首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The emission of platinum group elements (PGE) from automobile catalytic converters has led to enrichment of PGE in road dusts and roadside soils in urban areas that are well above the natural background levels. This paper evaluates the source of contamination of all the PGE and Au in road dusts and roadside soils in the Pearl River Delta region, including three major cities, Shenzhen, Guangzhou and Hong Kong, South China. Samples were digested using Carius tube and analyzed by isotope dilution ICP-MS; Os was separated by distillation and other PGE by Te-coprecipitation. All samples have elevated PGE concentrations above the background values of uncontaminated soils and contain higher Pt, Pd and Rh than other PGE. The maximum values are 181 ng/g Pt, 514 ng/g Pd, 53 ng/g Rh and 1345 ng/g Au. There are clear positive correlations between Pt and Pd, Pt and Rh, and Pd and Rh, indicating that the main emitted of PGE from automobile catalyst are Pt, Pd and Rh. High concentrations of Au were also found in road dust samples from Hong Kong and Shenzhen. Dust samples with higher Os contents have lower 187Os/188Os ratios. Samples from Hong Kong show relatively high Pt/Rh ratios. Positive correlations between Pt and Ru, and Pt and Ir were found in Shenzhen and Hong Kong, but only positive correlations between Pt and Ir were found in Guangzhou. These different characteristics reflect different automobile catalytic systems used in Hong Kong and mainland China.  相似文献   

2.
This study represents the first detailed investigation of platinum-group elements (PGEs) in road-deposited sediment (RDS) in Hawaii, USA. Thirty-three sample locations, in two urban watersheds in Honolulu, Oahu, Hawaii were sampled. The <63 μm fraction of RDS was digested with aqua regia, followed by matrix separation with Dowex AG50-X8 cation exchange resin. PGEs were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) equipped with a desolvating nebulizer. Concentrations of Rh, Pd and Pt in residential streets reached 64, 105 and 506 ng/g, respectively. Maximum enrichment ratios, computed as RDS concentrations relative to baseline values, exceeded 400, indicating a significant anthropogenic signal with the sequence Rh > Pt > Pd. Iridium concentrations were uniformly low <1 ng/g, and enrichment ratios support a geogenic source. Significant interelement PGE correlations (Pd–Pt–Rh), combined with the magnitude of PGE pair-wise ratios (Pt/Pd, Pt/Rh and Pd/Rh), and relative percentages comparable to European RDS and roadside soil in Indiana, USA all suggest an automobile source. Attrition of PGE-loaded automobile catalytic converters and subsequent loss to the environment by exhaust emissions explains the significant environmental signal of PGEs in road environments of Hawaii. Further PGE work is required to quantify urban transport paths as PGEs are known to bioaccumulate, cause cellular damage and may have detrimental human health effects.  相似文献   

3.
The distribution of platinum group elements (PGEs) in massive sulfides and hematite–magnetite±pyrite assemblages from the recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide (VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb and Rh up to 149 ppb) when compared to hematite–magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb). A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks.  相似文献   

4.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

5.
The first evaluation of the distribution of platinum group elements (PGE) derived from automobile catalytic converters in urban soil samples in Mexico City was carried out. There are more than four millions cars in Mexico City and, at the present time, one third of them have catalytic converters. PGE concentrations in soils exposed to high traffic densities exceed the natural background values by upto two orders of magnitude and are directly influenced by traffic conditions. The highest concentrations of Pt, Pd and Rh in the analyzed samples are about 300, 70 and 40 μg/l, respectively. Although the PGE concentrations found in soil samples are relatively low, they represent an accumulation of only 10 yr. It is likely that the use of catalytic converters will dramatically change the distribution of these metals in the urban environment in the next decades.  相似文献   

