermediate in the precipitate formation process. The results suggest that the arsenate is bound to the colloids by the formation of a bidentate binuclear inner-sphere surface complex. However, the transformation of the colloidal material to the more aggregated long-term precipitate results in the incorporation of the arsenate into the interior of the Fe hydroxy sulfate crystal structures. Lead seems to occur as anglesite.  相似文献   

18.
The environmental behaviour of colloidal clay in aquatic systems is linked to the properties of their aggregates. Earlier investigations of clay colloids were performed with electron microscope techniques which caused de-hydration of the particles. Information on the structure of colloid aggregates is needed for understanding their sedimentation behaviour, as well as colloid contaminant transport properties in natural systems. Scanning transmission X-ray microspectroscopy successfully produced images of montmorillonite colloid aggregates in a pseudo-equilibrium state in 1 mM NaCl suspensions equilibrated for more than a year. These clay aggregates were revealed at photon energies below the O absorption edges of clay and water. They were spherical or ellipsoidal with diameters of the order of 100–800 nm. The aggregates are porous and gel like with lower densities than the clay mineral. These investigations are important for modelling the occurrence of clay aggregates in aqueous environments.  相似文献   

19.
To assess microbial behavior at anticipated repositories of nitrate-containing radioactive waste such as TRU waste, we set up an anoxic single horizontal column filled with Pleistocene sand with indigenous microorganisms as model samples. The column was supplied with artificial groundwater containing nitrate and acetate for 9 weeks (Run 1) or nitrate-amended groundwater from the same Pleistocene stratum for 6 weeks (Run 2). Bacterial communities, including culturable denitrifiers, were established in the sand bed, resulting in acridine orange direct counts per pore water of 3 × 108 cell mL−1 in Run 1 and 5 × 107 cell mL−1 in Run 2 and nitrate-reducing activity per pore water of roughly 13 mg L−1 d−1 in Run 1 and 1–4 mg L−1 d−1 in Run 2. Eh and hydraulic conductivity declined in Run 1, indicating microbial activity capable of retarding radionuclide transport. However, the ratio of bacterial cell concentration found in the effluent water (free-living bacteria) to the total bacterial concentration in sand (Rmobile) exceeded 2%. This finding is relevant to the increase in radionuclide transport associated with free-living cells. As a tool for quantifying this influence, we introduced an index, Kd,att (distribution coefficient for microbes on sand particles), and calculated this value from the Rmobile value. By sensitivity analysis using a numerical simulation model (MINT), we then demonstrated that higher Kd,att values would suppress the detrimental effects of the free-living bacteria. Quantification of microbial influences can be made more realistic by obtaining Kd,att values in a column experiment and incorporating this index into radionuclide transport models.  相似文献   

20.
紫色土坡地泥岩裂隙潜流中的胶体迁移   总被引:1,自引:0,他引:1       下载免费PDF全文
为探求自然胶体迁移进入地下水的潜力,建立原位坡地径流观测场,研究了2013年夏季3场不同雨型降雨事件下,紫色土坡地(1 500 m2)泥岩裂隙潜流中自然胶体的迁移规律。结果表明:裂隙潜流中胶体对降雨的响应时间为30~90 min,比潜流对降雨的响应更迅速,且取决于坡地雨前干旱情况及降雨强度;胶体浓度峰早于潜流流量峰,峰值浓度相对背景浓度可增加1~2个数量级,最大雨强及雨型决定潜流流量和胶体浓度峰型。气液界面是胶体初始迁移响应的主要驱动因素,雨水混合土壤前期水对土壤介孔和大孔内壁胶体的剪切、裹携是胶体释放、分散与迁移的主要机制。因此,胶体辅助运移可能成为紫色土地区吸附性较强的污染物(如磷、疏水性农药等)的重要迁移方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号