6.
The Palaeoproterozoic Ni–Cu sulphide deposits of the PechengaComplex, Kola Peninsula, occur in the lower parts of ferropicriticintrusions emplaced into the phyllitic and tuffaceous sedimentaryunit of the Pilgujärvi Zone. The intrusive rocks are comagmaticwith extrusive ferropicrites of the overlying volcanic formation.Massive lavas and chilled margins from layered flows and intrusionscontain <3–7 ng/g Pd and Pt and <0·02–2·0ng/g Ir, Os and Ru with low Pd/Ir ratios of 5–11. Theabundances of platinum group elements (PGE) correlate with eachother and with chalcophile elements such as Cu and Ni, and indicatea compatible behaviour during crystallization of the parentalmagma. Compared with the PGE-depleted central zones of differentiatedflows (spinifex and clinopyroxene cumulate zones) the olivinecumulate zones at the base contain elevated PGE abundances upto 10 ng/g Pd and Pt. A similar pattern is displayed in intrusivebodies, such as the Kammikivi sill and the Pilgujärvi intrusion.The olivine cumulates at the base of these bodies contain massiveand disseminated Ni–Cu-sulphides with up to 2 µg/gPd and Pt, but the PGE concentrations in the overlying clinopyroxenitesand gabbroic rocks are in many cases below the detection limits.The metal distribution observed in samples closely representingliquid compositions suggests that the parental magma becamesulphide saturated during the emplacement and depleted in chalcophileand siderophile metals as a result of fractional segregationof sulphide liquids. Relative sulphide liquid–silicatemelt partition coefficients decrease in the order of Ir >Rh > Os > Ru > Pt = Pd > Cu. R-factors (silicate-sulphidemass ratio) are high and of the order of 104–105, andthey indicate the segregation of only small amounts of sulphideliquid in the parental ferropicritic magma. In differentiatedflows and intrusions the sulphide liquids segregated and accumulatedat the base of these bodies, but because of a low silicate–sulphidemass ratio the sulphide liquids had a low PGE tenor and Pt/Irand Cu/Ir ratios similar to the parental silicate melts. Duringcooling the sulphide liquid crystallized 40–50% of monosulphidesolid solution (mss) and the residual sulphide liquid becameenriched in Cu, Pt and Pd and depleted in Ir, Os and Ru. TheCu-rich sulphide liquid locally assimilated components of thesurrounding S-rich sediments as suggested by the radiogenicOs isotopic composition of some sulphide ores (  相似文献   

7.
方解石作为木落稀土矿床常见的脉石矿物,其中的铂族元素(简称PGE)地球化学特征有可能记录了地质流体的性质。采用ICP-MS分析木落方解石中PGE的含量,并对铂族元素的分布、相关性、成因进行了探讨。木落方解石可以分为两类:I型方解石和Ⅱ型方解石。I型方解石中∑PGE(不含Os)0.62~1.33ng/g,具相对低的Pd/Pt、Pd/Rh、Pd/Ru、Pd/Ir比值,不太显著的Pt-Pd分配模式,为岩浆成因方解石,与成矿作用密切相关;Ⅱ型方解石中∑PGE(不含Os)1.85~2.97ng/g,具相对高的Pd/Pt、Pd/Rh、Pd/Ru、Pd/Ir比值和显著的Pt-Pd分配模式,为热液成因方解石,代表了成矿作用后的一期地质流体作用,与成矿关系不大,仅局部地区存在改造前次流体作用形成的稀土矿体。富CO2热液具有携带PGE的能力,并能够导致PGE的分异,与富CO2岩浆相比,富CO2热液对铂族元素具有一定程度的富集作用。  相似文献   

8.
This investigation represented the preliminary study to characterize Pt and Pd concentrations and enrichment ratios in urban roadside soils. Roadside soil samples were analyzed by ICP-MS. Data from 21 roadside topsoil samples show medians of Pt and Pd concentrations are 2.9 and 2.8 ng g−1, respectively. These values are higher than those of upper crust that average 0.4 and 0.4 ng g−1, respectively. The relatively lower Pt and Pd concentrations are expected due to recent introduction of catalysts to China compared to the prolonged use of catalysts in Europe. Hierarchical clustering analysis indicates that Pt and Pd in Xuzhou urban roadside soils were mainly from the traffic emissions. Computation of enrichment ratios using the upper crust values as background levels suggests that the roadside soils had enrichment medians of 6.4 for Pt (range 2.5–11.75) and of 6.75 for Pd (range 2.75–9.25). Lower Pt/Pd ratios (range 0.35–2.86) in relation to similar studies in other countries were observed due to the different automobile catalytic converters. In general, fine fraction (<250 μm) contains higher Pt and Pd concentrations compared to the coarse fraction (250–500 μm).  相似文献   

9.
Concentrations of platinum group elements (PGE), Ag, As, Au, Bi, Cd, Co, Mo, Pb, Re, Sb, Se, Sn, Te, and Zn, have been determined in base metal sulfide (BMS) minerals from the western branch (402 Trough orebodies) of the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada. The sulfide assemblage is dominated by pyrrhotite, with minor pentlandite, chalcopyrite, and pyrite, and they represent monosulfide solid solution (MSS) cumulates. The aim of this study was to establish the distribution of the PGE among the BMS and platinum group minerals (PGM) in order to understand better the petrogenesis of the deposit. Mass balance calculations show that the BMS host all of the Co and Se, a significant proportion (40–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb, and Te. Osmium and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (∼1 ppm) are concentrated in pentlandite. Silver, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Selenium is present in equal proportions in all three BMS. Iridium, Rh, and Pt are present in euhedrally zoned PGE sulfarsenides, which comprise irarsite (IrAsS), hollingworthite (RhAsS), PGE-Ni-rich cobaltite (CoAsS), and subordinate sperrylite (PtAs2), all of which are hosted predominantly in pyrrhotite and pentlandite. Silver, Au, Bi, Mo, Pb, Re, Sb, and Te are found predominantly in discrete accessory minerals such as electrum (Au–Ag alloy), hessite (Ag2Te), michenerite (PdBiTe), and rhenium sulfides. The enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te, and Zn in chalcopyrite can be explained by fractional crystallization of MSS from a sulfide liquid followed by exsolution of the sulfides. The early crystallization of the PGE sulfarsenides from the sulfide melt depleted the MSS in Ir and Rh. The bulk of Pd in pentlandite cannot be explained by sulfide fractionation alone because Pd should have partitioned into the residual Cu-rich liquid and be in chalcopyrite or in PGM around chalcopyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during its exsolution from MSS. The source of Pd was from the small quantity of Pd that partitioned originally into the MSS and a larger quantity of Pd in the nearby Cu-rich portion (intermediate solid solution and/or Pd-bearing PGM). The source of Pd became depleted during the diffusion process, thus later-forming pentlandite (rims of coarse-granular, veinlets, and exsolution flames) contains less Pd than early-forming pentlandite (cores of coarse-granular).  相似文献   

10.
We have analysed 18 samples of komatiite from five consecutivelava flows of the Komati Formation at Spinifex Creek, BarbertonMountain Land. Our samples include massive komatiite, varioustypes of spinifex-textured komatiite, and flow-top breccias.The rocks have low platinum-group element (PGE) contents andPd/Ir ratios relative to komatiites from elsewhere, at 0·45–2ppb Os, 1–1·4 ppb Ir, <1–5 ppb Ru, 0·33–0·79ppb Rh, 1·7–6 ppb Pt, 1·6–6·1ppb Pd, and Pd/Ir 3·3. Pt/Pd ratios are c. 1·1.Platinum-group elements are depleted relative to Cu (Cu/Pd =15 300). They display a tendency to increase in the less magnesiansamples, suggesting that the magmas were S-undersaturated uponeruption and that all PGE were incompatible with respect tocrystallizing olivine. Komatiites from the Westonaria Formationof the Ventersdorp Supergroup and the Roodekrans Complex nearJohannesburg have broadly similar PGE patterns and concentrationsto the Komati rocks, suggesting that the PGE contents of SouthAfrican ultrabasic magmas are controlled by similar processesduring partial mantle melting and low-P magmatic crystallization.Most workers believe that the Barberton komatiites formed byrelatively moderate-degree batch melting of the mantle at highpressure. Based on the concentration of Zr in the Komati samples,we estimate that the degree of partial melting was between 26and 33%. We suggest that the low PGE contents and Pd/Ir ratiosof all analysed South African komatiites are the result of sulphideshaving been retained in the mantle source during partial melting.The difference in Pd/Ir between our samples and Al-undepletedkomatiites from elsewhere further suggests that the PGE arefractionated during progressive partial melting of the mantle.Thus, our data are in agreement with other recent studies showingthat the PGE are hosted by different phases in the mantle, withPd being concentrated by interstitial Cu-rich sulphide, andthe IPGE (Os, Ir, Ru) and Rh resting in monosulphide solid solutionincluded within silicates. Pt is possibly controlled by a discreterefractory phase, as Pt/Pd ratios of most komatiites worldwideare sub-chondritic. KEY WORDS: platinum-group elements; komatiites; Barberton; mantle melting; South Africa  相似文献   

11.
Ongoing underground exploration in the giant Jinchuan Ni-Cu sulfide deposit in western China is beginning to emphasize the potential for Cu-, Pt-, and Pd-rich sulfide ores that may have formed by sulfide liquid fractionation. The success of such an effort relies on whether or not fractional crystallization of sulfide occurred in the Jinchuan system. In this paper, we used available PGE data to evaluate such a process. We found that about two thirds of the 126 samples analyzed to date exhibit significant decoupling not only between Pt and Pd but also between Ru, Rh, and Ir. The best explanation for the decoupling is postmagmatic hydrothermal alteration, which affected not only silicates but also sulfides. The effects of postmagmatic alteration must be considered when using metal and isotopic ratios to evaluate primary mineralization. PGE variations in the remaining one third of the samples with Ir/(Ir + Ru) = 0.3–0.7, Ir/(Ir + Rh) = 0.4–0.8, and Pt/(Pt + Pd) = 0.3–0.7 indicate variable R-factors within individual ore bodies as well as the entire deposit, consistent with the interpretation that multiple sulfide-bearing magmas from depth were involved in the formation of the Jinchuan deposit. The mantle-normalized PGE patterns of the least-altered samples from the Jinchuan deposit are similar to the picrite-related Pechenga Ni-Cu sulfide deposit in Russia. PGE variations that can be related to sulfide liquid fractionation are observed in orebody-1 and orebody-24 but not in orebody-2 at Jinchuan. Exploration for Cu-, Pt-, and Pd-rich sulfide ores that may have been expelled into fractures in the footwalls of orebody-1 and orebody-24 appears to be justified.  相似文献   

12.
The major element relationships in ferromanganese (Fe-Mn) crusts from Afanasiy-Nikitin seamount (ANS), eastern equatorial Indian Ocean, appear to be atypical. High positive correlations (r = 0.99) between Mn/Co and Fe/Co ratios, and lack of correlation of those ratios with Co, Ce, and Ce/Co, indicate that the ANS Fe-Mn crusts are distinct from Pacific seamount Fe-Mn crusts, and reflect region-specific chemical characteristics. The platinum group elements (PGE: Ir, Ru, Rh, Pt, and Pd) and Au in ANS Fe-Mn crusts are derived from seawater and are mainly of terrestrial origin, with a minor cosmogenic component. The Ru/Rh (0.5–2) and Pt/Ru ratios (7–28) are closely comparable to ratios in continental basalts, whereas Pd/Ir ratios exhibit values (<2) similar to CI-chondrite (∼1). The chondrite-normalized PGE patterns are similar to those of igneous rocks, except that Pd is relatively depleted. The water depth of Fe-Mn crust formation appears to have a first-order control on both major element and PGE enrichments. These relationships are defined statistically by significant (r > 0.75) correlations between water depth and Mn/Co, Fe/Co, Ce/Co, Co, and the PGEs. Fractionation of the PGE-Au from seawater during colloidal precipitation of the major-oxide phases is indicated by well-defined linear positive correlations (r > 0.8) of Co and Ce with Ir, Ru, Rh, and Pt; Au/Co with Mn/Co; and by weak or no correlations of Pd with water depth, Co-normalized major-element ratios, and with the other PGE (r < 0.5). The strong enrichment of Pt (up to 1 ppm) relative to the other PGE and its positive correlations with Ce and Co demonstrate a common link for the high concentrations of all three elements, which likely involves an oxidation reaction on the Mn-oxide and Fe-oxyhydroxide surfaces. The documented fractionation of PGE-Au and their positive association with redox sensitive Co and Ce may have applications in reconstructing past-ocean redox conditions and water masses.  相似文献   

13.
We studied primary ore samples from Kalmakyr, a giant Cu–Au–Mo porphyry deposit in eastern Uzbekistan. Disseminated and stockwork-type high-grade Cu–Au–Mo mineralization showed average concentrations of 55 ppb Pd, 5.5 ppb Pt, 0.95 ppb Rh, 0.49 ppb Ir, and 4.1 ppm Au (n = 8). This type of mineralization is characterized by the presence of pyrite, chalcopyrite, molybdenite, and gold. A peak Pd content of 292 ppb was determined in a base-metal-rich quartz vein in granodiorite porphyry, which contains galena, sphalerite, chalcopyrite, tetrahedrite, and gold. Palladium correlates with Cu, Ag, Se, and S. Mineralogical and laser ablation ICP-MS study confirmed that Pd is homogeneously distributed in chalcopyrite, which contains up to 110 ppm Pd, and tetrahedrite, containing up to 20 ppm Pd. An assessment of the Pd and Pt budget at Kalmakyr showed the potential of approximately 17 t of Pd and 1.7 t of Pt.  相似文献   

14.
The Kalatongke (also spelt as Karatungk) Ni–Cu–(platinum-group element, PGE) sulfide deposit, containing 33 Mt sulfide ore with a grade of 0.8 wt.% Ni and 1.3 wt.% Cu, is located in the Eastern Junggar terrane, Northern Xinjiang, NW China. The largest sulfide ore body, which occupies more than 50 vol.% of the intrusion Y1, is dominantly comprised of disseminated sulfide with a massive sulfide inner zone. Economic disseminated sulfides also occur at the base of the intrusions Y2 and Y3. The main host rock types are norite in the lower part and diorite in the upper part of each intrusion. Enrichment in large ion lithophile elements and depletion in heavy rare earth elements relative to mid-ocean ridge basalt indicate that the mafic intrusions were produced from magmas derived from a metasomatized garnet lherzolite mantle. The average grades of the disseminated ores are 0.6 wt.% Ni and 1.1 wt.% Cu, whereas those of the massive ores are 2 wt.% Ni and 8 wt.% Cu. The PGE contents of the disseminated ores (14–69 ppb Pt and 78–162 ppb Pd) are lower than those of the massive ores (120–505 ppb Pt and 30–827 ppb Pd). However, on the basis of 100% sulfide, PGE contents of the massive sulfides are lower than those of the disseminated sulfides. Very high Cu/Pd ratios (>4.5 × 104) indicate that the Kalatongke sulfides segregated from PGE-depleted magma produced by prior sulfide saturation and separation. A negative correlation between the Cu/Pd ratio and the Pd content in 100% sulfide indicates that the PGE content of the sulfide is controlled by both the PGE concentrations in the parental silicate magma and the ratio of the amount of silicate to sulfide magma. The negative correlations between Ir and Pd indicate that the massive sulfides experienced fractionation.  相似文献   

15.
In the Great Dyke mafic/ultramafic layered intrusion of Zimbabwe, economic concentrations of platinum-group elements (PGE) are restricted to sulfide disseminations in pyroxenites of the Main Sulfide Zone (MSZ). Oxidized ores near the surface constitute a resource of ca. 400 Mt. Mining of this ore type has so far been hampered due to insufficient recovery rates. During the oxidation/weathering of the pristine ores, most notably, S and Pd are depleted, whereas Cu and Au are enriched. The concentrations of most other elements (including the other PGE) remain quite constant. In the oxidized MSZ, PGE occur in different modes: (1) as relict primary PGM (mainly sperrylite, cooperite, and braggite), (2) in solid solution in relict sulfides (dominantly Pd in pentlandite, up to 6,500 ppm Pd and 450 ppm Pt), (3) as secondary PGM neoformations (i.e., Pt–Fe alloy and zvyagintsevite), (4) as PGE oxides/hydroxides that replace primary PGM as the result of oxidation, (5) hosted in weathering products, i.e., iron oxides/hydroxides (up to 3,600 ppm Pt and 3,100 ppm Pd), manganese oxides/hydroxides (up to 1.6 wt.% Pt and 1,150 ppm Pd), and in secondary phyllosilicates (up to a few hundred ppm Pt and Pd). In the oxidized MSZ, most of the Pt and Pd are hosted by relict primary and secondary PGM; subordinate amounts are found in iron and manganese oxides/hydroxides. The amount of PGE hosted in solid solution in sulfides is negligible. Considerable local variations in the distribution of PGE in the oxidized ores complicate a mineralogical balance. Experiments to evaluate the PGE recovery from oxidized MSZ ore show that using physical concentration techniques (i.e., electric pulse disaggregation, hydroseparation, and magnetic separation), the PGE are preferentially concentrated into smaller grain size fractions by a factor of 2. Highest PGE concentrations occur in the volumetrically insignificant magnetic fraction. This indicates that a physical preconcentration of PGE is not feasible and that chemical, bulk-leaching methods need to be developed in order to successfully recover PGE from oxidized MSZ ore.  相似文献   

16.
A method was developed for the determination of platinum‐group elements (PGE) in geological samples by isotope dilution‐inductively coupled plasma‐mass spectrometry combined with sulfide fire assay preconcentration. Samples were fused and PGE analytes were concentrated in sulfide buttons. The buttons were dissolved using HCl leaving PGE analytes in insoluble residues, which were digested in HNO3 and simultaneously processed for the distillation of Os. The remaining solutions were further prepared for the purification of Ru, Rh, Pd, Ir and Pt using a tandem assembly of cation and Ln resin columns. The eluents were directly analysed by membrane desolvation‐ICP‐MS. Ruthenium, Pd, Os, Ir and Pt were determined by isotope dilution, whereas Rh was determined by conventional reference material calibration combined with 193Ir as the internal standard element. The method was validated using a series of PGE reference materials, and the measurement data were consistent with the recommended and the literature values. The measurement precision was better than 10% RSD. The procedural blanks were 0.121 ng for Ru, 0.204 for Rh, 0.960 ng for Pd, 0.111 ng for Os, 0.045 ng for Ir and 0.661 ng for Pt, and the limits of detection (3s) were 0.011 ng g?1 for Ru, 0.008 ng g?1 for Rh, 0.045 ng g?1 for Pd, 0.009 ng g?1 for Os, 0.006 ng g?1 for Ir and 0.016 ng g?1 for Pt when a test portion mass of 10 g was used. This indicates that the proposed method can be used for the determination of trace amounts of PGE in geological samples.  相似文献   

17.
《Applied Geochemistry》2002,17(8):1115-1121
The extensive anthropogenic use of the platinum group elements (PGE: Ru, Rh, Pd, Os, Ir and Pt) is the main factor responsible for the widespread dispersion of these elements throughout the environment. Significant quantities of the PGE enter fluvial systems via road runoff, storm drains and wastewater and sewage treatment systems, and may accumulate in fluvial sediments by physical and chemical processes. A baseline survey of contemporary fluvial sediments in the Kentish Stour river, east Kent, England, has been undertaken to document the sources and distribution of anthropogenic PGE in an attempt to constrain some of the physical and chemical parameters that may influence the distribution of these elements. The geology of the catchment of the Kentish Stour is dominated by carbonate and silicate sedimentary rocks, and the river passes through urban and rural land and receives inputs of waste from sewage works. Nine sedimentary rocks, 4 motorway-runoff sediments and 22 river sediments were analysed for PGE by NiS fire assay preconcentration and ICP–MS. The highest element abundances occur in the motorway-runoff sediments (maximum total PGE content of 55 ng/g), whilst the lowest values were recorded in the sedimentary rocks, where some samples contain PGE at concentrations below the limit of detection. The total PGE content of the river sediments ranged from 0.4 to 10.8 ng/g. The distribution and variation in concentrations and ratios of the PGE in the contemporary fluvial sediments of the Kentish Stour correspond strongly with land-use changes (urban versus rural) and with points of discharge from sewage works. The absence of a pure catalytic converter signature in the river sediments, however, indicates that source signatures may be mixed in sewage works or that PGE may chemically fractionate in the fluvial environment.  相似文献   

18.
Noble Metal Enrichment Processes in the Merensky Reef, Bushveld Complex   总被引:21,自引:7,他引:14  
We have analysed sulphides, silicates, and chromites of theMerensky Reef for platinum-group elements (PGEs), Re and Auusing laser ablation-inductively coupled plasma mass spectrometryand synthetic pyrrhotite standards annealed with known quantitiesof noble metals. Os, Ir and Ru reside in solid solution in pyrrhotiteand pentlandite, Rh and part of the Reef’s Pd in pentlandite,whereas Pt, Au, Re and some Pd form discrete phases. Olivineand chromite, often suspected to carry Os, Ir and Ru, are PGEfree. All phases analysed contain noble metals as discrete micro-inclusionswith diameters typically <100 nm. Inclusions in sulphidescommonly have the element combinations Os–Ir–Ptand Pt–Pd–Au. Inclusions in olivine and chromiteare dominated by Pt ± Au–Pd. Few inclusion spectracan be related to discrete noble metal phases, and few inclusionshave formed by sub-solidus exsolution. Rather, some PGE inclusions,notably those in olivine and chromite, are early-magmatic nuggetstrapped when their host phases crystallized. We suggest thatthe silicate melt layer that preceded the Merensky Reef wasPGE oversaturated at early cumulus times. Experiments combinedwith available sulphide–silicate partition coefficientssuggest that a silicate melt in equilibrium with a sulphidemelt containing the PGE spectrum of the Merensky ore would indeedbe oversaturated with respect to the least soluble noble metals.Sulphide melt apparently played little role in enriching thenoble metals in the Merensky Reef; rather, its role was to immobilizea pre-existing in situ stratiform PGE anomaly in the liquid-stratifiedmagma chamber. KEY WORDS: Bushveld Complex; Merensky Reef; laser-ablation ICP-MS; platinum-group mineralization  相似文献   

19.
为探讨贵州下寒武统黑色岩系中铂族元素物质来源及钼-镍、钒多金属形成的沉积环境与成矿作用,在钼-镍、钒多金属层及其顶底页岩、底部硅质岩中采集样品测试分析。通过对样品中金、铂族元素含量(质量分数)及其地球化学特征值研究,结果表明:黑色岩系中金及铂族元素含量显示协同变化特征;Pd富集,Ru、Ir亏损明显,Pt、Rh、Os基本持平或略有变化;样品的原始地幔标准值标准化模式配分曲线从Os、Ru、Rh、Ir、Pt到Pd大致呈“W”型,配分曲线略呈左倾,总体上呈现w(Pd)>w(Pt)>w(Os)>w(Rh)>w(Ru)>w(Ir)的变化关系;黑色岩系铂族元素来源与正常海水及海底热水喷流作用关系密切,地外来源可能性极小;黑色岩系钼-镍、钒多金属层中铂族元素的富集存在单独成矿作用或成矿作用的叠加,而且在钒多金属层内局部存在分层或条带分异。  相似文献   

20.
Detailed mineralogical and laser ablation-inductively coupled plasma-mass spectrometry studies have revealed the physical manifestation of the platinum-group elements (PGE) within the Platreef at Overysel, northern Bushveld Complex, South Africa. The PGE in the Platreef were originally concentrated in an immiscible sulfide liquid along with semi-metals such as Bi and Te. As the sulfide liquid began to crystallize, virtually all the Os, Ir, Ru and Rh partitioned into monosulfide solid solution (mss), which on further cooling, exsolved to form pyrrhotite and pentlandite with Os, Ir and Ru remaining in solid solution in both phases with Rh prefentially partitioning into pentlandite. Platinum, some Pd and Au were concentrated in the residual sulfide liquid after mss crystallization, and were then concentrated in an immiscible late stage melt along with semi metals, which was expelled to the grain boundaries during crystallization of intermediate solid solution (iss) to form Pt and Pd tellurides and electrum around the margins of the sulfide grains. Tiny droplets of this melt trapped in the crystallizing mss and iss cooled to form Pt–Bi–Te microinclusions in all sulfide phases, whilst the excess Pd was accommodated in solid solution in pentlandite. Minor redistribution and recrystallization by hydrothermal fluids occurred around xenoliths and at the very base of the mineralized zone within the footwall, however, the overall lack of secondary alteration coupled with the volatile-poor nature of the gneissic footwall have allowed the preservation of what may be the most ‘primary’ style of Platreef mineralization. The lack of PGM inclusions within early liquidus phases suggests very early sulfur saturation in the Platreef, lending support to theories involving S saturation occurring prior to intrusion of the Platreef, possibly within a staging chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号